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ABSTRACT Cancer is the second biggest cause of death worldwide, accounting for one of every six deaths.
On the other hand, early detection of the disease significantly improves the chances of survival. The use
of Artificial Intelligence (AI) to automate cancer detection might allow us to evaluate more cases in less
time. In this research, Al-based deep learning models are proposed to classify the images of eight kinds
of cancer, such as lung, brain, breast, and cervical cancer. This work evaluates the deep learning models,
namely Convolutional Neural Networks (CNN), against classifying images with cancer traits. Pre-trained
CNN variants such as MobileNet, VGGNet, and DenseNet are employed to transfer the knowledge they
learned with the ImageNet dataset to detect different kinds of cancer cells. We use Bayesian Optimization
to find the suitable values for the hyperparameters. However, transfer learning could make it so that models
can no longer classify the datasets they were initially trained. So, we use Learning without Forgetting (LwF),
which trains the network using only new task data while keeping the network’s original abilities. The results
of the experiments show that the proposed models based on transfer learning are more accurate than the
current state-of-the-art techniques. We also show that LwF can better classify both new datasets and datasets
that have been trained before.

INDEX TERMS Cancer, convolutional neural network (CNN), pretrained models, Bayesian optimization,
transfer learning, learning without forgetting, VGG16, VGG19, DenseNet, mobile net.

I. INTRODUCTION

The term “cancer” describes a situation in which the body’s
normal cells develop abnormally due to uncontrolled muta-
tions. Upon creation, these cells divide erratically and dissem-
inate throughout the organs. If left untreated, most cancers
have the potential to kill us. The leading cause of death
worldwide is cancer, followed by cardiovascular diseases.
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Any part of the body can develop cancer cells, but the most
common sites are the lungs, breasts, brain, colon, rectum,
liver, stomach, skin, and prostate. A myriad of factors, includ-
ing behavioral qualities like a high BMI, cigarette and alcohol
consumption, physical carcinogens like UV rays and radia-
tion, etc causes cancer. In addition, discomfort, tiredness, per-
sistent cough, nausea, breathing problems, bruising, bleeding,
weight loss, muscle pain, and other cancer symptoms are
prevalent. Hence, diagnosing cancer at its earliest stages often
provides the best chance for a cure. Four modalities are
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available to clinicians who diagnose, stage, and treat human
cancer: physical examination, laboratory tests, imaging tech-
niques, and biopsy. Of these, imaging techniques such as
Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), etc, are capable of 3D detection of cancer anywhere
in the human body. Figure 1. shows a few types of imaging
techniques.

Among various techniques to detect the presence of cancer
cells, CT and MRI provide a wealth of information on tumor
location, size, morphology, and structural changes in the
surrounding tissues. Physicians and health practitioners use
these images to detect and locate cancer cells in the human
body. But, visual inspection of MRI /CT scans sometimes
results in false positive diagnoses. Consequently, improved
computer-assisted diagnosis techniques are essential for reli-
ably confirming the presence of cancer cells.

Computational
Tomography

i A AT S T

Lt PR S

Magnetic Resonance
Imaging

Microscopy

FIGURE 1. Various imaging techniques.

As the use of Artificial Intelligence (AI) in health care
continues to grow, researchers are finding new ways to use
deep learning models. Deep learning has been very important
for diagnosing, making decisions about, and treating chronic
diseases, especially in cancer research. A study [1] found
that deep learning models can find and diagnose cancer as
well as or better than pathologists by looking at scans of
tissue. This study suggests that pathologists use more pre-
screening technology to make diagnoses faster. Deep learning
models can not only find cancer earlier, but they can also
improve detection accuracy. Deep learning based computer
vision algorithms specializing in image recognition have
been applied to medical imaging techniques such as CT and
MRI scans [2], [3], [4], [5]. Several attempts have been
made to extract image information, including spatial corre-
lations, via medical imaging-based deep learning algorithms.
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Particularly in the extraction of features, CNN’s perfor-
mance was exceptional. CNNs excelled at numerous com-
puter vision tasks [4], [6]. CNNs have become the primary
deep learning method for medical image categorization in
recent years due to their self-learning capabilities. Numerous
CNN-based neural network models have been advocated for
identifying various diseases [6]. The primary objective of
this study is to develop effective strategies for using CNN
to detect various forms of cancer. For this research, we have
collected CT/MRI images of eight types of cancer, namely
Acute Lymphoblastic Leukemia (ALL), Brain Cancer, Breast
Cancer, Cervical Cancer, Kidney Cancer, Lung, and Colon
Cancer, Lymphoma, and Oral Cancer. Through this work,
we intend to address the following research questions:

RQ1: How can models that have been pre-trained be cus-
tomized to classify the images in a new dataset?

We have finetuned the pre-trained CNN models and then
compared how well they worked for a new dataset with
images of four types of cancer: acute lymphoblastic leukemia,
cervical, kidney, and breast cancer.

RQ2: How effective can fine-tuning the hyperparameters
of different CNN models be?

Given the importance of these values in determining how
well a model performs, we used Bayesian optimization to
select the best values for hyperparameters.

RQ3: Can models use what they’ve learned from one task
or dataset to do something new and excel in both original and
new datasets?

To look into this problem, we used a set of CT/MRI images
of four other types of cancer: lymphoma, lung and colon,
brain tumor, and oral cancer.

In this study, we develop a set of models using pre-trained
CNN architectures to automatically detect and characterize
different types of cancer from CT/MRI images, which have
been acquired from diverse sources such as Kaggle, etc.
To fine-tune pre-trained models for repurposing, we have
retrained a few top feature extraction layers and replaced the
classification layer at the top. In order to determine the ideal
values for the hyperparameters used to train various CNN
architectures, this work also uses Bayesian optimization.

The following are the substantial contributions to this
work:

i. Acquired CT/MRI images for different types of cancer
from different sources and preprocessed the images

ii. Investigated the performance of CNN variants using
transfer learning, fine-tuning, and exhaustive simulations.

iii. Explored Bayesian optimization to hyperparameter
optimization

iv. Transferred the knowledge acquired by the pro-
posed models to a standard, challenging dataset comprising
CT/MRI scans of another four types of cancer.

We analyze the performance of five CNN architectures
using transfer learning over the CT/MRI image dataset.
In addition, Learning without Forgetting (LwF) is investi-
gated as a solution for multitask learning. To our knowledge,
no previous work has focused on transfer learning with LwF
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and Bayesian Optimization for categorizing CT/MRI images
of multiple cancer cells.

The remainder of the paper is structured as follows:
Section II summarizes recent cancer classification efforts
with CNNs based on deep learning. Section III describes the
materials and procedures utilized in this work. In Section IV,
the recommended models are explained. The experimental
findings and performance of the proposed models are shown
in Section V. In this section, the rationale for employing LwF
is also discussed. Section VI finally concludes this work.

Il. RELATED WORKS

Several traditional approaches for detecting and classifying
tumors are simple and complicated, requiring more time and
labor around the clock. Recently, deep learning models have
been used to conduct cancer classification. In this section,
we summarize the recent attempts on detecting/ classifying
a variety of cancer using deep learning models.

Deep learning networks such as VGG-16 and ResNet-50
were utilized by Rezayi et. al. [7] for detecting acute lym-
phoblastic leukemia. In addition, the authors presented a
CNN with 10 convolutional layers and six common machine
learning algorithms for dividing leukemia into two groups.
The authors compared various ML and CNN models in
detecting this condition and concluded that CNN outper-
formed ML models. Gunasekara et. al. [8] proposed a three-
fold deep learning architecture with classifiers implemented
with a deep CNN at the first level, and at the second level,
a region-based CNN (R-CNN) to locate the tumor regions
of interest. The ChanVese segmentation algorithm is used to
contour the concentrated tumor boundaries for segmentation
in the final stage. The average dice score for this model
is 0.92.

To further understand how textural, morphological, and
graph properties affect categorization classification accuracy,
Reshma et. al. [9] conducted a series of studies. An improved
Genetic Algorithm and a weighted feature selection method
in conjunction with CNN have been proposed to detect breast
cancer. Zhao et al. [10] found that adding manual features and
a vote system can produce outstanding accuracy in cervical
cell categorization even with little amounts of labeled data.
A small number of images are annotated using a clarity func-
tion, and a voting mechanism is used to balance the training
data for the algorithm. The proposed method in this research
[10] has a 91.94% accuracy rate with only a little amount of
labeled data. Pederson et. al. explored the efficacy of CNNs
to facilitate the distinction of oncocytoma from renal cell
carcinoma [11]. The authors suggested a revised version of
the ResNet50V2 as a solution. A majority vote of individual
image classifications determined a renal tumor’s benign or
malignant nature, which was set at 51%. By analyzing the
histological images of lung and colon tissues, Masud et.
al. [12] developed a categorization framework that enabled
them to differentiate between five distinct lung and colon
tissues, two benign and three malignant. According to the
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findings, this framework has a maximum accuracy of 96.33%
in determining whether or not tissues contain cancer.

Khan et. al. [13] suggested a CNN-based hierarchical deep
learning-based brain tumor classifier and used it to clas-
sify the input into the following four categories: glioma,
meningioma, pituitary, and non-tumor. This model achieved
an accuracy of 92.13%, making it superior to the vari-
ous approaches currently used to detect and segment brain
tumors. Alanazi et al. [14] came up with the idea of using
a CNN to improve the accuracy of the automatic detection
of breast cancer. The analysis of hostile ductal carcinoma
tissue zones in whole-slide images was done. In addition, the
authors explored models that use a variety of CNN architec-
tures to automatically diagnose breast cancer. They compared
the findings of these models to those produced by machine
learning techniques. To segment the colon and polyps from
CT images, a deep CNN-based residual network technique
provided by Akilandeswari et al. [15] has been adopted over
the 2D CT images. The residual stack block and the short
skip nuance have been implemented in the hidden layers to
preserve the spatial data. Here, ResNet-enabled CNN is used
for thorough segmentation of colon cancer region.

in an attempt, a classification and detection model was
developed by Warin et. al. [16] utilizing DenseNet121 and
a faster R-CNN. According to the findings of these authors,
the above algorithms were proven to have adequate potential
for identifying malignant tumors in images. Finally, Tufail et.
al. [17] described recent works where deep learning has been
used to determine the most effective models for cancer predic-
tion tasks. This work focused on analyzing the effect that deep
learning systems have on histopathology images, presented
a synopsis of state-of-the-art deep learning approaches, and
provided future researchers with guidance on how to improve
upon the methods that are now in use.

From the review of the existing research attempts, we see
that the performance of the contemporary models, such as
ResNet, MobileNet, DenseNet etc is appreciable compared
to traditional models such as VGGNet, AlexNet etc. We have
already enumerated the research questions in Section I. These
research questions have been framed from the following
points. From the literature study, we find that pretrained CNN
models with transfer learning provide a number of advantages
over traditional CNN models, including faster performance,
fewer data requirements, and reduced training time. Hyper-
parameters govern the learning process, and as a result, these
parameters’ values directly impact other model parameters
like weights and biases, which in turn affects how well a
model performs. While using transfer learning, the models
may forget their previous knowledge when retrained on a new
task set. Since, we want to retain previous knowledge along
with the new task set, we use LwF.

To summarize, the attempts to detect cancer tissue presence
from CT/MRI images focused mostly on one or two types of
cancer. In the present work, we try to detect multiple kinds of
cancer. Recent publications suggest that deep learning models
are used more frequently for cancer detection in CT/MRI and
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other imaging modalities. However, the use of deep learning
architectures still has space for improvement, particularly in
terms of training time and hyperparameter adjustment. Our
goal is to build a few classification models that can classify
different types of cancer cells using a combination of neural
network techniques such as deep learning, transfer learning,
and hyperparameter tuning. Further, we use LwF to retain
the original network capabilities while training the models on
new cancer datasets.

Ill. MATERIALS AND METHODS

A. IMAGE COLLECTION

The image collection is the process of gathering images from
different sources. The present study focuses on detecting a
variety of cancer namely ALL, Brain Cancer, Breast Cancer,
Cervical Cancer, Kidney Cancer, Lung and Colon Cancer,
Lymphoma, and Oral Cancer. CT/MRI images for the var-
ious body parts (tissues) are collected and compiled from
Kaggle containing the categories ALL [18], Breast Cancer
[19], Cervical Cancer [20], Kidney Cancer [21], Lung and
Colon Cancer [22], Lymphoma [23] and Oral Cancer [24].
In addition, an open-source Brain tumor Image Database [25]
containing different MRI images with different pathological
conditions have been generated. Each type of cancer has a
few categories as listed in Table 1.

TABLE 1. Different types of cancer and their categories.

Number of Subclasses
Subclasses

ALL 4

Main Cancer Types

Benign, Pre, Pro, Early
Glioma
Meningioma
Pituitary Tumor
Benign, Malignant
Dyskeratotic
Koilocytotic
Metaplastic
Parabasal
Superficial-
Intermediate
Normal, Tumor
Lung Benign Tissue
Lung Adenocarcinoma
Lung Squamous Cell
Carcinoma, Colon
Adenocarcinoma
Colon Benign Tissue
Chronic Lymphocytic
Leukemia
Follicular Lymphoma
Mantle Cell
Lymphoma
Normal
Oral Squamous Cell
Carcinoma

Brain Cancer 3

Breast Cancer 2

Cervical Cancer 5

Kidney Cancer 2

Lung and Colon Cancer 5

Lymphoma 3

Oral Cancer 2

B. IMAGE PREPROCESSING AND AUGMENTATION

Since the images have been acquired from different sources,
they differ in number, format, and size. Hence, the datasets
must be preprocessed before being used to input any model.
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As the images from the dataset are of different formats such
as JPEG, JPG, PNG, BMP, NII, and TIF, they have been
converted to JPG format uniformly. As like formats, the
images in the dataset differ in dimensions. So, they have all
been resized to 224*224 (common for all models) and labeled
according to their classes.

1) IMAGE AUGMENTATION

There are a few challenges when we use deep learning mod-
els for image classification. The more information the deep
learning models have, the more features they will be able
to learn. For deep learning models to learn more features,
enormous volumes of data are required. Having this much
information is only sometimes simple, though. Additionally,
sometimes, we may have a lot of data on a certain subject,
but it is frequently unlabeled, which prevents us from using
it to train learning algorithms. Since we don’t have a bal-
anced image dataset for each type of cancer, we used image
augmentation, which is a way to make new images from the
ones in the training set. Table 2 lists the number of images in
each category. Rotation, shifting, cropping, blurring, scaling,
flipping horizontal and vertical, and padding are examples of
image augmentation methods to minimize the model’s over-
fitting. After augmentation, the dataset consists of around
130000 images, with 5000 images in each category of all
types of cancer. The number of images in each class after
augmentation is shown in Figure 2.

Hence, using augmentation, we have constructed a new
dataset and uploaded it as a public dataset on Kaggle under
the name ‘“Multi Cancer Dataset” [26]. Next, the deep learn-
ing model we train should be tested and evaluated against the
performance. For this, the dataset is split into 70:15:15 ratio
for training, validation, and testing.

After Pre-Processing

25000
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0
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FIGURE 2. Number of Images after augmentation.

C. METHODS AND MODELS
The development of several CNN architectures for image
recognition applications has resulted in their effective
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application to various difficult visual imagery challenges.
In this study, the ability of five different CNN architec-
tures, namely VGG16, VGG19, DenseNet201, MobileNetV3
(Small) and MobileNetV3 (Large) to classify the types of
cancer from CT/ MRI images has been evaluated. The basic
CNN is explained below.

TABLE 2. Number of actual images in the dataset.

Number of images

Types of cancer Subclasses Category— Total
wise
Chronic Lymphocytic 13
Leukemia
Lymphoma Follicular Lymphoma 139 374
Mantle Cell 122
Lymphoma
Benign 504
Early 985
ALL Pro 963 3256
Pro 804
Benign 2479
Breast Cancer Malignant 5304 7783
Lung Benign Tissue 5000
Lung Adenocarcinoma 5000
Lung Squamous Cell
Lung and Colon Carcinoma 5000 25000
Cancer
Colon 5000
Adenocarcinoma
Colon Benign Tissue 5000
. Normal 2283
Kidney Cancer Tumor 5077 7360
Normal 2494
Oral Cancer Oral Squamous Cell 2698 5192
Carcinoma
Dyskeratotic 223
Cervical Cancer Koilocytotic 238 966
Metaplastic 271
Parabasal 108
Superficial-
Intermediate 126
Glioma 1426
Brain Cancer Meningioma 708 3064
Pituitary Tumor 930

For image categorization, CNN is a popular deep learning
technology. It’s also useful for modeling applications that
require a lot of data and is positioned at the top of its field [27],
[28]. A gradient-based strategy was used by Lecun et. al. [29]
to solve the problem of categorizing hand-written digits using
CNNs. With this success came the recognition of language
and activities, and now it is used in a wide range of fields,
including object tracking and identification. A CNN can be
broken into two basic building blocks: a feature extractor
and a classifier. The block for feature extraction consists of
convolutional and pooling layers. The classification layer is
fully connected and flattened. The filters comprising a convo-
lutional layer indicate lower-dimensional input data charac-
teristics. To construct feature maps, the filters convolute the
entire input image. The pooling layers are then employed to
lower the dimensionality of the feature maps, and the feature
maps are subsequently downsampled. The last convolution
layer flattens the feature map. Finally, two or three hidden
layers and an output layer that uses a classifier to differentiate
between two or more classes are at the classifier part. Despite
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their primary application in image classification, CNNs are
increasingly used for feature extraction and classification
in many image processing applications. Figure 3 depicts a
typical CNN.

Convolution and
Nonlinearity Fullv Connected Output

N J s
N ——

Classification

Input Image Pooling

Feature Extraction

FIGURE 3. Architecture of CNN (Adapted from: https://link.springer.
com/article/10.1007/s00521-022-07246-w).

The first few layers of a CNN are usually responsible for
finding basic things like horizontal, vertical, and diagonal
edges, among other things. The results of these layers are
sent to the layers in the middle, whose job is to pull out
more complex features like corners and edges. As we go
deeper into the network, the layers start recognizing higher-
level things like objects, faces, and other things. Several
CNN variants have been developed and effectively applied to
challenging visual tasks for image recognition applications.
In this study, we choose to develop the proposed models using
pre-trained models such as VGG16, VGG19, DenseNet201,
MobileNetV3 (small), and MobileNetV3 (large) which are
the variants of CNN.

D. TRANSFER LEARNING WITH FINETUNING

Transfer learning entails transferring the information of a
model learned on a big dataset to a smaller dataset. Typi-
cally, the pre-trained models are trained on enormous datasets
that serve as a typical benchmark for computer vision tasks,
such as ImageNet [30]. Canziani et. al. [31] investigated
the efficacy of pre-trained computer vision models using the
ImageNet database. The weights derived from the models are
reusable for various computer vision tasks [32]. The justi-
fication for employing pre-trained CNN models is that the
earliest convolutional layers of the models extract broad, low-
level features that are relevant across images, such as edges,
patterns, and gradients, while the subsequent layers detect
unique image properties. In the present study, we categorize
the dataset under consideration using the models such as
VGG16, VGG19, DenseNet201, MobileNetV3 (small) and
MobileNetV3 (large). Because the early layers can acquire
general features, we have reused the weights of these layers,
but, we retrain a few top layers of the feature extraction (con-
volution base) component. This is done so that the models
can learn the characteristics unique to the datasets. In the
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classifier part, we added a layer with the number of labels
corresponding to the number of unique classes in the dataset.
Then, the output of the convolution base is passed into this
classifier.

l - 7.
Oral cancer
(a) New task (Task set 2)

Breast cancer
(b) Old task (Task set 1)

FIGURE 4. CT/MRI Images of older and new tasks.

E. LEARNING WITHOUT FORGETTING(LwF)

Even while pre-trained CNNSs use transfer learning, they may
forget what they had previously learned when transferring
that knowledge to a new task. Transfer learning typically
disregards the model’s performance on previous tasks. For
example, a CNN that has been pre-trained to identify items
such as flowers, animals, etc. may not perform well when
used to classify different animal types. Because the shared
parameters do not adequately reflect what distinguishes the
new task, feature extraction typically fails when applied to
the new task. If we fine-tune, it may decrease performance for
previously learnt tasks, as the shared parameters will change
without providing a new direction for the task-specific pre-
diction parameters. To overcome this issue, Learning without
Forgetting (LwF) [33], a multitasking approach, has been
developed; it works effectively on new tasks while maintain-
ing the same performance on previous ones. While learning
new tasks, we frequently use the knowledge we gained from
the related tasks. This is termed as multitasking learning
(MTL). By employing the domain knowledge in the training
task of related tasks as an inductive bias, the MTL approach
to inductive transfer enhances generalization. Formally, MTL
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will assist in improving the learning of a particular model by
using the knowledge contained in all of the ‘n’ tasks if there
are ‘n’ tasks where these ‘n’ tasks or a subset of them are
related to each other but not exactly identical. When only data
from new tasks are available, LwF aims to train a network
on effectively performing both old and new tasks. With this
method, results from the previous network are retained, and
samples from the new task are used to enhance the accuracy
of the new task. However, this method does not require
the previous task’s images and labels. In this attempt, we
employed CT/MRI images depicting the symptoms of four
types of cancer cells, including lymphoma, lung/colon, brain
tumor, and oral cancer, how LwF determines what they are.
Figure 4 shows a few CT images that bear both old (Task set 1)
and new tasks (Task set 2).

The rationale behind splitting the dataset into two task sets
is to evaluate the models’ performance with and without LwF.
Task set 2 has images of different oral, leukemia, lung/colon,
and brain cancer subclasses. The images of breast cancer,
acute lymphoblastic leukemia, kidney, and cervical cancer are
under task set 1. Since the survivors of the task set 1 types of
cancer are at risk of falling into the types of cancer in task
set 2 [34], [35], [36], we split as above.

F. BAYESIAN OPTIMIZATION FOR HYPERPARAMETER
TUNING

The number of hidden units, dropout, activation function,
weight initialization, and other hyperparameters establish
a neural network’s structure, whereas learning rate, batch
size, epochs, etc. Tuning hyperparameters minimizes a loss
function and improves results. Unlike Grid and Random
search methods, Bayesian optimization employs previous
iterations of the algorithm. This facilitates Bayesian opti-
mization to choose the optimal combination of the hyperpa-
rameters for model evaluation [37], [38]. Due to the volume
of data involved and the complexity of computations neces-
sary, training deep learning models can be time-consuming.
When dealing with issues of this kind, employing Bayesian
optimization can significantly assist problem-solving. So,
we employ Bayesian optimization in conjunction with pre-
viously trained models to enhance performance. Fig. 5 illus-
trates the proposed flow of the research work.

IV. DETAILS OF EXPERIMENTS

We designed experiments to evaluate the performance of the
fine-tuned models using transfer learning and LwF. In the
following section, we present the details of the same.

A. EXPERIMENTAL PLATFORM

Graphical Processing Units (GPU) were employed to run
the proposed models due to their high power consumption
and requirement for high-performance hardware. Table 3
shows the employed hardware and software configurations.
We imported the Keras model architectures and instantiated
them with the ImageNet dataset TABLE 3.

10341



IEEE Access

M. Subramanian et al.: Multiple Types of Cancer Classification Using CT/MRI Images

Data set creation
(Kaggle, Figshare)

v

Preprocessing and
Image

v

)
1]
£
2= $
3¢
Load Pretrained Models (VGG16, VGG19, ‘g & S
DenseNet201, MobileNetV3) b= 2
. 1]
and Fine Tune | S 5
(Transfer Learning) g E x
£ %¢
£ 3s
. N q
Classifiers ] 2=
38
= E &
T ET
Model Evaluation S s
using Validation set =&
—

v

Model prediction and
performance evaluation
using Test Dataset

Evaluate the model on new

task (without LwF)

Evaluate the model on new
task with LwF

[ ]

¥

v

[

Compare the performance and
choose the anpropriate models

]

FIGURE 5. Proposed workflow.

TABLE 3. Experimental platform.

Parameters Details
GPU DELL 740 with EMC
RAM 128 GB
GPU RAM 32GB
DISK 4TB
oS Ubuntu
Language Python
IDE Jupyter on Google Co-laboratory

B. TUNING OF HYPERPARAMETERS

Hyperparameters are crucial in determining training param-
eters and influencing model output when utilizing deep
learning algorithms. This study applies Bayesian optimiza-
tion to determine the optimal hyperparameter values while
assuring high accuracy. Using Bayes’ theorem, this method
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can determine an objective function’s lowest or maximum
value. Among the fine-tuned hyperparameters are optimizers,
learning rate, activation function, number of epochs, batch
size, and the number of neurons. The Bayesian optimization
procedure has been executed twenty times. The number of
epochs for each round of Bayesian optimization is set at 150.
At each stage, we kept track of our performance and losses.
The hyperparameters we deal with and their respective search
spaces are shown in Table 4. Table 4 also presents the tuned
values of hyperparameters for different models. Figure 5
shows the overall steps involved in the proposed workflow.

C. METRICS FOR EVALUATION

We evaluated the performance of each model against each of
the thirteen classes belonging to four types of cancer using
accuracy, precision, recall, and F1-score. To find the values of
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(e) VGG19

FIGURE 6. Confusion matrices for task set 1.
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TABLE 4. Hyperparameters with their search space and fine-tuned values.

Parameter Search Space VGG16 VGG19 DenseNet201 MobileNetV3 MobileNetV3
Small Large
Optimizer RMSProp, Adagrad, ADAM RMS Prop ADAM ADAM SGD
ADAM, Stochastic GD,
Nadam, Mini-Batch GD
Learning rate le-2, le-3, le-4, 1e-5, le-6 le-4 le-3 le-3 le-4 le-2
Activation Relu, Elu, LeakyRelu, ReLU LeakyReLU Tanh ReLU ReLU
function Parametric Leaky ReLU,
Exponential LU, and Tanh
Number of 32,64,128, 256, 512,1024 128 64 128 256 257
neurons
Number of 50,75,100,125,150 100 125 150 100 100
epochs
Batch Size 16,32,64,128,256 32 32 128 128 128
TABLE 5. Overall performance of the proposed models.

VGG16 VGG19 DenseNet201 MobileNetV3 (Small) MobileNetV3 (Large)
Validation Testing Validation Testing Validation Testing Validation Testing Validation Testing
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
79.61 75.82 80.93 76.34 84.78 79.82 86.51 84.52 83.04 81.67

these metrics, we have used the indices such as True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN) (1, 2). We use Eq. (1) to Eq. (4) to calculate
TP, FP, TP, and TN.

Ipi = Cij )]

n
Joi = 21:1 cli — Ipi 2

n
far =", i~ 3)

n n

mj = 2121 Zk:l Cik — i —fpi —fri (4)
Accuracy = (TP + TN)/(TP + TN + FP + FN) (5)
Recall = TP/(TP + FN) (6)
Precision = TP/(TP + FP) @)
Flscore — (2 = precision * recall) @)

(precision + recall)

V. EXPERIMENTAL RESULTS AND FINDINGS

In this section, we present the performance of the pro-
posed models on both old and new tasks without and with
LwE.

A. RESULTS OF PROPOSED MODELS FOR TASK SET 1

We checked out how well the CNN models that were sug-
gested worked. Experiments have been carried out using the
tuned hyperparameters shown in Table 4, which produced
the best results when the model was put through its train-
ing phase. Table 5 shows how well each model works for
validation and test datasets. The class-wise performance of
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the developed models is presented in Table 6. We used the
indices TP, FP, TN, and FN to find the values of several
performance metrics, such as Accuracy, Precision, Recall,
and Fl-score. A supervised learning tool, the confusion
matrix, compares predicted classes to actual classes. Figure 6
shows the confusion matrix for every model that has been
developed.

The diagonals of the confusion matrix show the cor-
rect classifications. The actual classes are shown on
the X-axis, while the predicted classes are shown on
the Y-axis. In Fig 6(a), for instance, it is evident that
MobileNetV3 (Small) incorrectly identified 5 all_benign as
all_pro.

B. RESULTS OF PROPOSED MODELS FOR TASK SET 2

To demonstrate the power of LwF, we have also run the
proposed models on task set 2, which consists of a dataset
having 13 unseen classes belonging to the types of cancer
which have not been included in task set 1. The results of
this trial are shown in Table 7.

When testing task set 2 on the developed models,
we obtained the results in Table 7. Since the models have
been trained on task set 1, they gave good results for the test
data set belonging to the task set 1. The features of the task
set 2 are different from those of task set 1, and the models
have learned the values for the task-specific parameters of
task set 1. So, they could not perform well on the task set 2.
To improve the performance of the models on the task set 2,
we have trained the models using LwF and evaluated the
performance. Figure 7 depicts the confusion matrices that
indicate the performance of the models for task set 2 without
LwF.
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TABLE 6. Class wise performance of the proposed models.

Classifiers Cancer Types Class Labels Accuracy (%)  Precision (%)  Recall (%) Flscore (%)

ALL all_benign 97.33 98.52 97.92
MobileNetV3 - all_carly 97.46 97.85 97.65
Small all pre 96.44 98.38 97.40
all_pro 96.72 98.80 97.75
Breast caner breast_benign 96.25 97.69 96.97
breast_malignant 97.45 95.39 96.41
Cervical cancer cervix_dyk 98.13 96.46 97.29
cervix koc 84.52 98.40 97.10 97.75
Cewix:mep 98.52 97.47 97.99
cervix_pab 98.66 98.92 98.79
cervix sfi 98.78 97.86 98.32
Kidney Cancer kidneyﬁniormal 96.86 98.54 97.69
kidney_tumor 98.93 96.99 97.95
Macro Average 97.69 97.69 97.68
Weighted Average 97.42 97.43 97.42
. Acute lymphoblastic all benign 94.13 97.04 95.56
Mobgzlrxlegw - leukemia all early 95.74 97.69 96.70
g all pre 95.78 97.85 96.80
all_pro 96.03 97.84 96.93
Breast cancer breast_benign 95.41 96.98 96.19
breast malignant 96.73 95.05 95.89
Cervical cancer cervix_dyk 97.17 97.30 97.24
cervix_koc 81.67 96.28 95.65 95.96
cervix_mep 96.93 97.19 97.06
cervix_pab 97.07 97.07 97.07
cervix_sfi 97.43 94.49 95.94
Kidney Cancer kidney normal 96.19 94.45 95.31
kidney tumor 97.72 94.19 95.93
Macro Average 96.36 96.37 96.35
Weighted Average 96.13 96.16 96.14
Acute lymphoblastic all benign 87.53 93.10 90.23
DenseNet201 leukemia all_early 90.78 91.02 90.90
all pre 88.61 94.72 91.56
all_pro 91.87 92.98 92.42
Breast cancer breast_benign 91.03 93.15 92.08
breast malignant 92.71 89.73 91.19
Cervical cancer cervix_dyk 94.34 91.03 92.65
cervix_koc 79.82 93.41 93.28 93.34
cervix mep 95.72 94.51 95.11
cervix_pab 94.06 94.44 94.25
cervix_sfi 95.69 89.71 92.61
Kidney Cancer kidney normal 93.73 94.49 94.11
kidney_tumor 94.73 91.51 93.09
Macro Average 92.63 92.59 92.58
Weighted Average 92.27 9231 92.26
Acute lymphoblastic all_benign 87.96 88.54 88.25
VGGI9 leukemia all early 89.11 91.17 90.13
all pre 92.92 90.69 91.79
all_pro 92.03 87.93 89.93
Breast cancer breast benign 89.4 89.64 89.52
breast malignant 90.19 90.54 90.37
Cervical cancer cervix_dyk 91.02 88.69 89.84
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TABLE 6. (Continued.) Class wise performance of the proposed models.

cervix_koc
cervix_mep
cervix_pab
cervix_sfi
Kidney Cancer kidney normal

kidney tumor
Macro Average

Weighted Average
Acute lymphoblastic all_benign
VGG16 leukemia .
all early
all pre
all pro

Breast cancer breast benign

breast malignant

Cervical cancer cervix_dyk
cervix_koc
cervix_mep
cervix pab
cervix_sfi
Kidney Cancer kidney normal

kidney tumor
Macro Average

Weighted Average

76.34 86.03 89.42 87.69
88.21 88.92 88.56
90.54 86.01 88.22
82.88 89.5 86.06
87.65 89.82 88.72
89.33 86.23 87.75
89.02 89.01 88.99
89.22 89.25 89.21
87.6 85.64 86.61
88.8 88.21 88.5
88.62 90.33 89.47
89.71 79.63 84.37
88.62 87.03 87.82
85.68 89.76 87.67
88.13 88.01 88.07

75.82 82.92 82.6 82.76
82.77 87.9 85.26
84.44 87.97 86.17
80.03 82.02 81.01
80.85 83.57 82.19
89.04 84.53 86.72
85.94 85.94 85.89
85.69 85.77 85.68

C. TRANSFER LEARNING USING LwF ON TASK SET 2

In this section, we show how the LWF compares to proposed
models on task set 2 of CT/MRI images having symp-
toms of four different types of cancer, namely brain can-
cer, lung/colon, cervical and oral cancer. LwF utilizes only
images from task set 2 to train the network but retains the
model’s original capabilities. When integrating LwF with the
proposed models, the shared parameters (PS) of the feature
extraction layers and the task-specific parameters (PO) of the
classification layers for the task set 1, which was used for
training, were maintained; however, the task-specific param-
eters (PB) of the new set of images from the task set 2 were
modified. These models learned parameters that are effective
on both task sets. We used CT/MRI images from the task
set 2 for LWF training and retrained the network without task
set 1. We added neurons to the output layer and randomly ini-
tialized the weights to retrain the models on the new images.
The number of newly added parameters is, therefore, equal
to the number of neurons added to the output layer multiplied
by the number of neurons in the previously shared layer. This
is a relatively modest number compared to the total network
parameters. Reference [33] explains the training procedure.
The values for accuracy, precision, recall, and Fl-score for
different models with LwWF on CT/MRI images of the task
set 2 are shown in Table 7, and Figure 8 shows the confusion
matrices for these models.
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VI. FINDINGS AND DISCUSSION

The objective of this study is to detect the presence of eight
types of cancer using CT/MRI images. For this, we developed
five models using pre-trained CNN architecture. The exper-
imental results have been provided earlier in this section.
Below, we discuss the results of our investigation.

In this study, several indicators have been employed to
determine the efficacy of the transfer learning techniques:
first, it is determined whether the proposed models could
classify CT /MRI images using the transferred knowledge
with fine-tuning. Since the weights of pre-trained models
were used as-is during feature extraction, the resulting models
may be less accurate. A few top layers’ weights have been
retrained during fine-tuning. This allows the models to gain
image-specific characteristics and enhances their accuracy.

The performance of the developed models on the task
set 1 is shown in Table 5. Among all the proposed mod-
els, the MobileNetV3 (small) exhibited the best perfor-
mance on this task set. But, while using LwF, MobileNetV3
(large) has outperformed the other models. This is because
this model uses a technique known as depth-wise separa-
ble convolution, which streamlines the learning process and
boosts overall performance. Further, using an appropriate
TPU hardware accelerator, this model could improve accu-
racy while simultaneously reducing the runtime and power
consumption.
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TABLE 7. Performance of the proposed models task set 2.

Classifiers Cancer Types Class Labels Accuracy Precision Recall Flscore
(%) (%) (%) (%)
Brain cancer brain_glioma 80.06 80.74 80.39
MobileNetVs3 - brain menin 78.02 82.19 80.05
Small brain tumor 75.39 75 75.19
colon aca 72.92 78.48 73.38 75.84
Lung/Colon Cancer colonibnt 80.49 84.89 82.63
Jung aca 78.56 69.42 73.71
Jung bnt 73.87 75.19 74.52
Jung_scc 80.03 72.67 76.17
Lymphoma lymph cll 76.12 76.71 76.42
lymph fl 77 76.16 76.58
lymph mel 74.97 74.97 74.97
Oral Cancer oral normal 75.1 79.63 77.3
oral sce 72.74 81.81 77.01
Macro Average 76.99 77.14 76.98
Weighted Average 76.71 76.93 76.74
) Brain cancer brain_glioma 82.98 88.32 85.57
MOb}lZTthV?J - brain_menin 78.95 82.3 80.59
& brain_tumor 73.33 80.08 76.55
Lung/Colon Cancer colon_aca 76.9 82.09 79.41
colon bnt 78.46 84.29 81.27
lung_aca 78.61 76.56 77.57
lung_bnt 79.49 71.53 75.3
lung_scc 74.05 82.88 72.08 77.11
Lymphoma lymph_cll 78.75 74.97 76.81
lymph_fl 76.57 70.47 73.4
lymph_mcl 76.92 72.73 74.77
Oral Cancer oral_normal 75.99 80.03 77.96
oral scc 74.39 81.45 77.76
Macro Average 78.02 78.22 78.01
Weighted Average 77.74 78.09 77.8
Brain cancer brain glioma 71.45 63.7 67.35
DenseNet201 brain_menin 75.84 71.17 73.43
brain_tumor 75.11 68.6 71.71
Lung/Colon Cancer colon_aca 74.38 72.96 73.66
colon_bnt 71.77 79.94 75.64
lung_aca 76.33 80.5 78.36
lung_bnt 71.56 62.54 66.75
lung_scc 68.52 71.23 76.56 73.8
Lymphoma lymph cll 79.72 67.79 73.27
lymph fl 68.18 76.34 72.03
lymph mcl 71.68 78.41 74.89
Oral Cancer oral_normal 69.6 77.41 73.3
oral scc 72.01 78.62 75.17
Macro Average 72.99 73.43 73.03
Weighted Average 72.6 73.13 72.68
Brain cancer brain_glioma 68.46 70.82 69.62
VGGI19 brain_menin 68.9 69.26 69.08
brain_tumor 72.08 67.19 69.55
Lung/Colon Cancer colon_aca 68.3 67.37 67.83
colon_bnt 67.47 70.35 68.88
lung aca 66.97 66.71 66.84
lung bnt 67.8 67.01 67.4
lung scc 64.72 67.27 69.32 68.28
Lymphoma lymph cll 66.15 65.31 65.73
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TABLE 7. (Continued.) Performance of the proposed models task set 2.

lymph_fl
lymph_mcl
Oral Cancer oral normal
oral_scc
Macro Average
Weighted Average
Brain cancer brain_glioma
VGG16 ; i
brain_menin
brain_tumor
Lung/Colon Cancer colon aca
colon_bnt
lung_aca
lung_bnt
lung_scc
Lymphoma lymph_cll
lymph fl
lymph_mcl
Oral Cancer oral normal
oral_scc
Macro Average
Weighted Average

70.01 72.44 71.2
69.19 67.9 68.54
66.93 66.06 66.49
67.32 67.61 67.46
68.22 68.26 68.22
69.45 69.49 69.46
68.35 70.86 69.58
66.04 62.63 64.29
66.16 69.87 67.96
63.99 69.96 66.84
64.88 75.4 69.75
68.47 62.53 65.37
67.87 65.01 66.41
66.4 67.56 66.98
63.69 62.03 62.85
67.57 67.57 67.57
65.84 63.76 64.79
66.11 63.8 64.93
64.92 61.54 63.19
66.18 66.35 66.19
67.91 68.16 67.96

Due to the varied architectural design, such as the number
of layers and convolution blocks, the models used in this work
exhibited varied performance. MobileNet is a lightweight
deep neural network with better classification accuracy and
fewer parameters. Dense blocks from DenseNets are used
into MobileNet to further minimize the amount of net-
work parameters and increase classification accuracy. Despite
being 32 times smaller than VGG16, MobileNet has higher
accuracy and is more effective at gathering knowledge.

When we tested how well the proposed models could
transfer knowledge over a new task set 2 CT/MRI images
having symptoms of four different types of cancer, we found
that the models were not very accurate. This is because the
models have yet to be retrained on task set 2. After retraining
the model using task set 2, we tested the models again with
task set 1 and found that they were less accurate than before.
As the number of tasks increases, storing and retraining such
images becomes impossible. Adding new capabilities to a
CNN wipes out the training data for the existing capabilities.
So, we turned to LwF, which retrains the network using task
set 2 while keeping the network’s original abilities. Table 8
shows that LwF does better than most fine-tuning techniques
on the task set 2 images. In Table 9, we can see how the
models with fine-tuning and LwF compare to each other.

For increased performance on the task set 2, LWF may
be an alternative to fine-tuning. Subsequently, the accuracy
of the task set 1 will be equivalent to that of the original
models provided the models are maintained in such a way
that task-specific characteristics of task set 1 give identical

VOLUME 11, 2023

outputs on all relevant images. To summarize, in this study,
we implemented LwF, a multi-task learning strategy for
CNNs that enables CNNs to acquire good performance on
new tasks while maintaining performance on previous tasks.
As a result of this work, we understood how LwF could
be utilized in situations where the initial training dataset
is unavailable. On a new dataset, the efficacy of LwF has
been validated, and experimental findings demonstrated that
it outperforms fine-tuning. According to the experimental
findings, contemporary models like MobileNet, DenseNet,
etc. perform significantly better than traditional models like
VGGNet, AlexNet, etc.

A. BLACK BOX ISSUES

Deep learning model integration in cancer care could
increase the precision and speed of diagnosis, support clinical
decision-making, and result in better health outcomes. These
models, however, are regarded as ”’black box’’ models. Black
boxes are frequently employed in the healthcare sector to
analyze huge amounts of data and make predictions based on
that data, but patients and healthcare professionals may find
the lack of openness about how such decisions are made to be
concerning. A black box’s predictions or decisions could not
be clear to patients or healthcare professionals, which might
breed mistrust or muddled thinking. But by expanding such
a black box, explainable Al can be produced. If people can
understand how an Al system arrived at its choice, the system
is considered to be explainable. This would make it easier to
gain research information in healthcare.
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FIGURE 8. Confusion matrices for the task set 2 (With LwF).
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TABLE 8. Performance of the proposed models with LWF on task set 2.

Classifiers Cancer Types Class Labels Accuracy (%) Precision (%) Recall (%) Flscore (%)
) Brain cancer brain_glioma 79.9 83.38 81.6
MO}"Slimtw brain_menin 81.95 85.8 83.83
brain_tumor 83.1 82.53 82.82
Lung/Colon Cancer colon_aca 84.75 78.2 81.34
colon_bnt 80.42 80.42 80.42
lung_aca 78.21 83.47 80.13 81.76
lung bnt 81.78 78.29 80
lung scc 81.28 80.19 80.73
Cervical cancer lymph cll 83.66 83.2 83.43
lymph fl 80.34 79.2 79.77
lymph mel 78.54 80.15 79.34
Oral Cancer oral normal 79.13 81.96 80.52
oral scc 79.76 85.05 82.32
Macro Average 81.39 81.42 81.37
Weighted Average 81.43 81.51 81.44
MobileNetV3 Brain cancer brain_glioma 82.63 84.76 83.68
- Large brain_menin 87.11 86.42 86.76
brain_tumor 81.52 82.93 82.22
Lung/Colon Cancer colon_aca 84.76 85.79 85.27
colon bnt 86.59 86.47 86.53
lung_aca 85.15 88.19 86.64
lung bnt 85.71 82.89 84.28
lung_scc 79.95 85.71 82.63 84.14
Cervical cancer lymph_cll 83.18 85.2 84.18
lymph_fl 85.42 81.22 83.27
lymph_mcl 85.35 82.82 84.07
Oral Cancer oral normal 84.08 85.66 84.86
oral_scc 83.64 86.14 84.87
Macro Average 84.68 84.7 84.67
Weighted Average 84.59 84.63 84.59
DenseNet201 brain glioma 83.08 83.54 83.31
brain_menin 81.44 80.13 80.78
brain_tumor 82.68 75.22 78.78
Lung/Colon Cancer colon aca 82.26 81.6 81.93
colon bnt 79.84 80.59 80.21
lung_aca 80.67 75.98 78.26
lung_bnt 81.41 78.37 79.86
lung_scc 77.84 77.48 83.2 80.24
Cervical cancer lymph_cll 78.79 79.63 79.21
lymph_fl 79.03 78.93 78.98
lymph_mcl 77.26 79.81 78.51
Oral Cancer oral normal 75.69 78.34 76.99
oral scc 76.53 80.74 78.58
Macro Average 79.71 79.7 79.66
Weighted Average 79.28 79.35 79.28
Brain cancer brain_glioma 69.99 71.8 70.88
VGG19 brain menin 69.28 72.87 71.03
brain tumor 72.56 75.97 74.22
Lung/Colon Cancer colon_aca 71.45 72.3 71.87
colon_bnt 70.77 72.4 71.57
lung_aca 73.12 69.57 71.3
lung_bnt 76.13 75.82 75.98
lung_scc 70.12 76.24 75.81 76.02
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TABLE 7. (Continued.) Performance of the proposed models with LWF on task set 2.

Cervical cancer

lymph_cll 75.68 68.21 71.75
lymph_fl 77.07 71.75 7431
lymph_mcl 71.45 73.42 72.42
Oral Cancer oral_normal 69.46 72.31 70.86
oral_scc 71.22 72.07 71.65
Macro Average 72.65 72.64 72.6
Weighted Average 72.44 72.5 72.43
Brain cancer brain_glioma 73.85 72.38 73.11
VGG16 brain menin 72.81 75.03 73.91
brain tumor 72.47 63.48 67.67
Lung/Colon Cancer colon_aca 65.91 73.04 64.76 68.65
colon bnt 74.66 68.43 71.41
lung aca 62.92 73.4 67.76
lung bnt 69.74 75.1 72.32
lung_scc 68.31 71.47 69.85
Cervical cancer lymph_cll 66.12 74.22 69.93
lymph_fl 70.95 71.14 71.05
lymph_mcl 74.08 71.27 72.65
Oral Cancer oral normal 75.83 68.8 72.14
oral scc 69.92 75.83 72.75
Macro Average 71.13 71.18 71.02
Weighted Average 71.07 71.35 71.07
TABLE 8. Performance of the models on task set 2 with and without LWF.
Approach Testing Accuracy (%)
VGG16 VGG19 DenseNet201 MobileNetV3 MobileNetV3
(Small) (Large)
Fine-tuned 62.56 64.72 68.52 72.92 74.05
(Without LwF)
LwF 65.91 70.12 77.84 78.21 79.95

TABLE 9. LwF vs fine tuned models.

Task set Performance of the Models
Fine-tuned LwF
Task set 1 Good Good
Task set 2 Moderate Good
Need for task set 1 to Yes No

increase the accuracy

VIi. CONCLUSION

Cancer causes one in six deaths worldwide. Therefore, can-
cer diagnostic and treatment techniques have received much
investigation. In this attempt, we presented improved CNN
variants for detecting multiple types of cancer. Transfer learn-
ing has been utilized in this study since it does not require vast
datasets and retrains a few top layers while using little pro-
cessing effort. In addition, Bayesian optimization is utilized
to choose the most appropriate values for the hyperparameters
employed throughout the training process. Further, we split
the images into two task sets, one for fine-tuning the models
and another to verify the multitasking ability of the developed
models. Finally, LwF, a multitask learning method, has been
employed to inculcate multitasking ability into the developed
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models. The results demonstrate that LwWF maintained the
knowledge learned from task set 1 and performed better
than fine-tuned models on the task set 2. From this study,
we understood that LwF could be used where the original
training dataset is unavailable. Of all models, we found that
MobileNetV3 outperformed with a substantial performance
improvement.

To further extend this work, we plan to include more types
of cancer in our task sets and calibrate multitask learning with
extensive experiments. We will also investigate other types of
imaging techniques that aid in the detection of cancer cells.
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