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ABSTRACT Augmented and Virtual Reality (AR and VR), collectively known as Extended Reality (XR),
are increasingly gaining traction thanks to their technical advancement and the need for remote connections,
recently accentuated by the pandemic. Remote surgery, telerobotics, and virtual offices are only some
examples of their successes. As users interact with XR, they generate extensive behavioral data usually
leveraged for measuring human activity, which could be used for profiling users’ identities or personal
information (e.g., gender). However, several factors affect the efficiency of profiling, such as the technology
employed, the action taken, the mental workload, the presence of bias, and the sensors available. To date,
no study has considered all of these factors together and in their entirety, limiting the current understanding
of XR profiling. In this work, we provide a comprehensive study on user profiling in virtual technologies
(i.e., AR, VR). Specifically, we employ machine learning on behavioral data (i.e., head, controllers, and eye
data) to identify users and infer their individual attributes (i.e., age, gender). Toward this end, we propose
a general framework that can potentially infer any personal information from any virtual scenarios. We test
our framework on eleven generic actions (e.g., walking, searching, pointing) involving low and high
mental loads, derived from two distinct use cases: an AR everyday application (34 participants) and VR
robot teleoperation (35 participants). Our framework limits the burden of creating technology- and action-
dependent algorithms, also reducing the experimental bias evidenced in previous work, providing a simple
(yet effective) baseline for future works. We identified users up to 97% F1-score in VR and 80% in AR.
Gender and Age inference was also facilitated in VR, reaching up to 82% and 90% F1-score, respectively.
Through an in-depth analysis of sensors’ impact, we found VR profiling resulting more effective than AR
mainly because of the eye sensors’ presence.

INDEX TERMS Augmented reality, machine learning, metaverse, privacy, user profiling, virtual reality.

I. INTRODUCTION

In recent years, the pandemic has increased the need for
remote connections, and we have witnessed to mass adoption
of virtual technologies, particularly for teamwork. Different
platforms have opened up new perspectives for virtual
interactions with others, and fostered the already ascending
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development of the Metaverse. The Metaverse has been
recently defined as a “‘post-reality universe, a perceptual and
persistent multiuser environment merging physical reality
with digital virtuality” [1]. While being designed around
the human, which constitutes the physical reality of this
interplay, digital virtuality relies on immersive technologies
that allow spatial and interactive features, namely Aug-
mented Reality (AR) and Virtual Reality (VR), collec-
tively known as Extended Reality (XR). Eventually, these
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devices became the core of the fourth wave of computing
innovation [2].

Currently, there is an ongoing discussion on the potential
protocols that will govern the Metaverse, with a particular
focus on the controversial interplay between openness and
privacy [1]. The latest virtual devices allow tracking many
behavioral data, such as the headset’s and controllers’ posi-
tion and rotation, or eye movements. All these data can induce
leak of personal information, and even the user’s identity
(e.g., [3], [4], [5]). While remaining private, this information
would help to restrict the use of the headset to specific
individuals. For example, it would be possible to allow
authentication only to those with appropriate permissions,
thus increasing the security of such technologies.

To date, many studies demonstrated the feasibility of user
profiling tasks in XR such as authentication [6], [7], users
identification [3], [4], [5], [8], and gender inference [8].
Nevertheless, the variety of XR devices and interactions have
led researchers to build specific profiling mechanisms for
each of their experiments, which were conducted on a single
technology and single (or few) actions. Indeed, creating
an ad-hoc system for every situation requires significant
effort [4], [5]. Moreover, if features are bound to a specific
action (e.g., hands distance in a grab action), they will hardly
generalize in different scenarios, with the risk of introducing
bias. For instance, Miller et al. [3] used the raw Y-axis
of the Head Sensor (i.e., roughly the person’s height) as a
principal descriptor for user identity. However, as pointed
out by the authors and recent literature [9], such a feature
is not persistent. Last, the comprehension of which factors
impact profiling in XR technologies is currently limited.
Indeed, the literature suggests that profiling performances
might depend on the technology (i.e., AR, VR) [10], user
actions [4], cognitive workload [11], experimental bias [9],
and XR sensors [4], but they were never examined altogether.

A. CONTRIBUTIONS

In this work, we propose a comprehensive study of XR
user profiling by leveraging behavioral data obtained through
the use of VR and AR headsets. As a first contribution,
we introduce a general profiling framework applicable to
different virtual devices (e.g., VR, AR), applied fields (e.g.,
everyday use cases, work scenarios), and types of user
behaviors (e.g., walking, searching, pointing). We test our
framework on data from our previous works [11], [12],
showing the generability of the approach. Since such previous
studies revealed gender differences under diverse workload
conditions, we additionally investigate the workload impact
on profiling. Ultimately, our framework leverages task-
independent and free-of-bias features, aiming to become a
baseline for XR profiling.

As a second contribution, we implement our framework
to study users’ profiling at different privacy levels (i.e.,
identification, personal information), introducing - to the best
of our knowledge - the profiling of gender and age in virtual
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contexts through modern and widespread XR devices (AR
Microsoft HoloLens, VR HTC VIVE Pro Eye).1

As a third contribution, we explore the impact of device
sensors on users’ profiling. Precisely, we assess the relevance
of the headset’s position and rotation, the controllers’ position
and rotation, and the eye tracker information available in the
VR device. Last, we fill a gap in the literature on users’
profiling in AR scenarios, which is largely understudied
compared to VR. Overall, we summarize our contributions
as follows:

o we propose a general profiling framework for XR
technologies, which can serve as a generic baseline for
future XR profiling studies;

« we examine users’ profiling with respect to identifica-
tion and private information (age and gender) in virtual
scenarios, which is novel in the AR context;

« we introduce and explore the role of task workload in
user profiling, which is a new concept in the area;

« we conduct extensive studies to assess sensors’ impor-
tance in the profiling tasks.

B. ORGANIZATION

In Section II, we provide background and review literature
on users’ profiling. Section III presents the general profiling
framework we adopted in our experiments. The dataset
and experimental settings are shown in Section IV and
Section V, respectively. We report our results in Section VI,
and discussion in Section VII. We conclude in Section VIII.

Il. BACKGROUND & RELATED WORK

This section describes the importance of security and privacy
in XR technologies. Section II-A summarizes the application
of virtual technologies in different fields, highlighting
benefits deriving from user profiling. Section II-B introduces
privacy in XR technologies, while Section II-C analyzes the
state of the art in XR user profiling.

A. XR USE-CASES AND BENEFITS OF PROFILING

1) INDUSTRY AND REMOTE WORK

As Industry 4.0 progressed, virtual devices have proven
their benefits in many sectors: in the design cycle of
products and manufacturing systems [13], for programming
machines [14], in the teleoperation industry [15], [16]
and also for training novices [17], [18]. In any of these
applications, virtual technologies provide the operator with
a faithful virtual equivalent of the physical environment.
Automatically identifying workers wearing headsets could
improve workplace security. For example, authentication
could be enabled only for those with appropriate permissions
(e.g., site manager). Further, since older workers may prefer a
different virtual environment design [19], user profiling could
help customize virtual features according to age.

10ur VR device is a commercially widespread device that comes with an
embedded eye-tracker, and as such, can potentially consolidate the findings
of previous works based on hand-crafted devices.
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2) EDUCATION

Online education through virtual environments is one of the
key pillars of Metaverse [1]. Several studies have examined
how immersive virtual technologies are successfully inte-
grated into education, as well as how they positively influence
learning. Subject-specific benefits include improving skills,
living more realistic experiences, and enhancing motivation
and interest in learning [20]. Additionally, [21] assessed VR
applications for higher education are becoming increasingly
popular in engineering, medicine, and computer science
education, and are mature enough to teach declarative,
procedural, and practical skills. With XR being widely
adopted in education, a profiling or identification algorithm
comes in handy. For example, teaching methods and content
can be tailored based on each student’s needs or age.

3) GAMING AND ENTERTAINMENT

While VR games have been popular since the 1990s (e.g.,
Virtual Reality Gear [22]), AR has been gaining popularity
since 2016 with Pokémon Go, Snapchat, Apple’s ARK:it,
and Google.com’s ARCore [23]. The sector is expected to
grow exponentially, as it encompasses entertainment markets
beyond gaming and arcades: the film and music industry, live
show sectors and sports are just a few examples [24]. Fol-
lowing the pandemic’s devastating effects in these markets,
immersive virtual platforms can help support the cinema,
music, and live-show industries [22], [25]. Last, the recent
proliferation of virtual influencers [26] demonstrates the
importance of virtual technologies in both entertainment
and marketing. Clearly, user profiling could be used for
marketing strategies in this sector (e.g., delivering customized
advertising). Further, particularly in gaming platforms, user
identification might help detect banned individuals and
prevent their access to virtual games.

4) MEDICINE

Both doctors and patients have found virtual technologies to
be trustworthy. For instance, VR-simulated surgeries can be
beneficial for medical education and training [27], while AR
can support surgeries by overlaying salient clinical records
or visual aids over the patient’s body [28]. Virtual control
systems for remote robotic surgery operations are also ris-
ing [29]. For patients, VR can help improve cognitive abilities
after a traumatic brain injury [30] or increase engagement
in Parkinson’s motor training [31]. Through identification,
detecting whether a user is a surgeon or a student can restrict
their rights during an XR surgical procedure. Similarly,
profiling patients could allow training customization and
automatic recordings of clinical improvements.

5) AR AS A SMART WEARABLE TECHNOLOGY

The latest AR smart glasses are fully wearable devices with
computational functions, providing various functionalities
by freeing the user’s hands [32]. For instance, Vuzix?

2https://Www.vuzix.com/
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developed AR smart glasses for navigation in unknown areas,
while Zhao et al. developed an AR assistive navigation
device [33]. Recently, Facebook has partnered with Ray-
Ban and launched their Ray-Ban stories, which have raised
important questions about ethical and privacy issues [34].
In the foreseeable future, the next generation of smart glasses
will likely allow projecting e-mails and notifications from
social networks on the user’s field of view. Reliable automatic
identification of the user during everyday activities would
allow private messages to be viewed only by the owner.

B. PRIVACY IN XR TECHNOLOGIES

The increasing popularity of big data [35] coupled with the
rapid adoption of various “‘smart” devices has resulted in
parallel increases in privacy concerns. In today’s society, most
people consider data collection incessant and believe that
the risks outweigh any benefits [36]. To prevent (or at least
reduce) the exposure of personal data, current and emerging
technologies should support privacy by default [37], fol-
lowing recent legislation such as GDPR [38]. Fortunately,
researchers are actively focusing on studying and adding
a security and privacy level to XR and, more in general,
emerging technologies. For instance, Adams et al. [39] deeply
investigated VR security and privacy perceptions from users
and developers, outlining a “code of ethics” for developers.
Abraham et al. [40] interviewed XR experts from industry and
academia to investigate issues relating to security, privacy,
and influencing behavior, providing guidelines for future XR
devices supporting security and privacy by default. Recent
works [41], [42] deeply discussed security and privacy issues
arising in the metaverse, allowing a better understanding and
a consequent improvement of the technology concerning its
users. Similarly, Nair et al. [43], proposed a system to browse
metaverse in incognito, protecting their privacy from compa-
nies, surveillance agencies, or data brokers. Researchers have
also focused on incorporating privacy-preserving measures
on daily usage systems, such as authentication [44], and more
recently, de-authentication techniques [45].

Besides protecting users’ data from unwanted usage or
sharing, past literature shows how attackers can use public
data in unconventional ways to profile users or to infer
private users’ data (e.g., gender, age, personality traits).
Examples include video games data [46], Social Networks
interactions [47], [48], or online ratings [49]. The results of
such studies highlight the high risks connected with public
data availability, highlighting the need for further research to
enhance user privacy.

C. USERS PROFILING IN AR AND VR APPLICATIONS

Few works discussed user profiling in AR and VR technolo-
gies, which are synthesized in Table 1. First, we classified
previous works based on the fechnology (AR vs VR),
given the diverse level of immersion they provide [10].
Second, we distinguished the privacy level they operate, i.e.,
whether they tackle private data profiling (age and gender),
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TABLE 1. State of the art overview. Legend: © = AR, D = VR, @ = AR & VR.
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authentication, or identification. We remark that identifying
a person (i.e., recognizing a given user among a group of
known people) is substantially different than inferring their
personal attributes (i.e., age, gender).3 Third, we considered
the sensors they adopted for the profiling. Several works [4],
[51, [8] built their algorithms on eye trackers, motivated by
the connection found between eye movements and personal
information [8], [50], [51], [52], [53]. However, researchers
have proposed a variety of methods [54], [55], [56] to hide
personal identifiers from eye movements, and XR devices
integrate a greater number of sensors (e.g., gyroscope,
accelerometer) which require additional studies. As we will
demonstrate in our experiments (Section VI), eye movements
are not strictly necessary for user profiling. Last, we report
whether they tested their algorithms on multiple actions
(i.e., generability) and evaluated the sensors’ importance,
factors that might affect the profiling performances [4]. As a
novel point, we introduce the role of cognitive workload
in profiling, since it affects how users interact with XR
technologies [11].

The reader can notice that existing works demonstrated
that user profiling in XR technologies is feasible, but to what
extent, as well as the required conditions, is currently unclear.
We briefly present the limitation of current literature, and how
we address such gaps.

1) SINGLE TECHNOLOGY

Previous works focused solely on one technology, AR [5],
[6] or VR [3], [4], [7], [8], [9], developing customized and
task-dependent algorithms. Given AR and VR both aims
to provide an immersive environment and embed similar
sensors, future XR studies would highly benefit from a cross-
technology profiling framework.

2) LIMITED PRIVACY UNDERSTANDING
Researchers tackled mainly a single privacy level profiling,
ignoring other privacy issues associated with XR devices.

3For instance, we might identify a person within a population by their
surname, which is uncorrelated to their age or gender.
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For instance, to the best of our knowledge, there are no
attempts in the literature to infer users’ private data (e.g., age,
gender) from modern XR devices. Indeed, many works [39],
[40], [50] theorized that private data inference in XR was
possible based on eye trackers studies [57], but none of
these theories were empirically proven. The only evidence of
gender profiling comes from Steil et al. [8], who purposely
equipped the VR headset Oculus DK2 (2016) with an eye-
tracker (Pupil4).

3) RESTRICTED SET OF SENSORS

The most impacting results were gained primarily by
leveraging eye-movement features [4], [5]. Others leveraged
different behavioral features such as head position and rota-
tion [3], [4], [5], [6], [7], often being prone to experimental
bias [9] (see Section III-C). Therefore, it is still unclear how
different features contribute to the accuracy of a profiling
task, nor if the feature choice should be task-dependent.

4) LACK OF GENERABILITY

Only two works [3], [4] tested their algorithms on multiple
actions, questioning their generability. In AR, no works tested
generability. We also noticed that no works analyzed the
actions’ cognitive workload impact, which was demonstrated
to be crucial in XR interactions [11].

It follows that testing a general framework, which (1)
leverages the same algorithms for profiling users in all XR
technologies, (2) systematically considers multiple features,
(3) extends to different levels of profiling tasks (identifi-
cation, private data inference), and (4) works for multiple
actions, might be helpful in view of higher generability and
broader comprehension of XR user profiling.

lIl. METHODOLOGY

This section describes our methodology to execute user
profiling within virtual technologies. Section III-A motivates
the reasons for our investigation. The overview of our

4https://pupil-labs.com/products/vr-ar/
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proposed framework is presented in Section III-B, while the
details are provided in Section III-C.

A. SCOPE OF THE WORK

This study examines whether users can be profiled by
leveraging their interaction with AR and VR devices.
In particular, we consider two privacy levels of user profiling:

1) User identification, where we aim to identify a given

user within a known population;

2) Private information inference, where we aim to infer

users’ gender and age.

Thus, we propose a general framework to accomplish
both tasks, extendable to infer additional users’ information.
Further, our framework requires to:

o work across different XR devices and actions;

« reduce the experimental bias by leveraging features

uncorrelated from the task.

By satisfying these requirements, our framework can
become a simple yet effective baseline to test user profiling
over general XR devices and applications. The use of
a generic-purpose framework can indeed simplify future
research and comparison between multiple applications and
devices.

B. INFERENCE FRAMEWORK OVERVIEW

Our goal is to define a generic pipeline that can be adapted
and applied to any virtual technology (e.g., AR, VR) context
to profile a user, in terms of identification or private
information. As shown in Figure 1, the pipeline consists of
four steps, starting from the user from whom we record the
behaviors, to their actual profiling:

1) Raw Data Acquisition. In this phase, users’ behavioral
data are acquired. XR technologies’ devices continu-
ously generate data from users’ interactions with the
virtual environment (i.e., time series). From these data,
we can describe users’ behavior. The amount and type
of information depend on the virtual technology and
its devices. For instance, data might come from users’
input (e.g., pressing joystick’s buttons) and users’
movements.

2) Bias Removal. This phase aims to remove potential
biases from time series that might lead to train
erroneous machine learning models.

3) Time Series Engineering. This phase aims to extract
insightful information from the time series.

4) Machine Learning Prediction. This phase aims to infer
users’ private information from the data elaborated
in the previous phase by leveraging machine learning
algorithms.

C. FRAMEWORK DETAILED DESCRIPTION

1) RAW DATA ACQUISITION

Users interact with AR and VR applications through devices
such as headsets and joysticks. These devices embed
several functional sensors to offer users an immersive
experience. For example, users move and explore the
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virtual environment through sensors like accelerometers and
gyroscopes embedded in the headset. Thus, by combining
information retrievable by each sensor s’ of the equipment,
we can trace users activity a at a given time ¢:

., ST, (1)

where the subscript denotes the timestamp and the superscript
the sensor involved. We call this process acquisition phase.
The acquisition phase can be repeated over time, resulting in a
temporal user-behavioral description. Thus, by acquiring data
in At =t — ty, we obtain a behavioral time series, described
as follows:

g 0 .1
ar =1[s;,s;,..

BAI z[aloral11'°"al*1’af]' (2)

B A, represents an atomic sample of a user action (or task) of
duration At that we will use in the next phases to infer their
private information.

2) BIAS REMOVAL

The acquisition phase might lead to an enormous quantity of
raw data. Such data might describe not only users’ behavior,
but also environmental information strongly correlated to
experimental sessions. For example, using the raw headset
height to identify users might be erroneous since such
information might not be persistent over time (e.g., different
shoes, different body position) [3]. The problem of spurious
correlations in cybersecurity applications is well known [58].
Thus, care must be taken to understand if sensors might lead
to erroneous and inconsistent machine learning performance.
The process of bias removal depends on the sensors’ nature
and requires an ad-hoc analysis. We explain in detail our
implementation in Section V-B. The de-biasing phase results
in a new vector of de-biased actions:

B_)At = [;l[()’at]""73t71’3t]7 (3)

where d; is the de-biased version of the feature a;,.

3) TIME SERIES ENGINEERING

Raw temporal data should be properly elaborated to extract
meaningful information. Moreover, given the vast amount of
data, such sequences should be aggregated (i.e., compressed)
to limit the computational cost of their analyses. The
aggregation strategy can consider the whole sequence of
specific features, or just a subpart of it. For example, given
a sensor siAt and its de-biased values over the time dgt =
[d;o, tll’ e, dzl—l’ df], the aggregation of a whole sequence
results in a unique number x*, while the partial aggregation
(e.g., a transformation every g times step) in a vector of
numbers [xé,xi,...,x,@], where m = t/q. Note that the
subscript does not denote the temporal axis anymore. Popular
features derived from the aggregation phase are the mean,
standard deviation, min, max [3]. At the end of the process,
we obtain, for each participant action or task, an aggregated
datapoint x = [x% x!, ..., x"] that will be used by the
machine learning models.
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FIGURE 1. Overview of the proposed framework for user profiling in Augmented and Virtual Reality.

4) MACHINE LEARNING

The last phase of the pipeline involves machine learning
approaches like Logistic Regression (LR), Decision Tree
(DT), and Random Forest (RF). Training a well-performing
model requires validation strategies that consider the nature
of the inference. For instance, if the aim is to identify a
user within a known population, the training, validation, and
testing splits should contain samples of the whole population.
However, to avoid trial (or session) bias, the three splits
should consider samples from different collection trials.
Conversely, when inferring information like age and gender,
the three splits should contain different sets of users, since we
want to infer the characteristics of people not seen at training
(and validation) time. Regarding the type of machine learning
algorithm, we suggest the use of inherently interpretable
models (e.g, LR, DT) to better understand models’ decisions
during inference. Moreover, interpretable models allow a
transparent debugging phase to identify the presence of
spurious features [59]. Finally, given the unbalanced nature
of the problem (i.e, not all the classes are distributed equally),
we suggest using performance metrics like Fl-score with
macro average.

IV. DATASET OVERVIEW

Our previous studies assessed behavioral and workload
aspects in individuals using AR while walking outdoor [11],
and in users wearing VR for guiding an industrial robotic
arm [12], [60]. In the present work, we leverage behavioral
and eye-tracking data of both the AR and VR scenarios
with the purpose of profiling users. For each technology,
we considered tasks and actions to test the generability of our
profiling approach and study the conditions or actions which
might be more (or less) successful.

A. AR EXPERIMENT

1) OVERVIEW

The AR experiment investigated multitasking effects in
participants using AR while walking outdoor [11]. Partic-
ipants wore the Microsoft HoloLens 1st generation smart
glasses, and interacted with the augmented targets both
via an Xbox One controller and physical collision with
the virtual objects (e.g., walking through an augmented
target). They performed: i) a visual task, in which they
discriminated between different augmented targets presented
in their peripheral view, ii) a navigation task, in which
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they reached a series of augmented landmarks via physical
walking outdoor, and iii) the combination of these tasks,
i.e., a dual-task. For more details about the tasks, please
refer to [11]. Figure 2 shows an example of the virtual
environment. Each participant performed 80 trials of the
visual task, 50 trials of the navigation task, and 50 trials of
the dual-task. While the original dataset was composed of
45 participants, we excluded 11 participants whose headset
position data were not correctly recorded, and finally run
our analyses on 34 participants (10 females age mean =
24.28, SD = 2.22 - 24 males age mean = 24, SD = 2.62).
We continuously recorded through the device (60 Hz) the
following measures: position (in meters) of the AR headset
in the three axes (X, y, z), and rotation of the AR headset in
Euler angles.

2) TASKS
From the experimental design, we identified the following
tasks:

o Mental Task (MT). The mental task corresponds to
what [11] call Visual Discrimination Task. Specifically,
participants were discriminating between different col-
ored and lateralized augmented objects while standing
still.

o Navigation Task - Low workload (NT-Low ). Participants
were looking for augmented targets in their surroundings
and then walked through them.

e Navigation Task - High workload (NT-High). Partici-
pants were executing the navigation task concurrently
with the mental task. The concurrent execution of two
tasks is known as ‘“‘dual-task paradigm” and is usually
deployed in cognitive science research to create higher
mental demand on the participant.

3) ACTIONS
Each task is composed of smaller operations that we named
actions. The dataset contains the following actions:

o Button interaction. Participants were standing still while
discriminating between the lateralized colored targets.
Specifically, they were instructed to press specific
buttons on the joystick according to the hemifield where
the virtual object was displayed.

o Search. Participants were engaged in the visual inspec-
tion of the surroundings to find a virtual landmark;
this action was performed while participants were

VOLUME 11, 2023
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(a) Augmented Reality

FIGURE 2. Virtual environments adopted in the experiments.

standing still and just rotated their heads to inspect the
surrounding.

o Walk. Participants were physically walking to the

identified virtual landmark.

Both the search and walk actions were performed as
single-task and concurrently with the secondary mental task
(namely, the visual discrimination task). Based on the results
obtained in our previous work [11], participants perceived
a lower workload in the single-task compared to the dual-
task. Therefore, we here refer to the dual-task as the high
workload condition, while the single-task is considered as a
low workload condition. Furthermore, the button interaction
action was categorized as a high workload condition since
it entailed high and sustained attentional processes for
correctly discriminating the stimuli appearing lateralized to
the participant’s field of view. Table 2 represents the actions
isolated in the AR environment.

TABLE 2. Augmented Reality actions organized per type of action and
workload level.

Action Button

Workload Interaction Search Walk
) ﬁ
01 (|
Low - \Si
/ J
( s
L £\

ﬁ)&
\la
High ‘

B. VR EXPERIMENT

1) OVERVIEW

As part of the VR experiment, participants guided a virtual
replica of an industrial robotic arm (Universal Robot e-Series
URS5e) developed in Unity [12]. They were equipped with an
HTC VIVE Pro Eye VR device and two VR controllers and
guided the robotic arm shown in figure 2b through a pick-
and-place, i.e., picking and placing a bolt into a box. They
performed the task using two control systems (controller
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(b) Virtual Reality

buttons and physical actions, i.e., moving their hands)
and under two levels of workload (single-task and dual-
task). In the dual-task, participants also performed simple
arithmetic sums, typing the results on a virtual keyboard
by pointing the controller. Further details about the task
design can be found in [60]. In each condition, the young
participants performed 40 trials, while the old participants
performed 20 trials. In total, 35 participants executed this task
(18 females, age mean = 39.33, SD = 14.21 — 17 males, age
mean = 37.75, SD = 16.32). The following measures were
continuously recorded through the device (120 Hz): position
(in meters) in the three axes (X, y, z), rotation in Euler angles
of both the VR headset and its controllers, pupil size (in
millimeters), and eye openness (expressed from O to 1).

2) TASKS
From the experimental design, we identified the following
tasks:

o Controller-based Task - Low workload (CT-Low). Par-
ticipants guided the robot via controller buttons under a
low workload;

o Controller-based Task - High workload (CT-High).
Participants guided the robot via controller buttons
under a high workload (i.e., while also calculating
sums);

o Action-based Task - Low workload (AT-Low). Partici-
pants guided the robot via physical actions under a low
workload;

o Action-based Task - High workload (AT-High). Partici-
pants guided the robot via physical actions under a low
workload (i.e., while also calculating sums).

3) ACTIONS
From the tasks performed in VR, we extracted the following
actions:
e Idle. Participants were only looking at the robot while
it was executing either a pick or place automation, i.e.,
were not interacting with the virtual environment;
o Pointing. Participants were using the VR controller to
point the numbers on the virtual keyboard to report the
result of the arithmetical sums;
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o Button Interaction. Participants guided the virtual robot
through the pick-and-place task by only pressing
specific buttons on the VR controller;

o Physical interaction. Participants physically touched the
virtual robot and moved their arms to relocate it over the

worktable.
In line with our previous findings [12], the actions

performed concurrently with the arithmetic task were cate-
gorized under high workload. Differently, when performed
without any additional task, they were categorized under the
low workload. Table 3 represents the actions isolated in the
VR environment.

TABLE 3. Virtual Reality actions organized per type of action and
workload level.

Workload Aetion Ldle Pointing Inﬁ’::zt:t’ilon Irt;’eli};z:;n
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C. ETHICS

The data for this study come from our previous works,
which were approved by the internal ethical committee of
the University of Padova, Italy. Participants signed informed
consent. The ethical committee approved the possibility of
sharing anonymized data with other researchers to foster
transparency, reproducibility, and further research.

V. EXPERIMENTAL SETTING

This section describes our experimental settings.
Section V-A explains the targets of our profiling, while
Section V-B describes the implementation (i.e., de-biasing,
feature extraction, model selection).

A. PROFILING TARGETS

In our experiments, we are interested in the identification,
age, and gender profiling processes. In each of them, we use
the headset’s data the user generates when interacting with
the XR environment (i.e., behavioral data) to predict a target
(i.e., the user identity, gender, and age). These processes will
be performed on each task and action presented in Section V.
We now describe in detail the three processes.

1) IDENTIFICATION

This process aims to identify a particular user among a
group of known users. In this setting, every user appears
in both training, validation, and testing data. Therefore, the
training set contains the behavioral data of all the users. First,
we train an ML model able to map a user’s behavioral data
to their identity. Then, when we present the ML model with
new (unknown) behavioral data, it identifies the user who
generated them.
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2) AGE PROFILING

This process aims to infer the user’s age starting from their
behavioral data. In this setting, users appear only in one of the
training, validation, and testing set. Therefore, the training set
contains the behavioral data of only a subset of users. First,
we train an ML model able to map a user’s behavioral data
to their age. Then, when we present the ML model with the
behavioral data of a new user (unknown), the model infers
their age.

3) GENDER PROFILING

This process aims to infer the user’s gender starting from their
behavioral data. In this setting, users appear only in one of the
training, validation, and testing set. Therefore, the training set
contains the behavioral data of only a subset of users. First,
we train an ML model able to map a user’s behavioral data to
their gender. Then, when we present the ML model with the
behavioral data of a new user (unknown), the model infers
their gender.

We remark that age and gender profiling are substantially
different from identification. Indeed, in the identification
process, the ML model works with data of known users, while
in age and gender profiling, the aim is to infer the targets of
unknown users.” In other words, identification can be used
only when the population is known (e.g., within a family
context), while age and gender profiling can be used when
the population is unknown (e.g., when a customer wears the
device for the first time).

B. IMPLEMENTATION

1) DE-BIASING AND FEATURE EXTRACTION

AR and VR datasets contain different types of raw features
acquired from the sensors. We now describe, for each
category of sensors, the features and de-biasing techniques
we applied.

o Head Position (AR and VR), represented as a 3D
coordinate (X, y, z) measuring the relative distance
(in meters) of the user from a center point in the
virtual environment. This feature might contain both
session’s and users’ static traits (e.g., height). We thus
derived different variants of this information, such as the
movement, computed as the norm between two points
at 5 timestamps of distance, and the vertical oscillation
computed as the difference between two height values at
5 timestamps of distance.

o Head Rotation (AR and VR), represented as a 3D
value. For each axis, we compute its angular speed by
considering points at 5 timestamps of distance. This
transformation can remove information related to trials
(e.g., specific positioning of objects with respect to the
participant).

5HaVing the same users in training and test data when performing private
data inference causes overfitting, since it degenerates into an identification
task [61].
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o Eyes (VR), includes data on pupil size (in mil-
limeters) and eye openness (0-1), for both left and
right eyes. In order to overcome possible confounding
variables [62], [63], it is usually appropriate to pre-
process the raw eye data for flattening individual
differences. However, as the aim of the present work was
specifically to capture individual traits and behaviors
for allowing identification/profiling, we opted for not
pre-processing eye-tracking data. On the contrary,
we leveraged the individual differences in pupil size and
eye openness [64], [65], [66] Further, we enhance this
set of features by computing the symmetry among the
eyes for both pupil dilatation and eye openness. On an
applied level, using the raw output of the HTC Vive Pro
Eye device speeds up the identification/profiling process
and allows higher generability to multiple VR devices.

« Controller Position (VR), represented as 3D coordinates
(x, y, z) relative to the virtual environment center point.
Similarly to the head position, this feature might contain
both sessions and user traits. We thus transform it in the
movement, computed as the norm between two points at
5 timestamps of distance.

o Controller Rotation (VR) represented as 3D value.
We conduct the same process of head rotation.

Finally, each feature of the previously described families
is aggregated with tsfresh.® Given a time series, this library
extracts more than 100 features, including average, standard
deviation, quantile, and entropy. We further refined the
features by keeping only the relevant ones.” Thus, starting
from the raw time series of a single action within a single
task performed in a single trial by a single user, we extract a
single aggregated data point. The process is repeated for all
the users, trials, actions, and tasks, obtaining 9360 datapoints
in AR, and 16520 datapoints in VR.

2) MODELS TRAINING AND VALIDATION

In our experiments, we test four different algorithms: logistic
regression, ridge classifier, decision tree, and random forest.
As a baseline, we defined a Dummy classifier that randomly
predicts the outcome based on the training ground-truth
distribution. For each experiment presented in Section VI,
we adopt a common validation strategy: for each discussed
model, we find the best hyper-parameters through a grid-
search validation based on training, validation, and testing
split of 70%, 10%, and 20% of samples, respectively. For
private inferring tasks (i.e., age and gender), the splits contain
different sets of users, i.e., users in training are not present in
the validation and testing set. Similarly, users in validation
are not present in both training and testing sets. Machine
learning models are designed as a multiclass classification
problem for the user identification task. On the opposite,
we considered a binary classification problem for both age

6https://tsfresh.readthedocs.i()/en/latest/index.html

7We used tfresh feature_selection function: https://tsfresh.readthedocs.io/
en/latest/api/tsfresh.feature_selection.html
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(i.e., young and old) and gender (i.e., male and female). Note
that the young class correspond to users defined in [19 — 24]
(AR) and [23 — 30]; the old class is defined in [25, 29] (AR)
and [31 — 69]. We now report the parameter grids involved in
the grid search:
o Logistic Regression (LR). C: 0.1, 1, 10.
o Ridge (RI). Alpha: 0.01,0.1,1.,10. Fit intercept:
False, True.
o Decision Tree (DT). Max Depth: 3,5, 7. Min samples
leaf: 1, 3, 5.
« Random Forest (RF). N estimators: 50, 100, 150. Max
Depth: 3, 5, 7. Min samples leaf: 1, 3, 5.
To provide accurate results, each experiment is repeated five
times. We thus report both the mean and standard deviation
of the Fl-scores (with macro average). We implemented our
experiments in Python 3.8.5 and we used Scikit-Learn [67]
library for training models and validation algorithms.

VI. RESULTS

In this section, we present the results of our experiments.
We present both results for the task and action levels,
in sections VI-A and VI-B, respectively. We then conclude
with an ablation study to determine the effect of different
sensors on models’ performance (Section VI-C),

A. TASK-LEVEL

In this section, we present profiling performance at a task-
level. In particular, each presented experiment considers
distinctly the tasks presented in Sections IV-A and IV-B.
In more detail, we train, validate, and test our model only on
the task under investigation, predicting each time the identity,
age, and gender separately. For instance, we train a specific
model to predict gender based only on the Mental Task.

1) IDENTIFICATION
Figure 3 shows the identification results in AR and VR envi-
ronments. LR and RI achieved the highest (and comparable)
performances in AR, whereas LR and RF performed best in
VR. In general, all our algorithms outperform the baseline
(Dummy). Looking at the results on the Overall Tasks, both
in VR (OT-VR) and AR (OT-AR), we immediately notice
that in VR identification, the performances remain pretty
stable as the number of users increases, while AR degrades
significantly. Indeed, AR best algorithms performance goes
from nearly 0.90 F1-Score (two users) to slightly above
0.60 F1-Score (30 users). Instead, in VR, LR yields almost
perfect prediction on two users, while the F1-Score is above
0.95 when performing identification over 30 users. This
might reflect the different amount of sensors available in
VR (headset, controller, and eye-related behaviors) compared
to those available in AR (only headset-related behaviors).
We further discuss the impact of each of the involved sensors
in Section VI-C.

When looking at the individual tasks, we can see that
the identification algorithm performs even better than the
overall task, particularly in AR. For instance, we reached
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FIGURE 3. User Identification on task-level.

0.70 F1-Score over 30 users in the NT-Low, which is
roughly 0.10 higher than in the OT-AR. One reason for
this result might be related to the nature of the performed
task: in the NT-Low, participants were actively moving in
the surroundings without performing any additional task.
Therefore, their movements might have been more linear
compared to the situation in which they performed the same
task under a high workload (NT-High), thus revealing more
identifiable movement patterns. The same does not apply
to the VR scenario. Here, when looking at each of the
identified actions, the higher the workload the better the
performance of the identification algorithm. Indeed, the best
performance was obtained at the AT-High and CT-High,
where the F1-Score was around 0.95 and 0.97, respectively.
Again, possible explanations might be related to the nature of
the tasks and the number of sensors embedded in the devices.
In the VR scenario, participants were only moving their
upper body, and in the high workload conditions they were
additionally engaged in a secondary mental task. We know
from the literature that a higher workload is related to
higher changes in eye behavior [12]. Therefore, the VR-
embedded eye-tracker might have had an essential impact
on the identification performance, mainly when users were
under higher mental strain rather than when performing less
demanding tasks (i.e., CT-Low, AT-Low).

2) AGE

Figure 4 shows the age classification results in AR and VR
environments at task-level. Results from the age profiling
clearly yielded better performance in the VR compared to the
AR scenario. While in VR all models performed significantly
better than the baseline, in AR the F1-Score was consistently
lower than the baseline, in all tasks. This is likely to be
related to the low age variability of participants that took
part in the AR experiment, or the inadequacy of sensors (see
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Section VI-C). While this is a clear limitation of our study,
such a result is still valuable, since it suggests that people
of similar ages interact similarly with AR devices, meaning
that age profiling may not be possible in every circumstance.
Therefore, we focus our discussion mainly on age profiling
performances in relation to the VR experiment.

In VR, the LR and RF algorithms appear to perform better
than the other models in all tasks, but in the OT, where
RI produced a higher F1-Score compared to LR. On the
task-level, the users’ age was profiled with higher accuracy
when they performed the pick-and-place task via physical
actions (AT-High and AT-Low, in which F1-Score was around
0.90 and 0.85 respectively) compared to controller buttons
(CB-High, CB-Low, in which F1-Score was below 0.80 in
both cases). A possible interpretation on this point is that
the movement patterns of older users might have been
quite different from younger users. Also, we know from the
literature that robot teleoperation is significantly influenced
by age [68]. In this view, our algorithm was particularly
successful in detecting users’ age during the pick-and-place
task only when physical actions were involved.

3) GENDER

Figure 5 shows the gender classification results in AR and
VR environments at task-level. When profiling users’ gender,
we obtained substantially better results in VR compared to
AR. Indeed, in VR, all the tested algorithms performed above
the baseline (dummy). More specifically, we can observe
a better performance obtained through LR and RF, which
reached a maximum F1-Score of 0.75. Differently, when
detecting users’ gender in the AR scenario, our algorithms
performed only 0.5-0.10 above the baseline. This discrepancy
could be explained by the inadequacy of sensors (see
Section VI-C)
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FIGURE 4. Age profiling on task-level.
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FIGURE 5. Gender profiling on task-level.

In VR, we achieved better performance in tasks involving
a higher workload (CT-High, AT-High) than those under a
low workload (CT-Low, AT-Low). These results align with
recent literature on behavioral gender differences in the VR
pick-and-place task. For instance, our previous work [60]
demonstrated how men outperformed women in the pick-and-
place tasks in terms of task execution time, particularly when
using controller buttons. These differences might have been
even more marked when performing an additional mental
task, thus allowing more precise gender profiling. We observe
a similar trend in the AR scenario, where higher workloads
(NT-High) result in better performance. This behavior reflects
previous findings related to the different walking patterns
between men and women [11]. Indeed, on average, the
walking velocity of men is significantly higher than women’s
one, particularly under high workloads. As we recorded the
headset shifts in time, the different walking velocities might
have been prominent in gender profiling.

B. ACTION-LEVEL

Starting from the results obtained in the overall task,
we investigated whether some actions had a particular effect
on the identification and profiling performances. Specifically,
we opted for leveraging the model that demonstrated
better results, which was the Logistic Regression (LR).
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Each presented experiment considers distinctly the actions
presented in Sections IV-A and I'V-B. In more detail, we train,
validate, and test our model only on the action under
investigation, predicting each time the identity, age, and
gender separately. For instance, we train a specific model
to predict age based only on Button Interaction with Low
Workload.

1) IDENTIFICATION

Table 4 shows the identification results in AR and VR
environments at action-level. Previously at task-level we
reached an F1-Score of about 0.60 in the AR and above
0.90 in the VR scenario. Looking at the action-level,
specifically for AR, we see that the walking action reaches
the highest performance (F1-Score is about 0.80 under
low workload and 0.78 under high workload), while the
search action and button interaction reveal F1-Scores below
0.70. This suggests that the walking action is prominent
in identifying users in AR, possibly because the walking
pattern is the most singular feature in such a use-case
of AR. Differently, in VR, we observe higher F1-Scores
for both button and physical interactions, specifically under
high workload (F1-Score is about 0.96 in both cases). Also,
the pointing action reached a very similar F1-Score (0.96),
while the idle time intervals yield lower F1-Scores (below
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TABLE 4. User identification on action-level organized per type of operation and workload level. Random guess at 0.03 for both AR and VR tasks. All the

measures in F1-Score.

| Augmented Reality | Virtual Reality
Action Button .. Button Physical
Workload Interaction Search Walk ‘ Idle Pointing Interaction  Interaction
Low - 0.66+0.03  0.80+0.02 | 0.78+0.02  0.96+0.01  0.92+0.01 0.93+0.02
High 0.61+0.02  0.69+0.01  0.78+0.02 | 0.86+0.01 - 0.96+0.00  0.96+0.01

TABLE 5. Age profiling on action-level organized per type of operation and workload level. Random guess at 0.5 for both AR and VR tasks. All the

measures in F1-Score.

| Augmented Reality | Virtual Reality
Action Button L. Button Physical
Workload Interaction Search Walk ‘ Idle Pointing Interaction  Interaction
Low - 0.4040.03 0.45%0.02 | 0.77+0.10 0.88+0.06  0.70+0.00  0.82+0.05
High 0.47+0.02  0.4440.01  0.49+0.02 | 0.83+0.09 - 0.81+0.07 0.90+0.05

TABLE 6. Gender profiling on action-level organized per type of operation and workload level. Random guess at 0.5 for both AR and VR tasks. All the

measures in F1-Score.

| Augmented Reality | Virtual Reality
Action Button .. Button Physical
Workload Interaction Search Walk ‘ Idle Pointing Interaction  Interaction
Low - 0.50+0.02  0.45+0.06 | 0.60+0.10 0.82+0.00 0.62+0.05 0.66+0.11
High 0.54+0.03  0.58+0.03 0.60+0.06 | 0.63+0.05 - 0.74+0.06  0.66+0.08

0.80 both under high and low workloads). It seems that the
most interactive actions (using controller buttons, pointing,
and physically moving the upper body) yield better results
compared to periods in which users were passively looking
at the virtual surroundings.

2) AGE

Table 5 shows the age classification results in AR and VR
environments at action-level. Users’ age was profiled with an
F1-Score of about 0.50 on the overall task executed in AR,
and 0.80 in VR. As the age profiling was unsuccessful in
AR, we will not pay close attention to the action-level results
of this use case. These results confirm what we observed at
task-level (see Figure 4). Regarding the VR scenario, we can
note that, under low workload, the pointing (F1-Score =
0.88) and physical interactions (F1-Score = 0.82) were the
most crucial in profiling users’ age, compared to actions
allowing less interactivity with the virtual environment
(F1-Scores below 0.80). This might suggest a different
movement and interaction pattern shown by older and
younger users, especially when greater freedom of movement
is allowed. This is also in line with what was observed on task-
level. Moreover, this trend becomes even more evident when
the physical interactions are performed under a high workload
(F1-Score = 0.90), likely reflecting the multitasking and
motor difficulties related to age [69].

3) GENDER

Table 6 shows the gender classification results in AR and VR
environments at action-level. On task-level, our algorithms
reached an F1-Score of about 0.50 in AR and above 0.70 in
VR. Even though the gender profiling did not perform
sufficiently well in AR, here we can observe that, under
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high workload, both walk (F1-Score = 0.60) and search (F1-
Score = 0.58) had a significant influence in detecting the user
gender compared to the same actions performed under the low
workload. The button interaction was slightly better than the
random classifier (F1-score = 0.54). These results align with
task-level results, whereby the gender profiling performed
better in the NT-high compared to NT-low. Additionally,
we observe how the walking action has the largest influence
on the accuracy of gender profiling. Again, it might be related
to different walking velocities demonstrated by men and
women, particularly under high workload [11].

When looking at the actions performed in VR, the pointing
action stands out. With an Fl-score of 0.82, it strongly
contributes to gender profiling compared to all other actions.
This might be related both to a singular movement pattern
and/or to gender-related eye parameters’ variations. Further,
results obtained at task-level on a better performance
achieved under high compared to low workload are here
confirmed only for button interactions. Indeed, the F1-Score
at button interactions is about 0.08 higher when users are
under high rather than low workload. Again, this reflects
results shown in previous studies demonstrating faster
operation times in men compared to women specifically when
using controller buttons, but not when acting via physical
actions [12]. This suggests that profiling users’ gender might
be easier during tasks involving button interactions, but
not in those allowing higher interactivity with the virtual
environment.

C. SENSORS RELEVANCE - ABLATION STUDY

In this section, we conduct an ablation study to understand
which sensors contribute the most in our identification,
age, and gender predictions. In brief, we trained a Logistic
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TABLE 7. Ablation study of sensor importance at task-level in AR. All the
measures in F1-Score.

| Identification  Age  Gender
Guessing | 0.03 0.5 0.5
Mental Task
Head Position 0.38 0.46 0.51
Head Rotation 0.54 0.40 0.55
= Navigation Task
2 Head Position 0.64 0.45 0.56
3 Head Rotation 0.46 0.40 0.45
3 Navigation Task
5 Head Position 0.65 0.45 0.51
es) Head Rotation 0.48 0.44 0.52

Regression (LR) using only specific subsets of features.
In the AR environment, we distinguish between Head
Position and Head Rotation features. In VR, we also consider
Eyes, Controller Position, and Controller Rotation features.
The ablation study was carried out both at Task-Level
(Section VI-C1) and Action-Level (Section VI-C2).

1) TASK-LEVEL

Table 7 and Table 8 show the results of the ablation study
for AR and VR tasks, respectively. In the AR environment,
Head Rotation features are predominant in the Mental Task
for identification and gender prediction. Indeed, in this
task, participants were standing still and were instructed
not to move their heads; however, it was plausible that
their heads oscillated in singular ways, which were detected
by our algorithm and leveraged for their identification.
In opposition, during the navigation task, Head Position
had more impact on all the targets, given that it might be
associated with walking patterns. Such a pattern was used in
the literature to identify people [70], and could help in Age
and Gender prediction as well.

In VR, the identification stage seems to be driven mainly by
Eyes features, followed by Controller features. Reasonably,
eyes blinking patterns and pupils’ dilatation can be person-
specific [64], [65], [66], and thus act as a biometric feature.
The controllers, instead, were the main interface to interact
with the virtual world. Thus, it is reasonable that how a person
interacts within the environment helps in the identification.
This result aligns with recent findings on video games using
mice and keyboards to profile users [46]. Therefore, we could
expect AR identification to achieve better performances if
such sensors are available, particularly eyes trackers, as
reasoned before in Section VI-A. In predicting the age,
the Controller features yield the best performance. This
finding can result from younger people being more familiar
with joystick usage. When the workload is high, younger
participants may pay more attention to the task rather than
how to use the joystick. Moreover, in a low workload
scenario, Head and Eyes features contribute similarly. On the
other hand, in gender inference, the Head and Eyes features
play the most significant role. Indeed, as shown in past
literature, gender-based differences exist in how they visually
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TABLE 8. Ablation study of sensor importance at task-level in VR. All the
measures in F1-Score.

‘ ‘ Identification =~ Age Gender
| Guessing | 0.03 0.5 0.5
Controller Based Task
Head Position 0.41 0.68 0.64
Head Rotation 0.45 0.76 0.55
! Eyes 0.83 0.75 0.59
° Controller Position 0.39 0.69 0.57
f‘S Controller Rotation 0.59 0.69 0.58
3 Action Based Task
E Head Position 0.50 0.76 0.62
~ Head Rotation 0.51 0.76 0.60
Eyes 0.83 0.74 0.54
Controller Position 0.51 0.76 0.58
Controller Rotation 0.68 0.81 0.55
Controller Based Task
Head Position 0.48 0.73 0.61
Head Rotation 0.56 0.68 0.57
] Eyes 0.88 0.79 0.69
§ Controller Position 0.45 0.78 0.60
5 Controller Rotation 0.64 0.68 0.62
2 Action Based Task
5 | Head Position 0.55 0.75 0.53
T | Head Rotation 0.55 0.80 0.62
Eyes 0.89 0.83 0.62
Controller Position 0.57 0.86 0.50
Controller Rotation 0.73 0.87 0.50

explore a virtual world [71]. Controller features influence the
prediction mainly in high workload controller-based tasks.

2) ACTION-LEVEL

Table 9 and Table 10 report the results of the ablation study
for AR and VR Actions, respectively. In AR, the Head
Position has more impact than Head Rotation in predicting
our target actions, especially for the walk action. This is
reasonable given that such a sensor mainly records the
users’ walking speed. Head Rotation becomes relevant in the
Button Interaction action, in which the participants could
only rotate their heads, and is quite helpful to distinguish
between genders. As in previous results, the age was difficult
to predict. The only case in which we surpass the baseline is
in the Walk action with a high workload, but the improvement
is too tiny to reason about it.

Looking at VR, we notice that Head Position remains rele-
vant to predict the gender, particularly in scenarios with a low
workload. However, most of the time, the Eyes features are
the main discriminant to predict our targets. In identification,
Eyes reached the highest F1-Score in six out of seven actions,
suggesting that these features might be the main reason
behind the higher identification performances in VR rather
than AR. Further, Eyes are predominant in low workload
scenarios to predict the users’ age. Controller features are
pretty helpful in inferring the user’s age, especially in high
workload actions, while only small differences appear in
their usage from people of different genders. Regarding
the identification task, the Controller Rotation appears more
useful than Controller Position. Last, it is interesting to see
how in the idle actions, the Eyes play a significant role,
particularly in the high workload scenario, in which we
identified a person with 0.81 of F1-Score.
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TABLE 9. Ablation study of sensor importance at action-level in AR. All
the measures in F1-Score.

| | Identification  Age  Gender
| Guessing | 0.03 0.5 0.5
g Search
o Head Position 0.60 0.40 0.52
% | Head Rotation 0.51 040 058
= Walk
ES Head Position 0.77 0.44 0.60
~ Head Rotation 0.55 0.47 0.49
Button Interaction
Head Position 0.38 0.46 0.52
T | Head Rotation 0.56 040 056
o Search
§ Head Position 0.62 0.40 0.60
= Head Rotation 0.52 0.43 0.57
2 | Walk
Head Position 0.75 0.51 0.53
Head Rotation 0.55 0.43 0.47

TABLE 10. Ablation study of sensor importance at action-level in VR. All
the measures in F1-Score.

| | Identification  Age  Gender
| Guessing | 0.03 0.5 0.5
Idle
Head Position 0.41 0.62 0.62
Head Rotation 0.44 0.69 0.59
Eyes 0.75 0.80 0.55
Controller Position 0.38 0.69 0.58
Controller Rotation 0.55 0.72 0.55
Pointer
Head Position 0.67 0.80 0.57
Head Rotation 0.73 0.83 0.62
9 Eyes 0.91 0.86 0.71
k=] Controller Position 0.64 0.70 0.59
% Controller Rotation 0.83 0.81 0.51
3 Button Interaction
% Head Position 0.50 0.72 0.63
— Head Rotation 0.55 0.73 0.56
Eyes 0.85 0.78 0.61
Controller Position 0.47 0.72 0.58
Controller Rotation 0.71 0.75 0.60
Physical Interaction
Head Position 0.59 0.75 0.62
Head Rotation 0.56 0.81 0.63
Eyes 0.87 0.80 0.61
Controller Position 0.63 0.74 0.57
Controller Rotation 0.75 0.85 0.56
Idle
Head Position 0.49 0.75 0.60
Head Rotation 0.47 0.76 0.55
Eyes 0.81 0.77 0.63
Controller Position 0.46 0.79 0.50
Controller Rotation 0.65 0.79 0.49
] Button Interaction
Ti Head Position 0.57 0.69 0.56
5 Head Rotation 0.65 0.66 0.55
Z | Eyes 0.93 0.83 0.67
fb Controller Position 0.50 0.77 0.61
T Controller Rotation 0.73 0.72 0.61
Physical Interaction
Head Position 0.63 0.82 0.54
Head Rotation 0.63 0.81 0.62
Eyes 0.71 0.87 0.66
Controller Position 0.66 0.90 0.45
Controller Rotation 0.79 0.86 0.49

VII. DISCUSSION

Literature offers some examples of profiling either in AR
or VR, only on specific tasks, and through specific features
(motion-based [6], [7], eye-tracking-based [8]). Furthermore,
to the best of our knowledge, research work testing gender
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and age profiling in immersive technologies is scarce. In our
work, we covered these points by combining all the above-
mentioned aspects and performing users’ identification and
profiling in two virtual-based scenarios, one involving
AR and the other involving VR. The selected datasets
present differences and similarities, offering a wide range of
exemplary behaviors that can occur when immersed in XR.
Indeed, we specifically aimed to propose a general framework
that can accurately profile a user across diverse tasks, actions
taken, and scenarios. We thus developed a generic pipeline
and analyzed differences between profiling algorithms and
features across different tasks. Specifically, we demonstrated
to what extent users can be profiled during walking,
searching for landmarks in the surroundings, pointing to
a virtual keyboard for typing, and operating on a virtual
robot both via controller-based interaction and physical
actions. Remarkably, both virtual environments simulated
highly realistic scenarios, and most of these behaviors were
executed under high and low workloads, giving good insights
into realistic applications of virtual technologies in the
field.

The results show that users can be identified and profiled
both in AR and VR, with higher VR accuracy. Specifically,
in AR, user identification reached good results within the
walking action at a low workload, while in VR, the iden-
tification algorithm was particularly successful when users
performed more physical actions (i.e., pointing, physically
interacting with the virtual robot) under a higher workload.
As observed from the ablation study, this was mainly due to
the additional eye-tracking sensors embedded in the VR but
not in the AR headset. Indeed, while in VR the eye features
had the most significant impact, the head movements were
most influential on the AR users’ identification.

When detecting age, instead, our algorithms were not
accurate in AR. This was plausibly related to the low age
variability of the tested sample, as the age of participants
included in the experiment ranged between 19 and 29.
Differently, in VR, we worked on an experimental sample
whose age ranged between 23 and 69 years old, resulting
in detecting the user’s age reasonably accurately. Age
detection performed better in most physical actions and
interactions than those involving just joysticks and controller
buttons, specifically under a higher workload. Interestingly,
eye parameters had the most significant impact on age
detection in all actions but in the physical interactions,
in which the controller position and rotation were more
important.

On gender profiling, instead, we observed how the walking
activity was again the most prominent in helping detect
the user’s gender in AR, with the head position being the
most influential sensor. Differently, in VR, our algorithms
performed better during the pointing action and under actions
at a high workload. In this case, the eye-related behaviors
demonstrated the most considerable influence on gender
detection during both these actions. In agreement with AR
findings, the head position is quite relevant. Both findings
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align with the literature on the different eye and head
movement behaviors between men and women.

A. LIMITATIONS

The intrinsic differences between AR and VR devices,
and the different nature of the tasks that our participants
executed, prevented us from directly comparing the accuracy
of profiling between the two technologies. However, such
a comparison was out of the scope of our investigation.
In this work, we were mainly interested in building a general
framework that could serve to profile users during different
tasks and across different technologies and scenarios. There-
fore, while such differences generated some methodological
limitations, in turn, they also highlighted the generability
of the proposed framework. Only secondarily, we leveraged
some similarities between the tasks executed in AR and
VR (i.e., button interaction, and two levels of workload as
generated via dual-tasking) to reason about potential profiling
differences in similar actions or workloads for these two
technologies. However, we want to stress that, even if we
adopted a single framework for XR, they remain substantially
different. Future studies could focus on analyzing data
coming from the same participants engaged in the same
activities in both VR and AR, to assess whether differences
related to the technical apparatus of XR affect the ease of
profiling.

A second limitation was the narrow age range of AR
participants, which resulted in poor classification perfor-
mance. However, we believe such a result is still valuable
since it demonstrates that people of similar ages interact
similarly with AR devices; therefore, precise age profiling
could require significant effort and might not be feasible in
every situation.

VIIl. CONCLUSION
In conclusion, our work thoroughly studied users’ profiling in
XR technologies. We proposed a general profiling framework
that can potentially infer any private information in any
virtual scenario, and could serve as a simple yet powerful
baseline for future works. Our results highlight that VR
profiling is more straightforward than AR. Through our
ablation study, we found eye sensors to be particularly
useful in all our predictions (i.e., identification, age, gender),
explaining why AR and VR perform differently. Although we
are aware of the technical challenges of accurately detecting
eye movements in the real world, our findings highlight the
importance of incorporating eye-tracking technologies into
AR headsets. Our results strongly impact single application
areas of XR technologies, such as VR-based industrial
robotics and everyday use of wearable AR devices, but also
more generally the fast-growing Metaverse. In fact, we pave
the way for further researches in XR privacy, proposing a
solid inference framework that can be adapted to different
virtual technologies and contexts.

In the future, we plan to conduct more experiments on
a higher participant pool, which will permit defining finer
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targets’ granularity, including additional private information
(e.g., personality traits). We will also focus on which sensors
and activities led to higher risks of profiling, and design
privacy-preserving techniques while maintaining data utility.
Last, we intend to perform a more precise comparison
between AR and VR technologies.
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