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ABSTRACT The calibration path of system-level calibration directly affects the incentive effect of the
error term and thus the calibration accuracy. Currently, the planning of system-level calibration paths is
predominantly designed based on personal experience, resulting in insufficient incentive for error terms,
low calibration accuracy, and long calibration times. Therefore, this study proposes a system-level calibration
optimal path planning method based on an improved Dijkstra’s algorithm. First, the system-level calibration
optimal path planning problem was modeled as a multi-fork regular root tree model, and the adaptability
of Dijkstra’s algorithm was improved. Second, a 30-dimensional Kalman filter model was designed for
system-level calibration. Then, simulation experiments were conducted, and the results demonstrated that
the calibration accuracy of the error term reached 90% within 330 s. Finally, a Micro-Electro-Mechanical
system (MEMS) inertial sensor, model PA-IMU488B, was used for experimental verification, and the results
were compared with the discrete calibration results. The results indicate that the bias and scale factor errors
of the MEMS inertial sensor reached the target accuracy within 5 min. The optimal path planning method for
system-level calibration proposed in this study is not dependent on a high-precision turntable, is applicable
to sensors of different accuracies, and decreases calibration time while ensuring calibration accuracy.

INDEX TERMS Calibration algorithm, system-level calibration, Dijkstra’s algorithm.

I. INTRODUCTION
The navigation accuracy of the strap-down inertial navigation
system (SINS) depends on the measurement accuracy of the
inertial measurement unit (IMU) [1]. To achieve high accu-
racy navigation, the IMU must be calibrated before use [2].

For the calibration method of SINS, previous researchers
have done a lot of work. Their contribution mainly can be
divided into discrete calibration method and system level
calibration method [3]. The discrete calibration is to observe
the output data according to the exact input datum, and then
determine the error parameters by the least square fitting
method. Generally including angular rate calibration exper-
iment and static position experiment [4], [5]. Discrete cali-
bration is a direct measurement method, which requires the
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turntable to provide accurate input as a reference. Therefore,
the calibration accuracy largely depends on the precision
of the turntable. In addition, it is time-consuming and only
suitable for laboratory conditions. The system level calibra-
tion method introduces the IMU error into the navigation
error of the navigation solution. Then, the parameters of the
inertial error model can be identified by taking the navigation
calculation results as observations [6]. The system level cal-
ibration can achieve high calibration accuracy by using low
precision test tools and reduce the accuracy requirements of
calibration test tools. At the same time, there is no need to
measure and record the output of gyroscope or accelerometer,
which is convenient for engineering application. The key
to system-level calibration is to establish the relationship
between navigation error and sensor error and to fully moti-
vate the sensor error through a reasonable calibration path
arrangement. Therefore, the design of calibration path will
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directly affect the accuracy of system level calibration results.
The unreasonable calibration path not only wastes time but
also makes the error parameter estimation wrong.

In recent years, scholars have proposed many system-
level calibration methods, which can be generally divided
into multi-position fitting method and Kalman filtering based
method [7]. Fitting calibration method, which is based on
the SINS error equation, fits the parameters of the inertial
calibration model by the least square method. Many improve-
ments have been proposed from the perspective of calibration
path, error models and iterative algorithms [8], [9], [10], [11].
This calibration method can be realized by low precision
turntable. But the improvement of its accuracy requires the
use of complex iterative algorithms and cumbersome opera-
tion. The application of Kalman filter in calibration parameter
estimation can be traced to the work of Hellings and Kitzerow
in the 1970s [7]. Kalman filter calibration method can get rid
of the influence of turntable precision on calibration results.
At present, the research of this method mainly focuses on
the design of Kalman filter and the arrangement of cali-
bration path. Aiming at the complex error characteristics
of IMU, some researchers have established different error
models and used Kalman filters with different dimensions to
estimate them [12], [13], [14], [15], [16]. Wang et al. [17]
regarded navigation error as observable error and proposed
using extended Kalman filter to estimate error parameters.
Glueck et al. [18] proposed an auto calibration scheme to
estimate the error parameters of an accelerometer using
unscented Kalman filter (UKF). Further, Cheng et al. [19]
proposed a high-precision calibration scheme for redundant
inertial measurement, and compared the results of theKalman
filter (KF), extended Kalman filter (EKF), and unscented
Kalman filter (UKF). Xu et al. [20] proposed a hybrid cali-
bration method for FOG-based IMU, combination method of
coarse and accurate calibration. The calibration path planning
needs to decouple the errors and make the error parameters
observable. Camberlein et al. [21] designed an 18-position
calibration path, which could calibrate the laser gyro within
20 min and meet the accuracy requirements of the naviga-
tion level accuracy. Wang et al. [22] proposed a 19-position
scheme calibration method for fiber optic gyroscope SINS
based on observability analysis and considered the effect of
gravity anomalies. Wang et al. [23] proposed a 36-state EKF
for the Fiber-optic gyroscope SINS, based on 24-position, and
an iterative calibrationmethod has been suggested to suppress
calibration residuals. Cai et al. [24] proposed a 51-state filter
for 18 rotations, and its five-day inertial navigation results
position accuracy can be improved by approximately 8%.

In summary, the system-level calibration method based on
Kalman filter is a suitable calibration method for IMU with
different precision, and this method can be used without the
turntable. However, in the above studies, less attention is
paid to the optimization design of calibration path, which
is mostly based on the personal experience of researchers.
After the path design is completed, the observability degree
analysis based on singular value decomposition is generally

used to verify the path design. However, the influence of
calibration path on calibration time and accuracy was not
analyzed. Moreover, the calibration path may not be appli-
cable when the calibration conditions change, and it needs
to be redesigned and analyzed. This limits the generalization
of system-level calibration in applications. Therefore, it is
necessary to propose an optimal calibration path planning
method, which can effectively carry out system-level cali-
bration path planning according to different usage scenarios.
At the same time, the optimization of calibration path is bene-
ficial to improve the accuracy of error estimation, shorten the
calibration time and simplify the calibration operation.

This study proposes a system level calibration path plan-
ning method based on improved Dijkstra’s algorithm. The
method adopts the observability analysis method based on
the mean square error matrix, and the calibration path can
be planned quantitatively according to the convergence of
each error. At the same time, the prediction of residual error
variance can be obtained, that is, different calibration target
accuracies can be preset. By changing the Kalman filter
model (state quantity, system noise, etc.) in the proposed
path planning algorithm, the calibration path planning under
different calibration requirements and calibration scenarios
can be realized. This method plans calibration path according
to actual calibration conditions, which is of great significance
to improve the precision of high-precision IMU system-level
calibration, calibration efficiency of large batch IMU and
in-field calibration without a turntable.

The paper is organized as follows. Section II describes the
optimal path design method based on the improved Dijk-
stra’s algorithm. Section III demonstrates the accuracy and
effectiveness of the method through simulation experiments.
In Section IV, the accuracy of the method is verified using
experiments. The application of this method is discussed in
Section V. The conclusions are drawn in Section VI.

II. THEORY AND METHOD
A. IMPROVED DIJKSTRA’S ALGORITHM SUITABLE FOR
CALIBRATED PATH PLANNING
The traditional Dijkstra’s algorithm is a breadth-first search
for solving single-source shortest path problems with
weighted directed graphs [25]. The basic concept is to use
the greedy algorithm to expand the nearest node from the
starting point, and then update the distance between it and its
neighbors until the end point. This requires that the weights
of each edge in the graph be positive. This algorithm has been
applied in different fields, and many researchers have made
adaptive improvements to its use [26], [27], [28], [29], [30].
Because the purpose of optimal calibration path planning is
not to find the shortest distance between two points in the
known graph, the location of the target node is uncertain. The
judgment condition changed from ‘‘shortest path’’ to ‘‘max-
imum weight’’. The distance between nodes in the graph
used by the traditional algorithm is known and fixed and
does not change with the change of the path. In the problem
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in this paper, the path has after-effect, that is, the past path
will affect the weight of the future path edge. Therefore, the
traditional Dijkstra’s algorithm cannot be directly applied to
the case in this paper. This study improves the traditional
Dijkstra’s algorithm accordingly. In the improved algorithm,
path expansion is only carried out near the new node. Each
node update means that the number of rotations increases
or a better rotation scheme is found. In addition, the end
condition of improved Dijkstra’s algorithm is that the observ-
ability degree of the current path reaches the target value,
or the length of the current path exceeds the set maximum
value. To solve this problem, this paper proposes to take the
observability degree as the weight and the maximum value of
the weight sum as the objective function. This can ensure that
the obtained calibration path can fully realize the estimation
of the error parameters.

The system-level calibration process generally ensures that
the IMU rotates in place. The same attitude of the IMU
may appear several times in the calibration path, but the
calibration effect achieved at each occurrence is not the same,
that is, the calibration effect of the attitude is influenced
by the previous calibration process. Therefore, this study
proposes an improved Dijkstra’s algorithm that considers the
system-level calibrated path planning problem as a multi-fork
regular root tree G. As shown in Fig. 1, model G is simple,
of low calculation, and applicable to system-level calibrated
optimal path planning.

The multi-fork regular root tree G is expressed as follows:

G = (V,E,W) (1)

where V is the set of nodes in G, V = {v1, v2, · · · , vn},
element vi indicates the attitude that reach after the IMU rota-
tional movement in the calibration path, n = m× r+1 repre-
sents the number of possible attitudes in the calibration path,
m represents the number of rotation modes, and r represents
the number of rotations.

E is the set of edges in G, E = {e1, e2, · · · , en−1}, ei =

[vi, vj], and ei represents the movement of the IMU from
attitude vi to attitude vj.
W is the set of weights of the corresponding edges, W =

{w1,w2, · · · ,wn−1}, wi(ei) = w([vi, vj]), where wi(ei) repre-
sents the sum of the observability degree increments during
the process of the IMU from attitude vi to attitude vj. The
weight w represents the increment of observability degree in
this rotation, and the increase of observability degree repre-
sents the decrease of residual error. Therefore, the estimation
effect of error state quantity can be quantitatively character-
ized. The higher the weight is, the more the rotation increases
the total observability degree. In this way, the current best
rotation scheme can be selected, that is, the error can be better
motivated and the result can be estimated. As shown in (2). the
greater the increment in observability degree and the greater
the weight, the better the calibration effect of the moving

FIGURE 1. Multi-fork regular root tree model for calibration path
planning.

process ei.

wi(ei) =

q∑
p=1

max[σvi(p), σmax] −

q∑
p=1

max[σvj(p), σmax], (2)

where σvi(p) and σvj(p) represent the observability degree
corresponding to the pth error term of the IMU under the
attitudes vi and vj, and q is the total number of error terms
required to be calibrated in the system-level calibration. σmax
is the target calibration accuracy, representing the expected
observability degree of an error term in the method used in
this study. The calibration of the error term is terminated
when the observability degree of the error term has reached
the target calibration accuracy, σmax, during the system level
calibration. σvi(p) is the observability degree of the pth error
term, vi [31], as shown in (3):

σvi(p) =

√
P0(pp)
Pvi(pp)

, (3)

where P0 is the covariance matrix of Kalman filter at the
initial time, Pvi is the covariance matrix of Kalman filter in
vi attitude, the subscript pp represents the entries in row p
column p of the matrix.

In the optimal calibration path designed in this study, the
IMU was rotated forward and backward around the X-, Y-,
and Z-axes of the IMU in six rotational motions, namely
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FIGURE 2. The diagram of turntable rotation.

m = 6. Moreover, the speed and angle of each rotation are
set to a fixed value to ensure that the weights w([vi, vj]) are
only related to the rotation mode during the path planning
process. Simulation diagram of turntable rotation is shown in
Fig. 2.

The optimal path planning process based on the improved
Dijkstra’s algorithm is as follows, as shown in Fig. 3.

1) First, initialize the variable. It includes the maximum
number of rotations rmax, number of rotations r =

0, target observability degree σmax, initial attitude v0,
number of error terms to be calibrated q, an array R
for storing the paths, and an array O for storing the
weights.

2) In the second step, six different rotations are performed
starting from the attitude v0, and six different attitudes
vr×m+1 to vr×m+6 can be reached. Based on the set
error values, the IMU data with errors corresponding
to the six rotations are obtained via simulations, and
their observability degree increments w are calculated
separately.

3) The third step is comparing the magnitude of wr×m+1
to wr×m+6. If wr×m+a is the maximum, vr×m+a is
considered as the next attitude in the optimal calibration
path and deposited in the array R. wr×m+a is the sum
of the observability degree increments for this rotation
deposited in the array O, and er×m+a is the current
action in the optimal calibration path.

4) In the fourth step, it is determined if the observability
degree reaches the target value and if the maximum
number of rotations has been reached.

5) Finally, starting from the attitude vr×m+a, steps 2-4 are
repeated until the path length exceeds the set value or
the observability degree reaches the desired value, and
the obtained R is the optimal calibration path.

FIGURE 3. Flow chart of optimal path planning algorithm.

B. SYSTEM-LEVEL CALIBRATION KALMAN FILTERING
MODEL
The IMU comprises three gyroscopes and three accelerom-
eters. Considering the bias error, non-orthogonal error, and
scale factor error of the three-axis gyroscopes and three-axis
accelerometers, the error model [32] is established as follows:

 δf bx
δf by
δf bz

 =

 δKaxx 0 0
δKayx δKayy 0
δKazx δKazy δKazz

  f bx
f by
f bz

 +

Bax
Bay
Baz

 , (4)

where δf bi (i = x, y, z) represents the measurement error of
the i axis accelerometer, f bi represents the ideal value of the
i axis accelerometer, Bai represents the bias of the i axis
accelerometer, δKaii represents the scale factor error of the
i axis accelerometer, δKaij (i ̸= j, j = x, y, z) represents the
non-orthogonal error of i axis relative to j axis accelerometer.
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Similarly, the error model of the gyroscope was developed
in the b-system as: δωb

x
δωb

y
δωb

z

 =

 δKgxx δKgxy δKgxz
δKgyx δKgyy δKgyz
δKgzx δKgzy δKgzz

  ωb
x

ωb
y

ωb
z

 +

Bgx
Bgy
Bgz

 , (5)

where δωb
i (i = x, y, z) represents the measurement error of

the i axis gyroscope, ωb
i represents the ideal value of the i

axis gyroscope,Bgi represents the bias of the i axis gyroscope,
δKgii represents the scale factor error of the i axis gyroscope,
δKgij (i ̸= j, j = x, y, z) represents the non-orthogonal error
of i axis relative to j axis gyroscope.

As shown in (4) and (5), the inertial instrument error model
established in this study includes a total of 21 error terms,
of which 9 are accelerometer errors and 12 are gyroscope
errors, and the parameters are no longer coupled to each other,
and the calibration results are unique [33].

To identify errors, such as bias, scale factor, and non-
orthogonal error of gyroscopes and accelerometers, a
30-dimensional Kalman filter model [34] was designed as
shown in the following equation:{

Ẋ = FX + GW
Z = HX + V

, (6)

where X is the 30-dimensional state vector, Z is the 6-
dimensional measurement vector, F is the state transfer
matrix, G is the system noise distribution matrix, H is the
measurement matrix, W is the 6-dimensional system noise
vector, and V is the 6-dimensional measurement noise vector.
Of which,

X =

[ϕE ϕN ϕU δvE δvN δvU

δL δλ δh Bgx Bgy Bgz

Bax Bay Baz δKgxx δKgyx δKgzx

δKgxy δKgyy δKgyz δKgxz δKgyz δKgzz

δKaxx δKayx δKazx δKayy δKazy δKazz]

,

Z =

[
δvE δvN δvU δL δλ δh

]
,

H =

[
03×3 I3×3 03×3 03×21

03×3 03×3 I3×3 03×21

]
,G =


−Cn

b 03×3

03×3 Cn
b

024×3 024×3

 ,

W =

[
ωg3×1
ωa3×1

]
,V =

[
V v3×1
Vp3×1

]
, (7)

where ϕ =
[
ϕE ϕN ϕU

]T are the misalignment angles
between n frame and n’ frame; δv =

[
δvE δvN δvU

]T
are the velocity errors in n frame; δp =

[
δL δλ δh

]
are

the latitude error, the longitude error, and the height error,
respectively. The state transfer matrix F is derived from the
sensor error model and the SINS error equation [35]. I3×3
is the unit matrix, Cn

b is the SINS attitude matrix, ωg3×1
is gyroscope noise, ωa3×1 is accelerometer noise, V v3×1 is

FIGURE 4. Rotation Scheme.

velocity observation noise, and Vp3×1 is position observation
noise.

III. SIMULATION EXPERIMENTS
A. SIMULATION CONDITIONS SETTING
The correctness of the proposed method is verified by
numerical simulation with MATLAB. The IMU error term
and Kalman filter parameters were set. The performance
index of the MEMS-IMU simulation data is shown in
Table 1 [36]. The angular random walk of the gyroscope is
0.25◦

/√
h and the velocity random walk of the accelerom-

eter is 100 µg
/√

Hz. The initial attitude error was set as[
5′ 5′ 5′

]
, observation noise at zero velocity was Vv3×1 =[

0.01 0.01 0.01
]T m/s, and position observation noise was

Vp3×1 =
[
0.01 0.01 0.01

]T m. The sensor sampling fre-
quency was 100 Hz and the target observability degree was
selected as σmax = 10.
The larger the input rotation rate is, the larger the error

of the system parameters will be. If the input angular rate is
too small, the observability degree of the scale factor error
and non-orthogonal error of the gyro will be small. However,
if the input angular rate is too large, the gyro deviation will be
submerged in the observation noise, and the estimation result
cannot be effectively determined. In this paper, the angular
rate input is 3 ◦/s.

B. SIMULATION EXAMPLES
First, according to the above simulation conditions, simula-
tion data of six rotations of the IMU around the X, Y and Z
axes were generated. The observability degree was calculated
byKalman filter. Then, we compared and selected the scheme
with the highest observability degree as the rotation mode
of this step. Finally, the above steps were repeated until the
observability degree reached the target value 10.

The calibration rotation scheme obtained using the calibra-
tion path planning algorithm proposed in this study is shown
in Fig. 4. The IMU was stationary for 60 s at the beginning
and final positions respectively. The calibration took 390 s
after a total of 8 positions.

The error terms of the IMU were calibrated using the
system-level calibrated Kalman filter model discussed in
Section .II B. The observability degree of each error term is
shown in Fig. 5-6. The estimation results of each error term
are shown in Fig. 7-8.
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FIGURE 5. Simulation results of optimal calibration path (a) Gyro bias
error, (b) Gyro scale factor error, (c) Gyro non-orthogonal error.

Fig. 5 showed the observability degree of gyro error terms
in the optimal calibration path. In Fig. 5(a) from 0 s to
60 s, the observability of Bgx and Bgy increased while Bgz
didn’t. From 60 s to 240 s, the observability degree of Bgz
began to increase. After 240s, the observability of Bgx ,Bgy,
and Bgz all reached to the target value 10. In Fig. 5(b), the
observability degree of δKgx , δKgy, δKgz increased at 60 s,
120 s and 150 s respectively. It is consistent with the rotation
sequence showed in Fig. 4 that the IMU rotates around X
axis, Y axis and Z axis at 60 s, 120 s and 150 s respectively.
In Fig. 5(c), each non - orthogonal error was motivated when
the corresponding axis rotated, which made the observability
degree increase continuously. Fig. 5 declared that by the

FIGURE 6. Simulation observability degree of optimal calibration path
(a) Accelerometer bias error, (b) Accelerometer scale factor error,
(c) Accelerometer non-orthogonal error.

optimal calibration path, the observability degree of all the
gyro error terms reached to the target value.

Fig. 6 showed the observability degree of accelerome-
ter error terms in the optimal calibration path. In Fig. 6(a)
from 0 to 60 s, the observability of Bax ,Bay and Baz increased
while Baz was slightly lower. At 60 s, the observability degree
of Bay and Baz began to increase rapidly. And the observabil-
ity degree of Bax increased continuously from 120 s. After
240 s, the observability of Bax ,Bay and Baz all reached to
the target value 10. In Fig. 6(b), the observability degree of
δKax , δKay, δKaz increased at 0 s, 60 s and 120 s respectively.
At these moments, their corresponding accelerometers were
affected by gravity, which is consistent with the rotation
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FIGURE 7. Simulation results of optimal calibration path (a) Gyro bias
error, (b) Gyro scale factor error, (c) Gyro non-orthogonal error.

sequence showed in Fig. 4. In Fig. 6(c), each non - orthogonal
error was motivated when the corresponding axis deviated
from the horizontal direction, which made the observability
degree increase continuously. Fig. 6 declared that by the
optimal calibration path, the observability degree of all the
accelerometer error terms also reached to a high value.

Fig. 7 showed the simulation results of gyroscope system-
level calibration. From 0 s to 60 s, the estimated curves of
Bgx and Bgy in Fig. 7(a) increased while others didn’t. At 60 s,
120 s, 150 s, the other error terms weremotivated respectively
and rapidly converge to the true value. After 330 s, the IMU
was stationary, all the error terms reached convergence.

FIGURE 8. Simulation results of optimal calibration path
(a) Accelerometer bias error, (b) Accelerometer scale factor error,
(c) Accelerometer non-orthogonal error.

Fig. 8 showed the simulation results of accelerometer
system-level calibration. From 0 s to 60 s, Bay,Baz, δKaz
were well estimated. At 60 s, 120 s, 150 s, the other error
terms were motivated respectively and rapidly converged to
the true value. It can also be found that the Bay,Baz suddenly
increased and exceeded the real value. This is because the
scaling factor and the non-orthogonal error of the correspond-
ing axis were motivated, resulting in the wrong estimation
of the bias. Under the action of Kalman filter, the error
estimation gradually converged to the correct value. In the
process of rotating motion, the error terms behavior basically
conformed to the result of observability degree analysis. And
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FIGURE 9. Simulation results of 18-position calibration path (a) Gyro bias
error, (b) Gyro scale factor error, (c) Gyro non-orthogonal error.

the error terms with strong observability degree converged
faster. Because of the interference of noise, the error param-
eters fluctuate slightly in the convergence process. But in the
last 60 s, they all converged to the real value.

In order to verify the superiority of the calibration path
planned in this paper, the commonly used 18-position cali-
bration path was used for simulation comparison under the
same calibration conditions [20]. And the results were shown
in Fig. 9 and Fig. 10, the total time of this method was
1860 s. Simulation results showed that most of the errors of
the traditional scheme can be estimated, but the scaling factor
of the Z-axis gyroscope cannot converge.

FIGURE 10. Simulation results of 18-position calibration path
(a) Accelerometer bias error, (b) Accelerometer scale factor error,
(c) Accelerometer non-orthogonal error.

TABLE 1. IMU error terms for simulation.

The calibration estimation results of each error and their
relative errors were shown in Table 2. It can be seen from
Table 2 that the estimation effects of the two schemes on
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TABLE 2. Comparison of calibration results between optimal scheme and
18 position scheme.

accelerometer error parameters are basically similar. But for
the gyroscope scaling factor, the relative error of the estimated
value obtained by the proposed method was significantly
smaller than that of the traditional scheme. The calibration
results of gyroscope obtained by the two schemes were
worse than the calibration results of accelerometer. This also
accords with the result of observability degree analysis: the
observability degree of each error parameter of accelerometer
was much higher than that of gyroscope. This was due to
the small rotation rate of the input and hence insufficient
excitation of the gyroscope scaling factor and non-orthogonal
errors.

Through the comparison of simulation results, it can be
clearly seen that under the current calibration conditions,
the calibration path planned in this paper takes less time,
has fewer rotations, and has better calibration effect. After
changing the calibration conditions, the traditional scheme
cannot even achieve the convergence of all error parameters,
which proves the necessity of optimal calibration path design.

IV. EXPERIMENTAL VERIFICATION
To experimentally verify the performance of the algorithm,
MEMS-IMU, model PA-IMU488B. The bias instability of
the gyroscope was 2 ◦/h (Allan’s variance), and the bias
instability of the accelerometer was 0.1 mg. First, the sensor

FIGURE 11. Rotation scheme.

FIGURE 12. MEMS-IMU PA-IMU488B and calibration test with hands.

simulation data for path planning was generated, and the
simulation parameters are shown in Table 3. Then, we used
the method proposed in this study for path planning, and the
target observability degree was selected as σmax = 10, the
maximum number of rotations is rmax = 50. The sensor
sampling frequency was 400 Hz. The initial attitude errors
were set as

[
5′ 5′ 5′

]
, rotation angular rate was selected

as 30 ◦/s, observation noise at zero velocity was Vv3×1 =[
0.01 0.01 0.01

]T m/s, and position observation noise was
Vp3×1 =

[
0.01 0.01 0.01

]T m.
According to the above calibration conditions, the rotation

scheme obtained using the optimal path planning algorithm
proposed in this study is shown in Fig. 11. MEMS-IMU was
calibrated using hand according to the rotation scheme in
Fig. 12, and the IMU was stationary for 90 s at the beginning
and final positions respectively. The raw data of angular rate
output by gyroscope and specific force output by accelerom-
eter are shown in Fig. 13.

As shown in Fig. 13, the sensor data contains more
interference during the process of IMU rotation without a
turntable. And the angular rate of rotation was not stable,
thereby increasing the difficulty of the error term estimation.
We estimated the error terms using the system-level calibrated
Kalman model proposed in Section II. B, and the results are
shown in Fig. 14-15.

As shown in Fig. 14, all error terms of gyro converged
within 5 min. From 0 s to 90 s, Bgx and Bgy were effec-
tively estimated and converged rapidly. At 90 s after the
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FIGURE 13. Output data of IMU.

rotation began, it can be seen that all scaling factor errors and
non-orthogonal errors were estimated, which was slightly dif-
ferent from the situation in the simulation. That was because
the IMU rotation was performed manually, so the actual
rotation was not strictly around the X, Y, or Z axis. In the
process of rotation of a certain axis, other error terms were
also motivated to some extent. In fact, this situation was not
a good influence, which may reduce the decoupling effect of
the calibrated path and create a gap with the expected results.
During this time, Bgz fluctuated considerably, not converged.
In the final stationary phase, Bgz gradually converged, and the
other errors did not diverge.

Fig. 15 showed the system-level calibration experiment
results of accelerometer. From 0 s to 90 s, Bax ,Bay and
Baz were effectively estimated and converged rapidly. At
90 s after the rotation began, it can be seen that Bax ,Bay
converges to another value. It was because the errors were
coupled with each other before the rotation began, so that
Bax ,Bay were incorrectly estimated. After the optimal cal-
ibration path, each error term was decoupled, and Bax ,Bay
gradually converged to the correct value. The convergence
characteristics of the other errors were similar to that of the
gyroscope. Fig. 14-15 declared that the by the optimal cali-
bration path, the estimated results of 21 error terms can con-
verge under the current calibration experimental conditions
within 5 min.

In order to verify the repeatability of the calibration path
results, three repeated experiments were performed, and
the calibration results were listed in Table 4. As shown in
Table 4, the repeatability of the estimates of most of the error
terms in the three experiments is favorable, indicating the
effective-ness of the method proposed in this study. Although
there were some differences between the calibration results
and the preset error size during the calibration path planning,
the experimental results can still converge stably. It showed
that the relatively rough sensor error setting will not affect
the convergence of the error estimation when the calibration

FIGURE 14. System level calibration experiment results of (a) Gyro bias
error, (b) Gyro scale factor error, (c) Gyro non-orthogonal error.

conditions were set.Moreover, the error ofMEMS sensor will
change every time it is powered on again, so it is normal that
there are some differences between the results of fractional
calibration and system-level calibration.

To evaluate the calibration results obtained by the pro-
posed method of this study, the error terms of PA-IMU488B
were also calibrated using a six-position discrete calibration
method on a three-axis turntable, and each position required
5 min, for a total of 30 min. The compared results of two cal-
ibrations (six-position discrete calibration and system level
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FIGURE 15. System level calibration experiment results of
(a) Accelerometer bias error, (b) Accelerometer scale factor error,
(c) Accelerometer non-orthogonal error.

calibration) are listed in Table 5. It can be seen from Table 5
that the results of system-level calibration are consistent with
those of discrete calibration, indicating that the proposed
method can correctly achieve system-level calibration of IMU
sensors. Among them, the error parameter with the largest
residual error was the Z-axis deviation of the accelerometer,
which was mainly because its magnitude was too different
from the expected value, which may lead to inadequate error
estimation.

TABLE 3. Path planning algorithm sensor error setting.

TABLE 4. System level calibration experiment results.

TABLE 5. Comparison of system - level calibration results with discrete
calibration results.

The total time required for the system-level calibration was
5 min, which was a sixth of the time spent for the discrete
calibration. It was demonstrated that the method proposed
in this study can be used to achieve accurate calibration of
MEMS-IMU errors in a relatively short time without the use
of a turntable.
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V. DISCUSSION
A. CALIBRATION OF HIGH ACCURACY IMUS
For calibrating small batches of high accuracy IMUs, we pre-
dominantly focused on if the calibration path could be suf-
ficiently motivated by the error term to obtain accurate cali-
bration results; the calibration time was a secondary concern.
We adopted the path planning method proposed in this study
and improved the calibration accuracy for high precision
IMUs by increasing the set observability degree target as well
as the number of rotations to further improve the incentive
effect of the error term.

B. FOR LARGE BATCH IMU CALIBRATION
For large batch IMU calibration, it is required to reduce
the calibration time for sensor testing. The calibration path
design using the method proposed in this study can effec-
tively reduce the calibration time while ensuring calibration
accuracy.

To further decrease the calibration time, the method pro-
posed in this study can be first used to obtain a calibra-
tion path by roughly setting the simulation parameters, and
then, a more accurate error estimation result can be obtained
through a calibration test. The calibration results are then used
to re-plan the path using the method proposed in this study to
obtain the optimal calibration path for this batch of sensors.
Through such an iterative approach, the limitation of non-
optimal times due to excessive deviations of the simulation
error terms set roughly in the application of this method can
be solved.

C. IN-FIELD CALIBRATION WITHOUT A TURNTABLE
For in-field calibration without a turntable, the sensor errors
must be adequately motivated because of the lack of accu-
rate outside information. The insufficient motivation of sen-
sor errors will result in the information of each error term
being lost in the noise and not being accurately identi-
fied. According to the system-level calibration path planning
method proposed in this study, it is possible to ensure that
each error term is effectively motivated. Therefore, for seri-
ous noise interference, a reasonable calibration path plan-
ning can still achieve the recognition of the error terms,
which is important for improving the IMU in-field calibration
accuracy.

VI. CONCLUSION
In this study, a system-level calibration path planning method
based on the improved Dijkstra algorithm was proposed.
Based on the principles of observability degree analysis and
system-level calibration, a system-level calibration path plan-
ning algorithm was designed, a 30-dimensional Kalman fil-
tering model was established, and a system-level calibration
scheme was proposed. Herein, each error of the sensor was
fully motivated by improving the effectiveness of the cali-
bration path. The results demonstrated that this method can
construct the optimal calibration path for IMUs with different

calibration conditions and different accuracy levels as well
as considerably reduce the calibration time and achieve the
preset target accuracy. The feasibility of the method was
verified via simulations and experiments. For the MEMS-
IMU, the error reached the target accuracy within 5 min
without using equipment, such as a turntable., providing a
reliable calibration path for the in-field calibration of the
MEMS-IMU under different conditions.
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