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ABSTRACT The pitch period as an essential feature is used in various speech-related works. Most actual
projects collect speech signals in complex noise environments. Thus, the noise resistance of the algorithm
for accurate pitch estimation has become more critical than ever. However, many state-of-the-art algorithms
fail to obtain good results when dealing with noisy speech files at a low signal-to-noise ratio (SNR) value.
This study presents a new noise-resistant pitch estimation algorithm based on the Radon transform and
reduces the influence of formants with the modification of the classical equation. In addition, we use the
difference between the pitch candidates of the consecutive frames as part of the criterion for the decoding
of the Viterbi algorithm to strengthen the correlation of the pitch estimates and make the pitch contours
smoother. We synthesized three noisy speech databases with 18 types of collected environmental noise and
compared our algorithm with 7 state-of-the-art algorithms. The proposed algorithm has the best performance
on CSTR and self-recorded databases and reduces Gross Pitch Error (GPE) rate by over 12% at 0 dB SNR
against Bayesian Pitch Tracker. In particular, the GPE rate of our proposed algorithm can be maintained
under 25% at 0 dB SNR, while BaNa only achieves 35%.

INDEX TERMS Pitch estimation, radon transform, Viterbi algorithm, noise resistance.

I. INTRODUCTION
The vocal folds vibrate when people speak, and the time taken
for the vocal folds to open and close each time represents
the pitch. According to the quasi-periodic nature of vocal
fold vibration, the pitch can be called in terms of the pitch
period, and its inverse is known as the fundamental frequency.
People who speak with high-sounding voices tend to have
high fundamental frequencies and vice versa. Each individ-
ual’s fundamental frequency varies with different charac-
teristics. Males can reach a low fundamental frequency of
around 60 Hz, and children and females go up to 500 Hz.
These different fundamental frequency ranges also provide a
massive reference for our study.

The pitch period as a piece of vital information can be
applied to various speech-related works. [1] increases the
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intelligibility of noisy speech by applying pitch enhance-
ment in the frequency domain. [2] uses the pitch period to
build both noise and speech long-term models for human
speech enhancement. The pitch period also provides valid
information for automatic speech recognition (ASR) sys-
tems. One study uses prosodic events in the form of pitch
accents to improve speech recognition in a baseline ASR
system [3]. Another study builds a pitch-adaptive speech
recognition system for children by reducing pitch variation
sensitivity [4]. In order to make the applications above more
practical, we need to extract accurate pitch information from
the speech.

However, many difficulties exist in extracting pitch from
speech. First, the speech signals produced by the voiced
sounds are not perfectly periodic [5]. Then, these signals pass
through the vocal tract and produce formants, which cause
significant changes in the structures of the speech signals [6].
Finally, environmental noise is one of the most critical factors
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affecting pitch estimation. In actual projects, a simple denoise
method before pitch estimation algorithm can neither be
adaptive to all types of noise nor maintain the original struc-
ture of speech signal. Additionally, we found by experiments
in Section III that most dominant pitch estimation algorithms
based on the autocorrelation function (ACF) [7], the average
magnitude difference function (AMDF) [8], or Cepstrum [9]
do not perform well at low SNR values because they do not
have robust noise resistance.

The Radon transform proposed in [10] was first applied
to reconstruct the spatial distribution of projection-based
objects. Since then, it has been used mainly in subjects
related to image processing, such as medicine and seismol-
ogy. In [11], the Radon transform is used for seismic data
processing to achieve significant noise resistance which is
seldom applied to speech-related works. Other state-of-the-
art transforms like Discrete Hahn polynomials (DHPs) and
Discrete Tchebichef polynomials (DTPs) are also applied in
image processing and speech processing and have remark-
able performance. In [12], an operative method is proposed
to compute the Hahn orthogonal basis for high orders and
effectively reduced the computational cost. In [13], a fast and
accurate algorithm for high-order DTPs is proposed which
provided great inspiration for signal processing.

In this study, we propose to use its robust noise resistance to
detect pitch instead of the previous basic algorithms. We use
the Radon transform to generate pitch candidates and then
use the Viterbi algorithm to find the most likely pitch contour
which will be expounded on in Section III.

In order to compare the effect of our algorithm with other
algorithms for pitch estimation in complex noise environ-
ments, we recorded environment sounds of 18 scenarios, such
as airplane, restaurant, street, subway, night market, and so
on. The clean speech database is derived from the Keele
database [14], CSTR database [15], and several self-recorded
speech files. We generate the noisy speech database by syn-
thesizing the noise and clean speech files under SNR values
from −10 dB to 20 dB. After comparing the proposed algo-
rithm with several state-of-the-art noise-resilient algorithms,
such as BaNa [16] and Robust Bayesian Pitch Tracking [17],
we found that our proposed algorithm performs best in aggre-
gate under SNR values from −10 dB to 20 dB. The Gross
Pitch Error (GPE) rate of the proposed algorithm can be
maintained under 25% when detecting noisy speech signals
at 0 dB SNR. The contributions of this study are as follows:

1) The Radon transform is introduced into the pitch esti-
mation method to cope with complex noise.

2) A modification of the Radon transform is proposed
to reduce the influence of high-frequency components
like formants.

3) Speech signals can be converted between 1D and
2D with the proposed pseudo-2D image and energy
function.

The rest of the paper is as follows. In Section II, we discuss
related works of pitch estimation algorithms. A comprehen-
sive analysis of the proposed algorithm is in Section III.

Our experimental settings and data comparison results are in
Section IV and Section V. Finally, Section VI describes the
conclusions.

II. RELATED WORKS
Hitherto, all pitch estimation algorithms can be classified
into non-data-driven and data-driven approaches. Non-data-
driven approaches, as the name implies, do not need previous
data information and can be subdivided into two types: non-
parametric and parametric methods [17]. On the other hand,
data-driven approaches require previous information in dif-
ferent scenarios to be effective.

Non-parametric methods can be further divided into time-
domain methods, frequency-domain methods, and hybrid
methods [6]. The most applied pitch estimation algorithms
are time-domain methods. ACF [7] calculates the autocor-
relation between the original signal and the lagged signal to
extract the pitch information. AMDF [8] reduces the compu-
tational complexity by changing the multiplication method
of autocorrelation into a subtraction method. Circular AMDF
(CAMDF) [18] and extended AMDF (EAMDF) [19] both
improve detection accuracy by reducing the falling tendency
of the original difference function. Praat [20] imports the
Viterbi algorithm to find a pitch contour, which provides a
new idea for pitch estimation. The RAPT algorithm [21],
on the other hand, performs pitch estimation by measuring
the normalized cross-correlation function (NCCF). YIN [22]
proposed by Cheveigne and Kawahara dramatically improves
pitch estimation accuracy by using the absolute threshold
and parabolic interpolation, but its discontinuity between the
previous and following frames makes the pitch contours not
smooth. The probabilistic YIN (pYIN) [23] algorithm is an
improvement of YIN, which obtains a large number of pitch
candidates with probabilistic threshold distributions and uses
probabilities as observations of the Hidden Markov Model
(HMM) to decode a smoother pitch contour. However, pYIN
may determine the voiced segments of noisy speech at low
SNR values as unvoiced segments and fail to extract the
complete pitch contour.

Pitch estimation can be implemented by analyzing
frequency-domain features. Cepstrum [9] enables the pitch
to emerge as a peak and reduces the influence of the noise
at a certain level. Recently, a new Cepstrum method was
proposed to compensate for octave errors and decreased
the estimation errors of music signals [24]. The Harmonic
Product Spectrum (HPS) algorithm [25] uses the theory of
Schroeder’s frequency histogram to obtain the pitch period
by measuring each harmonic period and calculating their
least common multiple, but it is susceptible to half-octave
errors. SWIPE [26] uses the harmonic summation method
with weights similar to sawtooth waves, effectively over-
coming the half-octave errors in the frequency domain.
Camacho improves SWIPE and proposes SWIPE’ [26] by
choosing only the candidate and prime frequencies in har-
monic summation. However, their noise resistance needs fur-
ther improvement.
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Hybrid methods often integrate features in different
domains. Pitch Estimation Filter with Amplitude Compres-
sion (PEFAC) [27] attenuates narrowband noise with ampli-
tude compression and convolves the power spectral density of
each speech frame, which suppresses the additive noise with
a smooth power spectrum while aggregating the harmonic
energy. YAAPT [28] calculates the path of the pitch in the fre-
quency domain by using the Spectral Harmonics Correlation
of the signal after nonlinear processing and selects the pitch
candidates with NCCF in the time domain. BaNa [16] pro-
posed by Yang and Ba integrates the fundamental frequency
candidates selected from the harmonic frequencies with the
candidate selected from Cepstrum and then uses the Viterbi
algorithm to track the pitch contours. Reference [6] shows
that BaNa has great noise resistance and detection abilities
among non-parametric methods.

Parametric methods, such as harmonic model-based meth-
ods, always show high robustness to additive noise [29]. The
fast NLS [30] as a computationally efficient pitch tracker is
less affected by octave errors. A robust Bayesian harmonic
model-based pitch tracker [17] as a state-of-the-art parametric
method uses first-order Markov processes and information
from previous frames to improve noise robustness.

In recent years, a large number of data-driven approaches
have contributed to noise resistance. The TAPS algo-
rithm [31] trains the peak spectrum exemplar set and uses
the difference between temporal accumulations of clean and
noisy speech data for pitch estimation. In [32], Chu and
Alwan proposed SAFE to model the effects of noise on the
locations and amplitudes of the peaks in the clean speech
spectrum. Crepe [33] uses a convolutional neural network
to train a synthetic database and produces a fundamental
frequency estimate from the network. Self-Supervised Pitch
Estimation (SPICE) [34] trains the constant Q transform of
the signals and calibrates the trained data to achieve bet-
ter results. DeepF0 [35] extends the receptive field of a
network to capture pitches under various levels of noise.
HarmoF0 [36] proposed recently outperforms DeepF0 by
evaluating the multiple rates dilated causal convolution and
other dilated convolutions in pitch estimation. In actual
projects, different conditions mean different types of envi-
ronmental noise. Data-driven approaches are trained with
known noise types and specific noise levels, so the noise
information needs to be used as input to the model. However,
the type of noise and the noise level is hard to get in complex
conditions [16].

Our proposed algorithm based on the Radon transform
selects a non-data-driven approach that does not require any
previous noise information and introduces the noise resis-
tance of the Radon transform to pitch estimation. As a time
domain method, our proposed algorithm reduces the influ-
ence of formants by adding a logarithmic function and a
power function. According to Praat [20] and BaNa [16],
we use the difference between the pitch candidates of the
consecutive frames as part of the criterion for the decoding of
the Viterbi algorithm in our algorithm. This strengthens the

correlation of the pitch estimates of the consecutive frames
in a speech segment and makes the pitch contours smoother.

III. DETECTING PITCH WITH THE RADON TRANSFORM
AND THE VITERBI ALGORITHM
A. PREPROCESSING
Based on the short-time stability of speech, the proposed
algorithm, like most algorithms, needs to frame the speech
signal. The settings of frame length win and time step s
are described in Section IV. The sampling rate of speech is
denoted as Fs, Nframe is the total number of frames, and the
number of samples per frame is denoted as Nsample. We also
denote lmax as the pitch period’s upper limit of the detection
range corresponding to the minimum fundamental frequency
and lmin as the lower limit. We use a certain frame to describe
the process of the proposed algorithm in Section III-B and
Section III-C.

B. FINDING PITCH LOCATIONS WITH THE RADON
TRANSFORM
In prevailing studies, the classical Radon transform (RT) is
used for processing images. [11] indicates the Radon trans-
form can significantly increase the ratio of periodic signal
to non-periodic noise of the image through the principle
proposed in [10]. In the meantime, the pitch period is quasi-
periodic, so it is possible using the Radon transform for
speech pitch estimation. The principle of the classical linear
Radon transform given in [10] presents as follows.

For a given image, we first need to specify the coordinates
of a point in the image as (q, t). Then, in this q − t plane,
we assume that there exists a straight line l with a given
gradient p and an intercept b. Thus, the slope-intercept form
of the line l is defined to be

t = pq+ b (1)

The classical Radon transform is defined as a two-step
process: first calculating the line integral of the intensity
over the given line l in the original image, then considering
each new integral value as the intensity of the point (p, b)
in the new p − b plane. A line with a different gradient or
intercept will result in a different point in the p − b plane.
It will eventually form a whole Radon transformed image.
The classical Radon transform equation is shown in (2):

R(p, b) =

∫
l
I (q, t)dl (2)

where I (q, t) denotes the intensity of the point (q, t) in the
target image, and similarly, R(p, b) represents the intensity
of the point (p, b) in the Radon transformed image. It shows
that the principle of the Radon transform is essentially a
conversion of the image from the q − t plane to a new
p− b plane.
Equation (2) indicates that if the target image has periodic

changes with a period T in the vertical direction, the line
integrals calculated from a set of lines with the gradient
p0 = T will have some enhancing effects in the p − b plane
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presenting a distinct spectral line at p = p0 with alternating
light and dark changes. In addition, spectral lines with the
same characteristics will appear at the locations where p is
equal to an integer multiple of the period T ( p = aT ), where
a indicates any of the non-negative integers. When p is not
equal to an integer multiple of the period T , the line integrals
will have adverse effects in the p−b plane, making the values
at p ̸= aT close to zero. The Radon transform can accentuate
the periodic components and suppress the non-periodic noise
of the image. Namely, it improves the SNR. Next, we will
discuss applying the Radon transform to pitch estimation.

FIGURE 1. Spreading out the target speech frame to the pseudo-2D
image with a spreading length of 100.

The easiest way to use the Radon transform on pitch esti-
mation is to convert the speech frame into a pseudo-2D image.
Here, we propose a simple idea to cope with this conversion:
horizontally spreading out the speech frame with a spreading
length Nspread . The variability of the data in the 2D image
generated by this method is reflected only in the vertical
direction but not in the horizontal direction, so we describe
it as the pseudo-2D image. Meanwhile, the periodicity of
speech is also reflected in the vertical direction.

According to the principle of the Radon transform [10],
if we horizontally spread out a strictly periodic signal into
an image and transform it to the Radon transformed image,
we will definitely find spectral lines with alternating light and
dark changes at p = aT . Therefore, we only need to find the
most obvious spectral line in the p−b plane generated by the
pseudo-2D image to determine the pitch period of a speech
frame. The spreading method is shown in Fig. 1.
The coordinates of a point in the pseudo-2D image can still

be represented by (q, t), where q denotes the qth sample of the
speech frame of the pseudo-2D image from left to right, and
q will not exceed the spreading length Nspread . The vertical
coordinate t represents the time.
Since the sampled speech data used in the experiments

are discrete, using the classical Radon transform to pro-
cess the data would be ineffective, so we use the discrete
Radon transform (DRT) proposed in [37] to modify the

original equation:

R(p, b) =

Nspread∑
q=1

I (q, u) (3)

where

u = p(q− 1) + b+ 1 (4)

In Equation (3), we replace the line integral with a discrete
summation method and substitute the time t with the location
of samples u, where I (q, u) and R(p, b) denote respectively
the intensity in the discrete pseudo-2D image and the dis-
crete Radon transformed image. Furthermore, in order not
to increase the computational complexity, we do not use
circular or extended methods to optimize the discrete Radon
transform equation. In particular, we specify that once the
location of samples u exceeds the number of samples per
frame Nsample during the computation, the value of I (q, u)
is set to 0. To align the gradient p on the same scale
with other time-domain methods, we compute Equations (3)
and (4) from p = 0 to p = lmax . In addition, we define the
max computation range of intercept b to be consistent with
the number of samples per frame Nsample.
In the Radon transformed image, the computation with

the above settings will inevitably yield a spectral line at
p = 0 with tremendous absolute values, making us impos-
sible to view the result of the pitch in the image effectively.
Hence, we add a modification to post-process the discrete
Radon transform.

Theoretically, the spectral line at p = 0 corresponds to the
infinite frequency, which is useless to our algorithm, so we
need to select a function of p to make all values of the spectral
line at p = 0 become 0. In addition, since the fixed Radon
transform is calculated, the number of computable points
for the Radon transform becomes less when the gradient p
increases to a condition that p×Nspread is larger than the num-
ber of vertical speech frame samplesNsample in the pseudo-2D
image, resulting in a shallow high-period region on the right
side of the Radon transformed image. Thus, this modification
function needs to bemonotonically increasing to complement
the high-period region. We find that an arbitrary logarithmic
function satisfies the above requirements.

In order to further weaken the low period region affected
by formants and strengthen the pitch period region, we will
introduce another function with the same monotonicity of
the logarithmic function. Due to the limitations of the Radon
transform itself, it will undoubtedly bring the radiation of the
pitch to the spectral lines at multiples of the pitch period,
leading to unpredictable influences at 1/2, 1/3 octaves, etc.
Thus, we add a power function, of which second-order deriva-
tive is less than 0, to complement the logarithmic func-
tion dynamically and introduce less interference at the 1/2,
and 1/3 octaves. The modified Radon transform function
Rr (p, b) is defined as

Rr (p, b) = R(p, b) × lg(p+ 1) × (p+ 1)
1
3 (5)
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where a decimal logarithm function and a power function are
chosen.

FIGURE 2. The modified radon transformed image.

Fig. 2 shows the result of the modified Radon transformed
image. In Fig. 2, the black borders on the left side indicate
the region of the low-period components, the red dashed line
depicts the exact location of the pitch period, and the two
black dashed lines represent the 1/2 octave line and the 1/3
octave line, respectively.

In the Radon transformed image, the gradient p represents
the location of the pitch period. A spectral line with the
most conspicuous alternating light and dark changes can be
viewed at the pitch period. At the same time, the effects of
the modification make both the spectral lines at submultiple
octaves and the region of the low-period components look
dim. The Radon transformed image obtained by the above
steps builds a good foundation for the following works of
extracting the pitch period.

C. GENERATING THE ENERGY FUNCTION AND
COMPARISON OF NOISE RESISTANCE OF THE RADON
TRANSFORM WITH OTHER BASIC ALGORITHMS
The modified Radon transformed image obtained in
Section III-B visualizes the location of the pitch spectral
line. To extract the exact value of the pitch period from the
image, we propose the extraction method in Section III-C and
Section III-D.
We find the location of the pitch period corresponds only

to the gradient p. We define the pitch period as

PitchPeriod =
p
Fs

× 103 (6)

In the Radon transformed image, the most obvious spectral
line indicates the most likely location of the pitch, where the
points have the largest absolute values. We then use the sum
of the squares of the values on each spectral line to reflect the

FIGURE 3. Results of a frame of clean speech and speech with 0 dB
restaurant noise using three basic algorithms: (a) ACF, (b) Cepstrum, and
(c) Radon transform. The location of each maximum value represents its
pitch value.
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obviousness. Thus, we create a function named pline using
the gradient p as its variable, which is defined as

pline(p) =

Nspread−1∑
b=0

Rr (p, b)2 (7)

Equation (7) indicates that for each given gradient p0, we
define pline(p0) as the sum of squares of all points of the
spectral line at p = p0 in the modified Radon transformed
image. The function pline represents the change of energy of
the variable p, so we call it the energy function. We normalize
the pline in preparation for the pitch tracking in Section III-D.

We use the energy function of the Radon transform to
compare its noise resistancewith other basic algorithms (ACF
and Cepstrum). A clean speech frame and its noisy speech
frame with 0 dB restaurant noise are chosen to be analyzed in
the coming example. The results are shown in Fig. 3.

Figs. 3(a) and 3(b) show that both previous basic algo-
rithms (ACF and Cepstrum) obtain the same pitch at 116 sam-
ples. However, their positive maximum values significantly
change when calculating the noisy speech frame. Fig. 3(a)
reaches the maximum ACF value of the noisy speech at
80 samples, and the value at 116 samples is much lower than
the original one. In Fig. 3(b), the Cepstrum value has two
high peaks at 94 and 220 samples, both of which have larger
values than the value at 116 samples. Thus, we infer that
neither ACF-based nor Cepstrum-based algorithms can easily
extract the pitch from a noise-corrupted frame. In fact, noise
like restaurant noise, which distorts frequencies of the entire
speech spectrum, is prevalent in actual projects.

Fig. 3(c) shows the results with energy function of the
proposed algorithm. The maximum value of the clean speech
is still located at 116 samples. Notably, themaximum value of
the noisy speech is at 118 samples, equivalent to themeasured
fundamental frequency changing within 3 Hz. Fig. 3(c) also
shows that the value at 116 samples of the noisy speech is
higher than the values of all interference peaks. This example
demonstrates the robust noise resistance of the Radon trans-
form in pitch estimation, which is the basis of our innovation.

D. GENERATING THE PITCH CANDIDATES
Next, we describe the selection of the pitch candidates from
the energy function pline. Starting by partitioning pline,
we choose the area of the pitch candidates based on the upper
limit of pitch period lmax and the lower limit lmin. We first
exclude the areas where gradient p is no more than lmin and
more than lmax and then divide the remaining areas equally
into intervals according to the given interval lengthNin. When
the number of samples in the remaining area is not divisible
by Nin, we specify that the number of samples in each previ-
ous interval is kept asNin except for the last interval. In Fig. 4,
the red areas on the left and right sides represent the areas
outside of lmin ∼ lmax in which we do not select the pitch
candidates, and the middle area is divided into six intervals
according to the given interval length Nin, with the first five

intervals being of the same size and the last one being slightly
smaller.

FIGURE 4. Selection of pitch candidates using the energy function with
an interval length of 50.

The selection of the pitch candidates is performed as fol-
lows. We choose one pitch candidate in each interval. The
range of each interval is left-open and right-closed. For each
interval, we find the gradient pm representing the location of
the maximum value of the energy function pline. If pline(pm)
is a peak, the gradient pm will be noted as a pitch candidate
of this speech frame, and the value of pline(pm) will be used
for the Viterbi algorithm in Section III-D. Fig. 4 shows the
process of selecting the pitch candidates. In Fig. 4, four pitch
candidates, P1, P2, P3, and P4, are selected in the first four
intervals, and their values are 0.47, 1, 0.29, and 0.56, while in
the last two intervals, no pitch candidates are selected because
the points where they have their maximum values are not
peaks.

E. PITCH TRACKING WITH THE VITERBI ALGORITHM
Similar to BaNa [16] and Praat [20], our proposed algorithm
also uses the Viterbi algorithm to select the pitch candidates
of each frame to make a smooth and accurate pitch contour
in one voiced segment. The Viterbi algorithm has an effect
to make the pitch of the adjacent frames strongly related.
We have already obtained the pitch candidates from one
speech frame in Section III-C and will describe the pitch
tracking method below.

We denote Pni as the ith pitch candidate of the nth frame
of one voiced segment, and its energy function value is
defined as V n

i . Before calculating the path cost of the Viterbi
algorithm, we need to calculate the Cost of each two pitch
candidates between adjacent frames. We refer to BaNa using
the same format to define the Cost function; the variables are
substituted in our algorithm, as shown in Equation (8):

Cost(Pni ,P
n+1
j ) =

∣∣∣∣∣log2 Pni
Pn+1
j

∣∣∣∣∣ + w×
1
V n
i

(8)
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FIGURE 5. Detecting the pitch contours of a clean speech segment with
the proposed algorithm: (a) shows the waveform and its pitch contours
and (b) plots the fundamental frequency contours in the spectrogram.

where w represents the balance weight. The product of the
weight w and the inverse of V n

i denotes the Cost of Pni
itself. A larger V n

i deduces a smaller Cost of Pni , making it
easier to pick out. The absolute value of the logarithm of the
ratio of Pni to Pn+1

j indicates the similarity of the two pitch
candidates between adjacent frames. The more similar these
two candidates are, the less Cost their combination generates
and the easier their combination will be selected. We replace
the fundamental frequency candidates in BaNa with the pitch
candidates and directly use the value of Pni to represent V n

i ,
so we have a different choice of the weight w. We use the
Viterbi algorithm provided in [38] to calculate the total path
cost, as shown in Equation (9):

TCost(pak ) =

Nframe−1∑
n=1

Cost(Pni ,P
n+1
j ) (9)

where pak denotes the kth path found by the Viterbi algorithm
and TCost denotes the sum of all values of the Cost on

path pak . By comparing all paths, we select the one with the
smallest TCost value as the path for the pitch tracking, which
creates a smooth and accurate pitch contour and determines
the final pitch choice for each frame individually.

Up to now, we have stated the generation of Radon trans-
formed image, the energy function pline, the selection of
the pitch candidates, and the generation of the pitch contour.
In Fig. 5, we perform a complete pitch estimation process on
a speech segment with the Radon transform and the Viterbi
algorithm. Fig. 5(a) shows the smooth and accurate pitch
contours we obtained. In Fig. 5(b), two red curves represent
the fundamental frequency (F0) contours. We compare F0
contours with the ground-truth F0 values in the spectrogram
and find that the extracted F0 contours can remain in the cen-
ter of the ground-truth F0 values, proving that our proposed
algorithm is feasible and accurate.

IV. EXPERIMENTAL SETTINGS
A. PREPARATION OF THE DATABASES
Before the start of the experiment, we considered recording
the noisy speech database in different scenarios directly. This
approach is not feasible because we lack information about
the ground-truth pitch values of each noisy speech, mak-
ing it impossible to compare various algorithms adequately.
To avoid this drawback, we collect the clean speech database
and complex environmental noise database separately.

The clean speech database we collect is divided into three
parts. The first part is the Keele database [14], which contains
the speech and laryngograph information of fifteen speakers,
from which we select five different male and five different
female long sentences as part of our database, with a sampling
rate of 16 kHz and a total duration of 337 s. The Keele
database contains voiced/unvoiced information and ground-
truth pitch values for reference. The second part is the CSTR
database [15], which contains a large number of clean speech
sentences and has information on the ground-truth pitch val-
ues estimated by seven algorithms, from which we select ten
male sentences and ten female sentences with a sampling rate
of 20 kHz and a total duration of 33.5 s. The third part is
self-recorded speech files; we recorded four 48 kHz sampling
rate clean male speech files in a quiet laboratory; each audio
content is concise with no more than five words per sentence,
and the total duration is 6 s.

To simulate actual projects, we choose the self-recorded
environmental sounds to make our noise database instead
of an existing noise database. We recorded the sounds with
18 scenarios in Hangzhou, China, including the restaurant,
subway, airplane, street, canteen, night market, hospital, con-
struction scenes, etc. The self-recorded noise database has a
total duration of 773 s, which provides a sufficient guarantee
for the subsequent generation of the noisy speech database.
The collection of the databases is shown in Table 1.

We select six representative algorithms with excel-
lent noise resistance among the non-data-driven algo-
rithms according to [6] and [17] for comparison with the
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TABLE 1. The collection of the databases with statistical characteristics.

proposed algorithm in this paper, which are Cepstrum [9],
CAMDF [18], YIN [22], SWIPE’ [26], BaNa [16] and
Bayesian Pitch Tracking [17]. Then we choose HarmoF0 [36]
as the representative of the state-of-the-art data-driven algo-
rithm. We get the source code for Cepstrum and AMDF
from [39] and modify the AMDF code to obtain the CAMDF
algorithm code according to [18], and the source code for
YIN, SWIPE’, BaNa, Bayesian Pitch Tracking and HarmoF0
are derived from [40], [41], [42], [43], and [44] respectively.

B. OBTAINING GROUND-TRUTH PITCH VALUES AND
NOISY SPEECH DATABASE
Both the Keele database [14] and the CSTR database [15]
provide ground-truth pitch values, but due to algorithmic
limitations, their selection of the voiced/unvoiced segments
and calculation of the pitch periods are both deviated from
the ones observed from the spectrogram.

In order to ensure the reliability of the experimental data,
we only use the ground-truth pitch values provided by the
Keele database, which has a considerable total duration,
to benchmark against other algorithms. We align each valid
ground-truth pitch value with the time step of each speech
frame.

To enrich the experimental data and accurately reflect the
impact of noise on the algorithms, we label the self-recorded
speech files and relabel the CSTR database, which has a short
total duration. First, accurate voiced/unvoiced information
of clean speech is obtained using a method for voice activ-
ity detection that combines short-time energy and spectral
entropy [45]. Then, we use SWIPE’ and BaNa, which have
the best performance in [6], to extract the pitch in the voiced
segments. If these two algorithms extract the pitch period
of a frame with an error within 10%, we take their average
value as the ground-truth pitch value of this frame. Otherwise,
we will hand-label the pitch period based on its fundamental
frequency bymeasuring the spectrogram of the current frame.

Fig. 6 shows the spectrogram of a clean speech segment
recorded in the laboratory, where the red and magenta cir-
cles represent the F0 contours calculated by the proposed
algorithm and BaNa, and the green circles represent the
ground-truth F0 contours after hand-labeling. In Fig. 6, the F0
contours calculated by the proposed algorithm match most of
the spectrogram. Table 1 also shows the condition of which
database we hand-labeled.

Before conducting the experiments, we also need to pro-
duce the noisy speech database. According to the noise level

FIGURE 6. The ground-truth contours are labeled by combining SWIPE’,
BaNa, and the information of the spectrogram and compared with
proposed algorithm.

in different scenarios, we divide the SNR from −10 dB to
20 dB into seven levels, namely −10 dB, −5 dB, 0 dB,
5 dB, 10 dB, 15 dB and 20 dB. We generate the noisy speech
database by the following steps. First, we resampled 18 types
of noise files and adjusted their length for each clean speech
file. Then we synthesized the noisy speech database under
seven SNR levels. Each clean speech file generated 126 noisy
speech files, which formed the noisy speech database with a
total of 4284 files.

C. THE EVALUATION METHOD FOR PITCH ESTIMATION
The Gross Pitch Error (GPE) rate, as a critical evaluation
method for determining the accuracy of pitch estimation
algorithms, has been applied in many state-of-the-art studies
and is also applicable in this study. GPE rate reflects the
detection rate of the algorithm by calculating the percentage
of frames with false pitch periods in the voiced segment.
As shown in Equation (10), the lower the GPE rate, the higher
the algorithm’s accuracy.

GPE =
NEV
NV

× 100% (10)

where NV denotes the total number of frames to be evaluated
in the voiced segment, andNEV denotes the number of frames
with false pitch periods. In addition, the voiced/unvoiced
information is a key to the evaluation. Although the proposed
algorithm does not involve voice activity detection, we have
obtained the voiced/unvoiced information from Section IV-B.
Therefore, it is appropriate to use this evaluation method for
the algorithms in this study.

We need the information about the dissimilarity between
the pitch value detected by the algorithm and the ground-truth
pitch value to define an error frame. If their relative error
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exceeds the specified threshold, the measured frame is con-
sidered a frame with a false pitch period. Usually, the thresh-
old is set to 20%; however, to demonstrate the noise resistance
of the algorithms, we use a 10% threshold for the calculation,
which is also used in the study of [16].

D. SETTINGS OF EXPERIMENTAL PARAMETERS
According to the effective range of pitch, we specify the min-
imum and maximum fundamental frequencies of the speech
as 60 Hz and 500 Hz and calculate the upper limit lmax and
lower limit lmin for each speech.

For all the non-parametric algorithms (Cepstrum, CAMDF,
YIN, SWIPE’, BaNa and proposed algorithm), we resample
all noisy speech files to 16 kHz and set the frame length win
to 60 ms to ensure each fragmented speech with short-time
stability and each frame with the complete information of the
pitch period. In addition, we make the time step s 10 ms to
render the frames as continuous as possible.

For the parametric algorithm (Bayesian Pitch Tracking),
we keep the default initializations to get the best perfor-
mance [17]. The sampling rate of Bayesian Pitch Tracking
in experiments is 16 kHz, the frame length win is 25 ms and
the time step s is 10 ms. Considering that our noise database
is made of self-recorded environmental sounds, Bayesian
Pitch Tracking also needs a prewhitening step to deal with
the inconsistency [17]. Thus, we compare Bayesian Pitch
Tracking with and without prewhitening.

For the data-driven algorithm (HarmoF0), we use the
default pre-trained checkpoint and the default initializa-
tions where the sampling rate is 16 kHz, the time step
length is 160 points (10 ms) and the frame length is
1024 points (64 ms).

As shown in Table 2, we use the accuracy of the self-
recorded database under SNR values from 0dB to 20dB to
determine other experimental parameters. First, the spread-
ing length Nspread must be set. After changing its value
from 2 to 16, we find that when Nspread is 8, increasing
its value will not improve the performance of the proposed
algorithm, so we set the experimental value of Nspread to 8.
Then, the interval length Nin is mentioned during the process
of selecting pitch candidates. If Nin is long, the number of
pitch candidates per frame is small, and the accuracy of the
result is low. Conversely, the accuracy and computational
complexity will be increased at the same timewith a shortNin.
We find that when Nin is set to about 1/2000 times the
sampling rate Fs, the accuracy and computational complexity
can achieve better results together; of course, we also need
to ensure that Nin is an integer. Finally, a balance weight w
is needed to calculate the Cost between the adjacent frames
in the Viterbi algorithm. The smaller the w, the higher the
continuity between the frames. However, a small w will not
only increase the error rate of the proposed algorithm but
also significantly degrade the rich variability of the expected
results. We set the experimental value ofw to 0.1 to get higher
accuracy and enable the algorithm to obtain good results in
most cases.

TABLE 2. Determination of parameter settings with self-recorded
database.

V. PERFORMANCE FOR NOISY SPEECH
The performance of the proposed algorithm in complex noise
environments is discussed by comparing the GPE rates of
different algorithms under different speech databases, SNR
values, and environmental noise conditions. Here we will
elaborate on the two evaluation standards, SNR values and
types of environmental noise.

A. CONTRIBUTION OF THE VARIOUS STEPS OF THE
PROPOSED ALGORITHM
To represent the effects of the modified power function in
Equation (5) and the Viterbi algorithm, we first compared
the contributions of our proposed algorithm at various steps
with the self-recorded noisy speech database under different
SNR values.
Step 1: We modified the Radon transform only with the

logarithmic function to ensure the achievability of the algo-
rithm, while not using the power function for modification.
Then, instead of selecting the pitch candidates with the
Viterbi algorithm, we determine the pitches directly based on
the location of the maximum value in the energy function for
each frame. The result of Step 1 is represented by ’’Proposed
step1’’ in Fig. 7.
Step 2: Unlike Step 1, we add the power function modi-

fication, but again only determine the pitches based on the
location of the maximum value in the energy function for
each frame. The result of Step 2 is represented by ’’Proposed
step2’’ in Fig. 7.
Step 3:Based on Step 2, we use the method of selecting the

pitch candidates with the Viterbi algorithm to find the pitch
contours. This step performs the final result of our algorithm
and the result of Step 3 is represented by the ’’Proposed
step3’’ in Fig. 7.

As shown in Fig. 7, after we added the power function
modification, the GPE rates of our proposed algorithm under
SNR values from−10dB to 20dB are significantly improved,
with a reduction of nearly 20% at 0dB SNR. In addition, the
GPE rates decrease further after we included the method of
selecting pitch candidates with the Viterbi algorithm, which
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FIGURE 7. GPE rate of the three steps of the proposed algorithm under
different SNR values.

proves that the effectiveness of our algorithm is improving
step by step.

B. PERFORMANCE AT DIFFERENT SNR VALUES
Each clean speech corresponds to 18 noisy speech files under
a given SNR value. To compare only the performance of
algorithms under different SNR values, we bundle the GPE
rates of each 18 noisy speech files to eliminate the impacts of
noise.

Figs. 8 and 9 show the performance of the eight algo-
rithms in detecting the pitch on the relabeled CSTR database
and labeled self-recorded database, respectively. On the two
databases we hand-labeled, CAMDF has the worst detection
effect for the noisy speech under all SNR values; its GPE rate
is up to 40% at 20 dB SNR. However, the stable performance
of CAMDF under SNR values from 10 dB to 20 dB reflects
its noise resistance to a certain degree. YIN and SWIPE’
have good performance at 20 dB SNR. However, YIN and
SWIPE’ are very vulnerable to noise, and they have the same
lousy detection rate when the SNR value is dropped, with
the GPE rates around 85% and 80% on these two databases
at −10 dB SNR. In addition, Cepstrum and BaNa, which
have better noise resistance, perform better than CAMDF on
these two databases. Cepstrum has higher overall accuracy
on CSTR than YIN but lower overall accuracy on the self-
recorded database. BaNa has a significant advantage over all
previous non-parametric algorithms, both in terms of accu-
racy of pitch estimation and noise resistance, with a GPE rate
of less than 4% at 20 dB SNR and less than 26% at 0 dB
SNR. The parametric algorithm (Bayesian Pitch Tracking)
with and without prewhitening are represented as Bayes-prew
and Bayes-non in Figs. 8 and 9. It can be seen that this
parametric algorithm has similar noise resistance to BaNa
only when it has prewhitening. The data-driven algorithm
HarmoF0 which has good performance on synthetic speech

databases performs mediocrely on our real speech databases
and is slightly inferior to BaNa and Bayes-prew. Figs. 8 and 9
show that our proposed algorithm outperforms the other six
algorithms, with the lowest GPE rates under all SNR values.
The GPE rate of the proposed algorithm is less than 10% at
0 dB SNR. Especially under SNR values from 5 dB to 20 dB,
its GPE rate keeps under 4%. If we look at the rate of change
of the curves, the proposed algorithm changes slowest under
SNR values from 20 dB to 0 dB, proving its noise resistance
is the best in this area.

FIGURE 8. GPE rate on the relabeled CSTR database under different SNR
values.

To make the experiment adequate and credible, we also
need to compare the noise resistance performance of the
seven algorithms on the non-relabeled database. As shown
in Fig. 10, the GPE rates obtained from the non-relabeled
Keele database are almost consistent with those from the
hand-labeled databases. CAMDF remains the worst on this
database, with Cepstrum, BaNa, HarmoF0, the proposed
algorithm and Baysian Pitch Tracking with prewhitening
performing in ascending order. It is worth mentioning that,
by comparing the ground-truth pitch values provided by
the Keele database with the spectrogram, we find that the
Keele database not only labels the values of the unvoiced
frames at the edges of voiced segments, but most of them
are incorrect. We also find that some ground-truth pitch val-
ues of the voiced frames have 1/2-octave deviations. There-
fore, it makes sense that the proposed algorithm, BaNa and
Bayesian Pitch Tracking with prewhitening have higher GPE
rates than YIN and SWIPE’ at 20 dB SNR, as shown in
Fig. 10. Conversely, even though SWIPE’ has the lowest GPE
rate at 20 dB SNR, its value is still higher than 8%, compared
to less than 4% on the other two hand-labeled databases.
This reflects the inaccuracy of the ground-truth pitch values
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FIGURE 9. GPE rate on the labeled self-recorded database under
different SNR values.

FIGURE 10. GPE rate on the non-relabeled Keele database under
different SNR values.

provided by the Keele database. Although there are some
problems with the non-relabeled Keele database, the robust
noise resistance of our proposed algorithm can still be seen in
Fig. 10, where it has the second lowest GPE rate under SNR
values from −10 dB to 10 dB only higher than the parametric
algorithm with prewhitening.

Although Bayesian Pitch Tracking with prewhiten-
ing is slightly better than the proposed algorithm on
the non-relabeled Keele database under SNR values
from −10 dB to 10 dB, its computational efficiency is much

slower than the proposed algorithm. Table 3 gives the exper-
imental results of the average running time comparison of
Bayesian Pitch Tracking, BaNa, and the proposed algorithm
for noisy speech files in Keele and CSTR database under the
same conditions. Collectively, Fig. 10 and Table 3 show that
for the Keele database, the proposed algorithm can achieve
similar pitch estimation results with Bayesian Pitch Tracking
with prewhitening with only one-tenth of its running time,
which proves that our algorithm performs better in terms of
computational efficiency and accuracy.

TABLE 3. Average running time comparison for noisy speech files in
Keele and CSTR database.

The values of each point in Figs. 8, 9, and 10 are shown
in Table 4. By comparing the average running times and
the pitch estimation results of each algorithm on the three
databases under different SNR values, it can be concluded
that our proposed algorithm performs best in aggregate
under low SNR values, and its GPE rate can be maintained
under 25% while BaNa achieves only 35% when detecting
noisy speech at 0 dB SNR.

C. COMPARISON OF THE PROPOSED ALGORITHM WITH
BaNa FOR DIFFERENT TYPES OF NOISE
In Section V-B, we can see that, except for the proposed
algorithm, BaNa has the highest noise resistance and the best
accuracy among non-parametric algorithms under SNR val-
ues from−10 dB to 5 dB. Therefore, in this section, we focus
on comparing the proposed algorithmwith BaNa for different
types of noise at 0 dB SNR. Table 5 shows 18 types of noise
and their characteristics. We use each of these 18 types of
noise in our experiments to compare the noise resistance of
the two algorithms.

We conducted experiments with the relabeled CSTR
database and the non-relabeled Keele database as a control
group. Fig. 11(a) shows the performance of the proposed
algorithm and BaNa on the CSTR dataset under different
environmental noise conditions at 0 dB SNR. From the red
bars in Fig. 11(a), we can see that the GPE rate of our
proposed algorithm for all 18 types of noise can be kept
under 20%, and its average GPE rate is 9.9%, while the GPE
rate of BaNa for escalator, office and pavement maintenance
scenarios exceeds 35%, with an average GPE rate of 25.4%.
Only in the machine room scenario is the GPE rate of BaNa
lower than that of the proposed algorithm; our algorithm
has a significant advantage in the rest of the scenarios. The
performance of both algorithms on the Keele database at
0 dB SNR is shown in Fig. 11(b). As the same results on the
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TABLE 4. GPE rate (%) for three databases calculated by seven
algorithms under different SNR conditions.

TABLE 5. 18 types of noise and their characteristics.

CSTR database, the performance of the proposed algorithm
in Fig. 11(b) is significantly more efficient than BaNa in all
scenarios except for the machine room, and its GPE rate is
kept less than 30% under all types of noise conditions, with

FIGURE 11. Performance of the two algorithms on two databases under
different types of noise conditions at 0 dB SNR: (a) the relabeled CSTR
database and (b) the non-relabeled Keele database.

an average GPE rate of 22.3%; in comparison, BaNa can only
keep the GPE rate less than 40%, with its average GPE rate
of 32.5%. At 0 dB SNR, the proposed algorithm has excellent
results in pitch estimation under the influence of 18 types of
noise and performs best for stationary environmental noise
with uniform energy distribution like the construction site,
road, and tea shop scenarios.

Through the performance of the proposed algorithm
in Fig. 11, we need to focus on its weak noise resis-
tance under the influence of some specific noise environ-
ments, including the airplane, bus, machine room, pave-
ment maintenance scenarios, etc. As we know from Table 5,
these types of noise have the characteristics of energy
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concentrated under 1000 Hz, indicating that there is still
room to improve the resistance to low-frequency noise of the
proposed algorithm.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we apply the Radon transform to speech pro-
cessing and propose a new pitch estimation algorithm com-
bining the Viterbi algorithm to cope with the complex noise
environments in actual projects. The Radon transform-based
algorithm derives a more precise pitch from a noise-corrupted
speech frame than other basic algorithms. We experimentally
compare the performance of the proposed algorithm with
Cepstrum, CAMDF, YIN, BaNa, SWIPE’ and Bayesian Pitch
Tracking on three clean speech databases and a self-recorded
noise database. Results show that the proposed algorithm
has the lowest GPE rate on the CSTR and self-recorded
database under SNR values from −10 dB to 20 dB, its
GPE rate changes minimally under SNR values from 5 dB
to 20 dB. Additionally, the proposed algorithm can achieve
similar detection results with Bayesian Pitch Tracking with
prewhitening on the Keele database with only one-tenth of
its running time, which proves that our algorithm performs
best in aggregate by combining computational efficiency and
accuracy.

In the future, we need further refinement for the proposed
algorithm. Experiments show that our algorithm is suscepti-
ble to noise with energy concentrated under 1000 Hz, so we
will focus on improving the resistance to low-frequency noise
of the proposed algorithm under extremely low SNR values.

In summary, the proposed algorithm provides a novel and
reliable pitch estimation algorithm for actual projects affected
by complex noise environments and a fresh concept of ana-
lyzing noisy speech frames with the Radon transform.
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