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ABSTRACT Recent advances in graph-structured learning have demonstrated promising results on the graph
classification task. However, making them scalable on huge graphs with millions of nodes and edges remains
challenging due to their high temporal complexity. In this paper, by the decomposition theorem of Laplacian
polynomial and characteristic polynomial we established an explicit closed-form formula of the global mean-
first-passage time (GMFPT) for hexagonal model. Our method is based on the concept of GMFPT, which
represents the expected values when the walk begins at the vertex. GMFPT is a crucial metric for estimating
transport speed for random walks on complex networks. Through extensive matrix analysis, we show that,
obtaining GMFPT via spectrums provides an easy calculation in terms of large networks.

INDEX TERMS Hexagonal model, Laplacian polynomial, decomposition theorem, GMFPT.

I. INTRODUCTION
Interactions between pairs of entities occur every day in
real-world systems. Human interaction, financial systems,
recommender systems, social networks, road networks, and
networks of protein interactions are examples of such
systems. In graph theory, these pairs of entities are called
a network, in which the substances are vertices and the
communication between any two substances are an edge [6].
Networks have rich applications in classical grid-structured
data, such as photographs, to speed up calculations. The
graph-structural data is useful in encoding networks of
low-dimensional embeddings for classic machine learning
and data mining algorithms [3]. Researchers follow this
strategy to handle complex graph problems, such as graph
categorization. The network arrangement problem is con-
cerned with categorizing complicated network structures into
multiple groups. It has many real-life phenomena, including
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text organization, predicting chemical venomousness, and
categorizing public buildings in human interactions. Though
the permuting indices and the encoding’s runtime effec-
tiveness are hurdles in graph classification, for a simple
and less order graphs, it is easy to construct an adjacency
matrix to check the properties of such graphs [14]. As
a result, the best encoding strategy for simple and finite
graph classification is indices over node permutations. The
adjacency matrix strategy is also convenient in neural graphs
to the limitations and worldwide locations of the set of
nodes [32]. Prevailing graph classification methods fre-
quently necessitate an adjacent assessment of the structures
or rely entirely on algebraic and spectral symbol, which are
difficult to calculate. Appropriate illustration approaches are
mandatory to encrypt the atomic assembly of the display
concisely, which is well-organized. However, transformation
invariance, scalability, in addition the programming’s runtime
proficiency are hurdles in graph classification. Because of
the deficiency in order of graph vertices, numerous adja-
cency matrices can represent the same graph. Consequently,
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the optimum programming method for graph classifica-
tion is the best invariant further down transformations of
the vertices. The current network classification methods
frequently require an adjacent assessment of the structures
or rely entirely on arranged algebraic spectral investigation,
both of which are difficult to investigate. It has recently been
used to quantify the robustness of networks in distributed
networked control systems based on noisy data. In reality,
it has many comparable descriptions, such as the spectrums
of graphs and it can be used to extract graph representations.

It is renowned that hexagonal systems play a significant
part in theoretical chemistry, since they are usual graph sym-
bols of benzenoid hydrocarbon [11]. As a result, hexagonal
systems have received a lot of attention. Kennedy andQuintas
investigated the enumerations on perfect matchings in an
arbitrary hexagonal chain model [17]. In [10] and [22], the
authors determined the Wiener index (resp. Edge-Szeged
index) of a hexagonal model. Li et al. [33] studied the
normalized Laplacian of a penta-graphene with applications.
For further studies on laplacian and normalized laplacian we
refer [34], [35]. The reference [18] provided a comprehensive
explanation of the distinctive polynomial of a hexagonal
model. In [28], an explicit closed-form formula for the sum
of a resistance distances of hexagonal chain is obtained with
the help of Laplacian spectrum.

In this paper, motivated by [7], [8], [23], [28], [29], and
[30], by Laplacian spectrums, we characterized an explicit
closed-form formula for the GMFPT of HMn.

II. PRELIMINARIES
The networks in this paper are simple, undirected, finite and
connected. Let N = (UN ,EN ) be a network, where UN
denotes the node set, and EN its links respectively. We denote
the order of N as n = |UN | and its size as |EN |. For further
notations we referred to [1], [4], [24], and [25].

Let A(N ) denotes an adjacency matrix of N , where the
entry (i, j) contains 1 if and only if ij ∈ EN and 0,
otherwise. Define the Laplacian matrix of N as 0(N ) =

D(N ) − A(N ). We assume that µ1<µ2 ⩽ · · · ⩽ µn be the
spectrums of 0(N ). It is obvious that if and only if N is a
connected network, then µ1 = 0 and µ2 > 0. For further
studies on 0(N ), we refer to the following interesting papers
[13], [20], [21] and the references within.

Assume that M is any p1 × p2 square matrix, and Q1 ⊂

{1, 2, . . . , p1} and Q2 ⊂ {1, 2, . . . , p2}. Denote M (Q1|Q2)
for the submatrix of M which is obtained by deleting the
rows in Q1 and the columns in Q2. Particularly, we denote
M (Q1|Q2) byM (i|j), where Q1 = {i} and Q2 = {j}.
The fact that λ1 = 0 is well known assumption in spectral

graph theory, and λ2 > 0 when the graph G is assumed to
be connected. We denote the spectral of 0(G) with Sp(G) =

{λ1, λ2, . . . , λn}. For more details on 0(G), we suggest [13].
For distance, among the nodes i, j of a graph G is defined

as the dimension of a through i-j path in G [5].
Let Ln denotes the linear hexagonal chain with 4n +

2 vertices. In this contribution, we concentrated on the

FIGURE 1. The hexagonal model HMn.

hexagonal model HMn (see Fig. 1). Sticking the two edges
1′1 with (2n + 1)′(2n + 1) of Ln and identifying the node
1 with node (2n+1) (resp. node 1′ and node (2n+1)′) yields
the graph HMn.

Let 8 denotes the characteristic polynomial of any n × n
matrix then ϕ(8) = det(tI − 8). The matrix I is called a
unitary matrix having of 8.

The automorphism of any network G is defined as a
permutation of the nodes in G that maps links to links. Let
8 be an automorphism in any network G; thereby, one may
define it as the product of transpositions and disjoint 1-cycles,
that is,

8 = (t1)(t2) · · · (tm)(l1, q1)(l2, q2) · · · (lk , qk ).

We define, ξ = ξ0
⋃

ξ1
⋃

ξ2, where ξ0 = {w1,w2, . . . ,wm},

ξ1 = {u1, u2, . . . , uk}, ξ2 = {v1, v2, . . . , vk}. This gives

0G =
ξ0
ξ1
ξ2

ξ0 ξ1 ξ20ξ00 0ξ01 0ξ02

0ξ10 0ξ11 0ξ12

0ξ20 0ξ21 0ξ22

 .

Note that the automorphism g is G. Hence, 0ξ11 = 0ξ22 and
the below block matrix with respect to (G) gives

T =

 Im 0 0
0 1

√
2
Ik 1

√
2
Ik

0 1
√
2
Ik −

1
√
2
Ik

 .

Since, the unitary transformation T0(G)T T gives

T0(G)T T =

(
0R(G) 0

0 0S (G)

)
, (1)

where

0R(G) =

(
0ξ00

√
20ξ01√

20ξ10 0ξ11 + 0ξ12

)
and 0S (G) = 0ξ11−0ξ12 .

(2)
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In 1985 [27], the authors determined the following lemma
of Laplacian polynomial for decomposition, which is stated
as:
Lemma 2.1 ([27]): The matrices 0(N ), 0R(N ) and

0S (N ) as defined in (2), then one has ϕ(0(N )) =

ϕ(0R(N ))ϕ(0S (N )).
Following Lemmas are well known matrix-tree theorem.
Lemma 2.2 ([16], [19]): Let G be an n-vertex connected

graph of size m, then Rij(G) = n
n∑

k=2

1
λk

.

Lemma 2.3 ([1], [26]): The cycle is denoted by Cn and
having n vertices, then Rij(Cn) =

n3−n
12 .

Rendering the considered vertices of a HMn, as described
in Fig. 1, an automorphism of HMn is given as g =

(1, 1′)(2, 2′) · · · (2n, (2n)′). Thereby, ξ0 = ∅, ξ1 =

{1, 2, . . . , 2n} and ξ2 = {1′, 2′, . . . , (2n)′}. From (1),
we denote 0R(Tn) by 0R and 0S (Tn) with 0S . Then, one has

0R = 0ξ11 + 0ξ12 , 0S = 0ξ11 − 0ξ12 .

Thus, 0ξ11 and 0ξ12 are constructed as follows:

0ξ11 =



3 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0
0 −1 3 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 3 −1
−1 0 0 0 · · · −1 2


2n×2n,

0ξ12 =



−1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 −1 0 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 0
0 0 0 0 · · · 0 0


2n×2n.

Hence

0R =



2 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1
−1 0 0 0 · · · −1 2


2n×2n,

0S =



4 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0
0 −1 4 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 4 −1
−1 0 0 0 · · · −1 2


2n×2n.

Assume that the spectrums of a matrix 0S are µj, j =

1, 2, . . . , 2n. Note that µj > 0 for all j. In view of

Lemma 2.1, one has the Laplacian spectrum of Tn is
{θ1, . . . , θ2n, µ1, . . . , µ2n}.
Let

ϕ(0S ) = det(xI2n − 0S )

= x2n + α1x2n−1
+ · · · + α2n−1x + α2n,

where α2n ̸= 0.

III. THE MFPT OF HMn AND IMPORTANT LEMMAS
Given a graph G, the MFPT Fij of any node j is the smallest
number of steps of any random walk requires to reach at
point j. The (MFPT) Fij is defined as the expected value
of Fj once walk starts at vertex i. MFPT is a vital quantity
which is supposed to be useful to approximate the speed
of any transport of the random walks of any graphs [15],
[31]. The GMFPT denoted by ⟨F(G)⟩ actions the distribution
competence of any walk, and obtained by averaging Fij over
(|VG|−1) probable end point and |VG| roots of elements [12],
that is

⟨F(G)⟩ =
1

|VG|(|VG| − 1)

∑
i̸=j

Fij, (3)

with the fact that |VG| ̸= 1. By [9], commuting time Cij
among the vertices i and j are accurately 2|EG|rij, i.e.,

Cij = Fij + Fji = 2|EG|rij. (4)

Lemma 3.1: Assume that B be a 2n × 2n matrix given
below:

B =



4 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 4 −1 · · · 0 0 0
0 0 −1 2 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 2 −1 0
0 0 0 0 · · · −1 4 −1
0 0 0 0 · · · 0 −1 2


2n×2n.

For 1 ⩽ i ⩽ 2n, let

χi = B({i+ 1, i+ 2, . . . , 2n}|{i+ 1, i+ 2, . . . , 2n}),

χ ′
i = B({1, 2, . . . , 2n− i}|{1, 2, . . . , 2n− i})

be two submatrices of B. Assume that ηi := detχi and η′
i :=

detχ ′
i . We fix η0 = 1, η′

0 = 1. Then for 0 ⩽ i ⩽ 2n, one has

ηi =
1
4
[(3 − (−1)i + 2

√
2)(1 +

√
2)i

+ (3 − (−1)i − 2
√
2)(1 −

√
2)i] (5)

and

η′
i =

1
8
[(4 + (−1)i

√
2 + 3

√
2)(1 +

√
2)i

+ (4 − (−1)i
√
2 − 3

√
2)(1 −

√
2)i]. (6)
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Proof: First, we show (5). To check that η1 = 4, η2 = 7,
η3 = 24 is straightforward. In case 3 ⩽ i ⩽ 2n, we expand
detχi with regards to its last row

ηi =

{
2ηi−1 − ηi−2, for even i;

4ηi−1 − ηi−2, for odd i.

In case, 0 ⩽ i ⩽ n, assume that ci = η2i and for 0 ⩽ i ⩽ n−1,
let di = η2i+1 and c0 = 1, d0 = 4. In case i ⩾ 1, we have{

ci = 2di−1 − ci−1,

di = 4ci − di−1.
(7)

From the first equation in (7), one has di−1 =
1
2 (ci+ci−1),

hence di =
1
2 (ci+1 + ci). Substituting the values of di−1 and

di in the second part of (7) gives ci+1 = 6ci − ci−1, i ⩾ 1.
By the same arguments one has di+1 = 6di − di−1, i ⩾ 1.
Thus, ηi fulfill the following recurrence

ηi = 6ηi−2 − ηi−4, η0 = 1, η1 = 4, η2 = 7, η3 = 24.

(8)

Then the characteristic equation of (8) is r4 = 6r2 − 1, and
its roots are r1 =

√
2+ 1, r2 = −(

√
2+ 1), r3 =

√
2− 1 and

r4 = −(
√
2 − 1). Hence, general solution of (8) is given by

ηi = (
√
2 + 1)iζ1 + (−(

√
2 + 1))iζ2 + (

√
2 − 1)iζ3

+ (−(
√
2 − 1))iζ4. (9)

Together with the IC,s in (8) give the followings

ζ1 + ζ2 + ζ3 + ζ4 = 1,

(
√
2 + 1)ζ1 + (−(

√
2 + 1))ζ2 + (

√
2 − 1)ζ3

+ (−(
√
2 − 1))ζ4 = 4,

(
√
2 + 1)2ζ1 + (−(

√
2 + 1))2ζ2 + (

√
2 − 1)2ζ3

+ (−(
√
2 − 1))2ζ4 = 7,

(
√
2 + 1)3ζ1 + (−(

√
2 + 1))3ζ2 + (

√
2 − 1)3ζ3

+ (−(
√
2 − 1))3ζ4 = 24.

The unique solution of this system can be found to be
ζ1 =

3+2
√
2

4 , ζ2 = −
1
4 , ζ3 = −

1
4 , ζ4 =

3−2
√
2

4 . We get our
result by putting ζ1, ζ2, ζ3 and ζ4 in (9). Through, the parallel
directions as above, it is straightforward to obtain (6), which
is omitted here. □

Lemma 3.2: −α2n−1 =

2n−1∑
i=0

ηiη
′

2n−1−i −
2n−3∑
i=0

η′
iη2n−3−i.

Proof: For simplicity, let 0S = (lij)2n×2n. Then, for
2 ⩽ i ⩽ 2n− 1, we have

0S (i|i) =


l11 −1 · · · −1
−1 l22 · · · 0
...

...
. . .

...

−1 0 · · · l2n,2n


(2n−1)×(2n−1)

.

Therefore,

det0S (i|i) =

∑
τ

sgn(τ )l1τ (1) · · · l(i−1)τ (i−1)l(i+1)τ (i+1)

· · · l(2n)τ (2n),

where the sum denotes the over all permutation τ (1), . . . ,
τ (i − 1), τ (i + 1), . . . , τ (2n) of 1, . . . , i − 1, i +

1, . . . , 2n. The sgn(τ ) is 1 or −1 giving to τ is even
or odd. To make it more simple, assume that h(τ ) :=

sgn(τ )l1τ (1) · · · l(i−1)τ (i−1)l(i+1)τ (i+1)
· · · l(2n)τ (2n). We continue through in view of the subsequent
three cases.

For τ (1) = 2n and τ (2n) = 1. It is simple to verify that∑
τ : τ (1) = 2n,

τ (2n) = 1

h(τ ) = − detN (i− 1|i− 1) = −η′

i−2η2n−1−i.

If τ (1) ̸= 2n, τ (2n) = 1, or τ (1) = 2n and τ (2n) ̸= 1,
then we just consider the former subcase. Through parallel
direction, we may show the later subcase, which we omitted
here. Notice that τ (1) ̸= 1. If τ (1) ∈ {3, . . . , 2n − 1},
then l1τ (1) = 0. Thus, h(τ ) = 0. Whence τ (1) = 2,
thereby l1τ (1) = −1. After a few simple calculations, we have
det0S ({1, i, 2n}|{1, 2, i}) = 0. Hence h(τ ) = 0. Thus,∑

τ : τ (1) ̸= 2n,
τ (2n) = 1

h(τ ) = 0.

If τ (1) ̸= 2n and τ (2n) ̸= 1, then we consider the entries
(1, 2n) and (2n, 1) of 0S as 0. Hence∑

τ : τ (1) ̸= 2n,
τ (2n) ̸= 1

h(τ ) = detF(i|i) = ηi−1η
′

2n−i.

Thus, for 2 ⩽ i ⩽ 2n−1, one has det0S (i|i) = ηi−1η
′

2n−i−

η′

i−2η2n−1−i. Therefore,

−α2n−1 = η2n−1 + η′

2n−1 +

2n−1∑
i=2

det0S (i|i)

=

2n−1∑
i=0

ηiη
′

2n−1−i −

2n−3∑
i=0

η′
iη2n−3−i. (10)

This completes the proof. □
Hence, we build the square matrices F and N , here F is a
matrix obtained from 0S by substituting (1, 2n)-entry and the
(2n, 1)-entry by 0. Let N = 0S ({1, 2n}|{1, 2n}).
Assume that

Fi = F({i+ 1, i+ 2, . . . , 2n}|{i+ 1, i+ 2, . . . , 2n}),

Ni = N ({i+ 1, i+ 2, . . . , 2n}|{i+ 1, i+ 2, . . . , 2n})

be two i-th order principal submatrices of F and N . One can
check it easily that detFi = ηi and detNi = η′

i, where ηi
and η′

i are defined in Lemma 3.1. We proceed by showing the
following Lemmas.
Lemma 3.3: Let 0S is a matrix as defined above. Then

det0S =

[
(
√
2 + 1)n − (

√
2 − 1)n

]2
.
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Proof: We take determinant of 0S with its last row and
obtained that det0S = 2η2n−1 − η′

2n−2 − η2n−2 − 2. Based
on Lemma 3.1, we get the desired result. □
Now, we are ready to obtain α2n−1.
Lemma 3.4: Let α2n−1 be defined as above. Then

−α2n−1 =
3
√
2n
4

(
√
2 + 1)2n −

3
√
2n
4

(
√
2 − 1)2n.

Proof: Note that the number −α2n−1 is over all sum of
the principal minors with 2n− 1 order of a matrix 0S (see [1,
P5]). Thus,

−α2n−1 =

2n∑
t=1

det0S (t|t).

Now we come back to show Lemma 2.3. Let µ1(x) (resp.
µ2(x)) is the ordinary generating function of {ηi} (resp. {η′

i}),
which is,

µ1(x) =

∑
i⩾0

ηix i, µ2(x) =

∑
i⩾0

η′
ix
i. (11)

In view of (10) and (11), and to determine −α2n−1, it is
enough to obtain the coefficients of r2n−1 and r2n−3 in
µ1(r)µ2(r). We may rewrite µ1(r) and µ2(r) as

µ1(r) =

∑
i⩾0

ηir i = 1 + 4r + 7r2 + 24r3 +

∑
i⩾4

ηir i

= 1 + 4r + 7r2 + 24r3 +

∑
i⩾4

(6ηi−2 − ηi−4)r i

= 1 + 4r + 7r2 + 24r3 + 6r2
∑
i⩾4

ηi−2r i−2

− r4
∑
i⩾4

ηi−4r i−4

= 1 + 4r + 7r2 + 24r3

+ 6r2(µ1(r) − 1 − 4r) − r4µ1(r)

and

µ2(r) =

∑
i⩾0

η′
ir
i
= 1 + 2r + 7r2 + 12r3 +

∑
i⩾4

η′
ir
i

= 1 + 2r + 7r2 + 12r3 +

∑
i⩾4

(6η′

i−2 − η′

i−4)r
i

= 1 + 2r + 7r2 + 12r3 + 6r2
∑
i⩾4

η′

i−2r
i−2

− r4
∑
i⩾4

η′

i−4r
i−4

= 1 + 2r + 7r2 + 12r3 + 6r2(µ2(r) − 1 − 2r)

− r4µ2(r).

Thus,

µ1(r) =
1 + 4r + r2

1 − 6r2 + r4
, µ2(r) =

1 + 2r + r2

1 − 6r2 + r4
. (12)

Let

F(r) =
1
2
(µ1(r)µ2(r) − µ1(−r)µ2(−r))

=
6(r + r3)

(1 − 6r2 + r4)2
.

Then we claim the coefficient of r2n−1 in F(r) is the same as
the coefficient of r2n−1 in µ1(r)µ2(r). In fact,

1
2

( 2n−1∑
i=0

ηiη
′

2n−1−i −

2n−1∑
i=0

(−1)iηi(−1)2n−1−iη′

2n−1−i

)

=

2n−1∑
i=0

ηiη
′

2n−1−i,

as desired. Similarly, the coefficient of r2n−3 in F(r) is
the same as the coefficient of r2n−3 in µ1(r)µ2(r). Hence,
in order to determine −α2n−1, it suffices for us to determine
the coefficients of r2n−1 and r2n−3 in F(r). □

By a direct calculation, we have

F(r) =
3(r − 1)

4(r2 − 2r − 1)2
−

3
8(r2 − 2r − 1)

+
3(r + 1)

4(r2 + 2r − 1)2
+

3
8(r2 + 2r − 1)

.

Notice that 1+
√
2 and 1−

√
2 are the roots of r2−2r−1.

Hence, assume that

3(r − 1)
4(r2 − 2r − 1)2

=
a

(r − 1 −
√
2)2

+
b

r − 1 −
√
2

+
c

(r − 1 +
√
2)2

+
d

r − 1 +
√
2
,

(13)

where a, b, c, d belongs to the real numbers. Linking both
sides of (13) gives a = −c =

3
16

√
2
and b = d = 0, that is

3(r−1)
4(r2−2r−1)2

=
3

16
√
2

[ 1
(r−1−

√
2)2

−
1

(r−1+
√
2)2

]
. Note that

1

(r − 1 −
√
2)2

=

( 1

1 +
√
2

)2( 1
1 −

r
1+

√
2

)2
=

( 1

1 +
√
2

)2( ∞∑
i=0

(
r

1 +
√
2
)i
)2

.

Hence, coefficient of r2n−1 in 1
(r−1−

√
2)2

is

( 1

1 +
√
2

)2 2n−1∑
i=0

( 1

1 +
√
2

)i( 1

1 +
√
2

)2n−1−i

= 2n
( 1

1 +
√
2

)2n+1
.

Through a parallel directions, we get that the coefficient of
r2n−1 in 1

(r−1+
√
2)2

is 2n( 1
1−

√
2
)2n+1. Thus, the coefficient of

r2n−1 in 3(r−1)
4(r2−2r−1)2

is

3n

8
√
2

[
1

(1 +
√
2)2n+1

−
1

(1 −
√
2)2n+1

]
. (14)
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Bear in mind that

−
3

8(r2 − 2r − 1)

= −
3

16
√
2

( 1

r − 1 −
√
2

−
1

r − 1 +
√
2

)
,

3(r + 1)
4(r2 + 2r − 1)2

=
3

16
√
2

[ 1

(r + 1 −
√
2)2

−
1

(r + 1 +
√
2)2

]
,

3
8(r2 + 2r − 1)

=
3

16
√
2

( 1

r + 1 −
√
2

−
1

r + 1 +
√
2

)
.

Then by a parallel discussion as above we can get the
coefficients of r2n−1 in −3

8(r2−2r−1)
, 3(r+1)

4(r2+2r−1)2
and

3
8(r2+2r−1)

are, respectively, 3
16

√
2
[( 1

1+
√
2
)2n − ( 1

1−
√
2
)2n],

3n

8
√
2

[(
1

√
2 − 1

)2n+1

+

(
1

√
2 + 1

)2n+1
]

and

−
3

16
√
2

[(
1

√
2 − 1

)2n

−

(
1

√
2 + 1

)2n
]

.

Together with (14) the coefficient of r2n−1 in F(r) is
2n−1∑
i=0

ηiη
′

2n−1−i =
3n

4
√
2

[
(
√
2 + 1)2n+1

+ (
√
2 − 1)2n+1

]
+

3

8
√
2

[
(
√
2 − 1)2n − (

√
2 + 1)2n

]
.

Through the same directions, we establish the coefficient of
r2n−3 in F(r) is
2n−3∑
i=0

η′
iη2n−3−i =

3(n− 1)

4
√
2

[
(
√
2 + 1)2n−1

+ (
√
2 − 1)2n−1

]
+

3

8
√
2

[
(
√
2 − 1)2n−2

− (
√
2 + 1)2n−2

]
.

By a direct calculation,
2n−1∑
i=0

ηiη
′

2n−1−i −

2n−3∑
i=0

η′
iη2n−3−i =

3
√
2n
4 [(

√
2+ 1)2n − (

√
2− 1)2n]. Hence, in view of (3.5), one

has

−α2n−1 =
3
√
2n
4

(
√
2 + 1)2n −

3
√
2n
4

(
√
2 − 1)2n,

as desired.
Lemma 3.5: Let HMn be a hexagonal model having n

hexagons. Then the sum of resistance distance of HMn

Rij(HMn) = 2Rij(C2n) − 4n
α2n−1

det0S
. (15)

Proof: Note that |VHMn | = 4n. By Lemma 2.2, one has

Rij(HMn) = 4n

2n−1∑
i=1

1
θi

+

2n∑
j=1

1
µj

 ,

here θi (1 ⩽ i ⩽ 2n − 1) and µj (1 ⩽ j ⩽ 2n) represents the
spectrums of the matrices 0R and 0S .
On the one hand, in view of Lemma 2.2 we have

4n
2n−1∑
i=1

1
θi

= 2 · 2n
2n−1∑
i=1

1
θi

= 2Rij(C2n). (16)

On the other hand, µ1, µ2, . . . , µ2n are the roots of

det(rI2n − 0S ) = r2n + α1r2n−1
+ · · · + α2n−1r + α2n = 0.

We immediately obtain that 1
µ1

, 1
µ2

, . . . , 1
µ2n

are the roots of

α2nr2n + α2n−1r2n−1
+ · · · + α1r + 1 = 0.

By Vieta’s Theorem, one has

2n∑
j=1

1
µj

= −
α2n−1

α2n
= −

α2n−1

det0S
. (17)

Together with (16) and (17), our result follows
immediately. □
In order to obtain Rij(HMn), it suffices to determine α2n−1

and det0S in (15). Based on Lemmas 3.1-3.5, we obtain
Lemma 3.6: Let HMn be a zig-zag polyhex nanotube with

n hexagons. Then

Rij(HMn) =
4n3−n

3 + 3
√
2n2 (

√
2+1)n+(

√
2−1)n

(
√
2+1)n−(

√
2−1)n

.

IV. PROOF OF THEOREM
Note that |EHMn | = 5n and |VHMn | = 4n. From (3) and (4),
the GMFPT for HMn is

⟨F(HMn)⟩ =
1

|VHMn |(|VHMn | − 1)

∑
i̸=j

Fij

=
2|EHMn |

|VHMn |(|VHMn | − 1)
Rij(HMn)

=
10n

4n(4n− 1)
Rij(HMn)

=
5

2(4n− 1)

[4n3 − n
3

+ 3
√
2n2

(
√
2 + 1)n + (

√
2 − 1)n

(
√
2 + 1)n − (

√
2 − 1)n

]
.

Hence, we get our desired result.

V. NUMERICAL CONSEQUENCES AND DISCUSSIONS
In this section, by using Matlab, we give some graphical
interpretations between the number of hexagons (n) and
⟨F(HMn)⟩. We also investigated the effect of ⟨F(HMn)⟩
for n = 3 and 4. For the sake of simplicity, we assume
⟨F(HMn)⟩ = Mg. In Fig. 2, it shows that Mg increases as we
increase the hexagons (n). In Fig. 3, it shows thatMg increases
for both n = 3 and n = 4, but the slope of Mg for n = 4 is
larger than for n = 3. This means that the GMFPT works
efficiently for the large nodes. Hence, we developed a unified
strategy for obtaining the scaling properties of ⟨F(HMn)⟩
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FIGURE 2. ⟨F (HMn)⟩ = Mg versus n.

FIGURE 3. The comparison⟨F (HMn)⟩ = Mg versus n.

and achieved an organized study for GMFPT. Since, the
study of spectrums are crucial in determining the scaling
of GMFPT. Therefore, we used a closed-form formula for
GMFPT and all pairs of nodes. Finally, looking at GMFPT
in a network, we found that as the number of hexagons
grows, so does GMFPT. This demonstrates that hexagons and
network invariants have a direct relationship. The GMFPT
between source and target exhibits search efficiency when
we analyze many random walks equally. We demonstrated
in Fig.2 and Fig.3 that GMFPT works efficiently for the large
nodes.

VI. CONCLUDING REMARKS
In this contribution, we obtained the GMFPT of HMn. Note
that Carmona, Encinas and Mitjana studied the resistance
distances for ladder-like graphs [7]. Very recently, Barrett,
Evans and Francis [2] studied the effective resistances in
straight linear 2-trees (i.e., linear triangle chain) and some
related problems. It is quite motivating to study the effective
resistances for the Möbius hexagonal ring, and the Möbius
pentagonal ring. We will do it in the near future.
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