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ABSTRACT 1In recent decades, there has been a constant demand for faster, longer, and safer railway
networks. This also brings challenges for condition monitoring systems in modern railway vehicles. More
specifically, critical parts of railway vehicles like wheels degrade over time due to various operational and
environmental reasons. Different dynamic effects such as skidding/sliding over the track and the presence
of contamination between wheel-rail cause various wheel defects. Faulty wheels ultimately lead to the
derailment of railway vehicles. To avoid worst situations like railway derailments, various research has been
conducted for developing efficient condition monitoring systems for railway wheels. In addition, there has
been some commercial condition monitoring products that can be deployed with railway vehicles. These
systems incorporate various sensors such as strain gauges and vision sensors to collect data for diagnosis and
prognosis. Various methods have been explored but yet there is a broad research gap in terms of developing
advanced onboard condition monitoring systems. With the progress in technology, advanced systems with
Machine Learning/Deep Learning methods can provide more efficient and robust condition monitoring of
dynamic railway systems. Considering the need for advancement in condition monitoring systems for railway
vehicles, a comprehensive review of existing condition monitoring systems for railway wheels is conducted
in this paper. The review is aimed at understanding the feasibility and potential of new methods for modern
railways. This paper provides a detailed overview of studies on the existing wayside systems and reports their
advantages and disadvantages concerning its recently emerging counterpart on-board monitoring systems.
Data acquisition systems and analysis methods are critically reviewed which could assist in developing
more efficient and reliable condition monitoring systems for railway wheels. This article also reviews
the current progress of wayside systems and their limitations. The article is targeted at the researchers
and engineers working in this domain, who can pave the way for developing advanced and cost-effective
condition monitoring systems for railway wheels using modern technologies.

INDEX TERMS Railway wheels, fault diagnosis, condition monitoring, sensors, dynamic systems.

I. INTRODUCTION

The associate editor coordinating the review of this manuscript and Wheels are very critical components of the railway sys-
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tem which requires continuous monitoring for safe and
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sustained operation. Wheels degrade due to various envi-
ronmental and operational reasons. Rough environments
and operating conditions cause various faults such as
cracks, fatigue, shelling, spalls, flats, cavities, and inden-
tations [1], [2]. The continuous wheel degradation in the
shape of different faults ultimately lead to the major dam-
ages and accidents. Thus, continuous or periodic condition
monitoring is essential to minimize the risk. Additionally,
faults such as wheel flats are also a source of great dis-
comfort for the residents living along the railway line and
passengers onboard the vehicle. Deployment of Condition
Monitoring Systems (CMS) results in process optimization,
high reliability, reduced risk of failure, and financial loss.
These reasons have made CMS an integral part of the railway
for uninterrupted operation [3]. For predictive maintenance
and restoration operation, a modern-day railway system relies
on advanced monitoring systems. Sensors and their point of
installation in CMS are decided based on the intended appli-
cation of the system. The point of the installation could be
either on the rolling stock or track mounted. Track-mounted
sensors are usually used to detect wheel faults and on-board
sensors are used for infrastructure monitoring [4], [5]. Rail-
way infrastructure management is driven by data acquired via
inspection devices. Predictive models use this data to better
predict potential faults in the future and suggest maintenance
strategies.

With the progress in the railway transportation field [6], [7]
various research has been conducted to explore methods of
condition monitoring and effective fault diagnosis of rail-
way wheels. Currently adopted methods of wheel inspection
can be broadly categorized into two types: online inspec-
tion and offline inspection. In online inspection, the vehi-
cle is examined while running. On the other hand, offline
inspection requires putting the vehicle out of operation or it
could be taken to a maintenance workshop for a thorough
inspection. The online inspection could be further categorized
into onboard and trackside inspection. Onboard inspection
implies that the inspection system is mounted on the wheelset.
Whereas, trackside systems are on-ground systems, that mon-
itor wheels while the vehicle is running [8] The categorization
of wheelset inspection is shown in Figure 1.

Wheelset ‘
Inspection
| Online-onsite ’ | Offline-offsite
Inspection Inspection
|
Onboard Wayside
Inspection Inspection

FIGURE 1. Inspection methods.

Each approach has its pros and cons which are taken into
consideration for condition monitoring of wheels depending
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on inspection duration and fault severity level [9]. Among
these, wayside wheel CMSs are considered the most effective
method in terms of safety, cost optimization, and preventive
maintenance solutions [3]. These methods could be further
classified based on types of measurements such as strain,
vibration, and Acoustic Emissions (AE). These measure-
ments are analyzed to detect wheel tread and profile. The
development of onboard CMS has been an active field of
research and multiple methods of signal processing and esti-
mation techniques such as the Kalman filter and its variants
are commonly used for estimating the parameters such as
adhesion and conicity.

With the technological advancement in the fields of sensor
design, information-processing techniques such as the emer-
gence of Artificial Intelligence (AI) and better processing
hardware have significantly contributed towards the design
and development of more efficient CMS. In this direction,
Al and computer vision based techniques have also been
investigated for condition monitoring of railway wheels,
which are widely exploited for different tasks [10]. Multi-
ple pieces of research have been conducted for wheel fault
diagnosis using Deep Learning (DL) algorithms owing to
advantages such as high accuracy, end-to-end implementa-
tion, handcrafted features, adaptability to withstand noise,
and upgradability.

In the past, several reviews have been published for condi-
tion monitoring techniques discussing automated inspection
systems, data acquisition techniques, maintenance strategies,
and visual inspection techniques. Ngigi et al. [11] endeav-
oured to compare and critically assess the modern methods
and review the number of present monitoring methods to
perform fault detection in railways. For Condition monitoring
of railway assets, a generalized overview of the model-based
techniques, signal based techniques are discussed. Practical
applications of the developed vehicle-based or track-based
systems are also reviewed. For saving cost and time, the
adoption of condition-based maintenance by several way-
side monitoring devices is encouraged. However, several new
methods and techniques have been reported in the literature
which need to be reviewed to assess their applicability in
modern railway systems.

Further, Kundu et al. [3] presented a comprehensive
overview of the sensors available for health monitoring of the
wheel and bearing in railway vehicles. Comparative analy-
ses of different sensing technologies were performed in the
domain of onboard and wayside to understand their function-
ality for estimating a specific fault in rolling stock. In addi-
tion, several diagnostic tools were used to identify faults in
the bearing and a wheel. Case studies are incorporated that
demonstrate the utility of condition monitoring technologies
for identifying railway faults. It was found that trackside
sensing technology is more economically suitable in contrast
to onboard sensing technology.

Alemi et al. [12] reviewed and categorized wheel defect
detection methods. Basic categorization of present methods
into in-service and in-workshop is done. Different types of
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sensing techniques used to collect information are also dis-
cussed in detail with respect to the intended wheel’s fault
detection. It is emphasized to research further on depreciating
the time spent on numerous inspections and improvement in
accuracy. To overcome the discontinued data problem due to
inspection at the interval in wayside systems, further work on
wayside system development using advanced techniques is
suggested. However, this review does not cover the applica-
bility and limitations of various commercial wayside systems
currently in use around the globe.

Considering the importance of sensing systems,
Falamarzi et al. [13] presented a detailed introduction to the
type of sensors and devices used in the CMS for railway
inspection. A thorough investigation of the non-destructive
testing (NDT) sensors such as accelerometer transducers,
optical lasers, cameras, and mechanical sensors is presented.
Correspondingly, the capabilities of CMS, trolleys, Track
Recording Vehicles (TRV), and hi-rail vehicles, which are
among vital inspection devices, are also studied. Future
prospects regarding the deployment of smartphones as com-
pact devices for inspection are discussed. Smartphones are
equipped with an Inertial Measurement Unit (IMU) and a
camera. They have been used as data acquisition devices
for passenger coaches for track comfort analysis. However,
a smartphone’s usage as a sensor probe has many limita-
tions for fault detection purposes, especially for wheel fault
diagnosis. Since the wayside installation of smartphones for
acquiring fault data via IMUs is impractical. However, smart
Al apps could be developed to classify faults in a workshop
setting. On the other hand, the usage of drones has also been
explored as a track monitoring device.

More recently, Liu et al. [14] reviewed applications of
visual inspection techniques and systems in the railway indus-
try. Various applications of image processing and machine
vision for the inspection of railway tracks, rolling stock,
and other static infrastructure such as pantograph-catenary
networks are reviewed in detail. The importance of further
development of machine vision-based systems for inspection,
especially for rolling stock is stressed.

As observed from the aforementioned literature, the way-
side CMS provides an economical way of inspection and
fault diagnosis. Researchers and developers working in this
domain require precise information and guidelines for way-
side systems to get promptly acquainted and furnish their
ideas for new developments. Considering the importance of
wayside monitoring for railway wheels, this paper critically
reviews the techniques extensively used for effective wheel
fault diagnosis. It reports and discusses the current trends
aimed at improving the performance of railway systems.
It also describes future trends and challenges in this field and
how advancements in methods can benefit railway systems.
In addition, a comprehensive survey of the commercially
available devices for wayside inspection is presented. The
survey of the commercial devices could assist researchers to
design and develop better products for railway applications.
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Compared to the existing reviews, this paper particularly
reviews the wayside systems used for the condition mon-
itoring of wheels, as the flowchart for the wayside con-
dition monitoring system is shown in Figure 2. It depicts
the generalized sequential flow for an automated inspection
system of railway wheel faults. First the different NDT sen-
sors are installed on trackside to capture the data which is
later categorized into several railway wheel faults. These
faults data are preprocessed before any condition monitor-
ing algorithms are applied. Finally, an automated CMS is
implemented to identify and assess the different types of
railway wheel defects, their severity level, and predictive
maintenance. The output of a CMS could be used in a variety
of ways. Defect identification leads to the identification of
the cause of defect occurrence and can help minimize the
risk of defects occurring in the future. Moreover, CMSs
help develop predictive maintenance strategies by providing
a timely quantitative assessment of the rolling stock behavior.
Additionally, it could be used to drive further intuition to
perform a quantitative assessment to gain useful insights and
suggest maintenance actions.
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FIGURE 2. Flowchart for wayside CMS.

To the best of the authors’ knowledge, such a comprehen-
sive review of wayside monitoring of railway wheels does
not exist in the literature. This review aims to provide a
concise overview of the state-of-the-art techniques in wayside
wheel CMS research and provide a roadmap guide for further
research. The following are the core contributions of this
review paper:

1. Tt discusses the challenges associated with using each
sensor type from a system design point of view such
as deployment, installation, sensitivity, range of the
sensors, and sophistication of processing techniques.

2. For system designers and researchers, it provides a
glimpse of the industrial systems in operation to pro-
vide a baseline for performance evaluation of new way-
side systems.
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A. TYPES OF FAULTS
Railway wheels fail owing to various types of faults [15].
These faults are categorized more precisely into four
groups: polygonization defects (periodic/non-periodic non-
roundness), surface defects (scaled wheels, spalling, wheel
flats, and cracks), sub-surface defects (Hardening, cracks,
residual stress, shelling, and contamination), and profile
defects (High flange, thin flange, wide flange, small flange
angle, hollow wear, wheel diameter variation). Some defects
are shown in Figure 3. These defects are the major source of
damage to railway wheels, which are needed to be inspected.
There are various causes for multiple types of wheel defect
formation, which results in the derailment and catastrophic
failure. Based on various causes, the mechanisms of forming
recurrent wheel polygonization faults are mainly categorized
into three groups: (1) thermoelastic instability, (2) occurrence
of congenital vibration in vehicle and track system, and
(3) initial defects of wheels [16].

Continuous
Tread Shelled

FIGURE 3. Different wheel defects; (a) polygonization defect; OOR,
(b) surface defect, (c) sub-surface defect and (d) profile defect.

The wheel undulation due to braking of the tread signifies
the thermoelastic instability between the wheel tread and the
cast iron blocks. The natural vibration induced in the wheel-
rail system including :(1) sliding vibration of the wheel-rail
system, (2) lower bending of the wheelset, (3) P2 resonance,
(4) self-excited frictional vibration of the wheel-rail interac-
tion system, etc., reuslts in wheel polygonization formation.
The initial defects of the wheel, such as wheel reprofiling,
static and dynamic inequities, and inhomogeneous properties
of the wheel material, are crucial factors affecting the origin
and development of the Out-of-Round (OOR) wheel. The
appearance of surface defects can occur mainly when sliding
on the tracks in case wheels are seized. In railway applica-
tions, this phenomenon can lead to the formation of marten-
site at the edges of induced shells and happens due to rolling
contact fatigue. Also, stress cycling at the crack tip is caused
by multiple passes of rolling contact and extends the crack
in a way perpendicular to surface creep [17]. In subsurface
defects, fatigue failure of rolling contact is one of the major
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faults in railway wheels, caused by recurrent rolling contact
with tracks. This fatigue failure is induced by internal defects
such as non-metallic inclusions or blisters in the wheels. Non-
metallic inclusions in the metal are found on the surface of the
rolling stock after peeling or abrasion [18]. Profile variations
in the wheel are the result of the winding motion of the wheels
on a straight path and the passage of the vehicle in curves on
the track.

The remainder of the paper is organized as follows:
Section II reviews and classifies different types of way-
side condition monitoring systems in terms of sensing meth-
ods. Section IIT reports and discusses various commercial
CMS, and their architecture with monitoring capabilities.
Section IV summarizes the limitations and challenges of
existing condition monitoring and presents prospects for
developing more efficient and robust way-side CMS for mod-
ern railways.

Il. SENSING SYSTEM
For the detection of railway wheel defects, NDT sensors are
preferred to utilize such as mechanical sensors, accelerometer
sensors, optical sensors, cameras, and other sensors. To eval-
uate the mechanical properties of a system or a component
without giving rise to damage, NDT sensing comes in as
an inspection technique of a wide group that is applied in
industry. In railway system, different techniques and sensors
are utilized, which includes Alternate Current Field Mea-
surement (ACFM), radiography, Electro Magnetic Acoustic
Transducers (EMATs), AE, Magnetic Flux Leakage (MFL),
Eddy Current (EC), Ultrasonic Testing (UT), etc. [19]. These
sensors can detect a wide range of faults, discussed in
section I-A. Additionally, for predicting the lifespan of rail-
way wheels and future failures, the data acquisition, and
its prognosis can play a vital role in the railway system.
Based on this, unexpected failures are detected by the condi-
tion monitoring approach. Wheels maintenance plan and its
optimization by this approach can be more efficient for the
prognosis of possible future failures. It has been established
that 99% of all failures are the result of the degradation of
a system expressed by certain indicators [20]. Hence, for
processing and measuring these features, suitable types of
sensors are essential. Parameters that cause failure or the
effects of the resultant failure, both can be measured by a
data acquisition system. For monitoring railway wheels, the
presence of abnormalities and cracks are accessed by some
sensors that are used directly on the wheels, and the output
is obtained from the interaction of faulty wheels with the
rail [21].

In the following sections, different types of sensors used in
research for wayside detection of faulty wheels are described
along with their capabilities and drawbacks:

A. ULTRASONIC

In the field of NDT methods, ultrasonic sensing is widely
implemented. For conventional ultrasonic methods, the major
disadvantage is that the overall check-up of rail-wheels
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requires disassembling each part of the train by putting it out-
of-service, which is expensive and time-consuming.

Nowadays, for wheel flats detection on-line techniques
are commonly used, which include ultrasonic sensing.
Brizuela et al. [22] presented and designed an innovative
ultrasound method to quantify and detect flats formed on the
surface of rolling railway wheels. To achieve this, Rayleigh
waves are transmitted over a measuring rail, and variations
in the Round-Trip-Time of Flights (RTOF) concerning ultra-
sound pulse and the contact point of the railway wheel allow
quantifying, detecting, and analyzing the wheel flats. Com-
prehensive theoretical validation and experimental results on
a test bench consisting of two-wheel flats of size 40 mm
and 26 mm in length are presented. The drawback of this
technique, regarding the measuring accuracy was influenced
by the distance measurements, therefore it was challenging
to detect the wheel-flats of the entire circumference of the
rolling wheel accurately.

Montinaro et al. [23] proposed a non-conventional
approach for the inspection of train wheels using non-
contact laser ultrasonic sensing. For the generation end,
a pulsed IR Nd:YAG laser is used for the generation of
wideband ultrasonic waves. On the receiving end, a non-
contact ultrasonic wave is received by a laser interferometer,
as can be visualized in Figure 4. This measured the distance
between the inspected surface and interferometer (surface
out-of-plane displacements) with the help of receiving sys-
tem while overcoming the issues related to encumbrance.
To assess the accuracy and reliability of their method and its
validation, experimental investigation on detecting standard-
reproduced defects is conducted. It is shown that in com-
parison with the laser-based techniques their method has the
advantage of being non-contact, avoiding the use of coupling
techniques, and solving the accessibility and adaptability
issues.

Diagnosing wheel faults of electrical multiple units (EMU)
presents a difficult challenge due to various noise interference
caused by internal hazard defects of the rail. In this regard,
Sun and Lu [24] developed an automated method of wheel
fault detection, as shown in Figure 5, which is aided by a
denoising algorithm to perform data quality enhancement.
This technique consists of an efficient sine-type processing
threshold function, which gives better results as compared
to the classical wavelet hard/soft threshold function. Slow-
variation compression processing is adopted to characterize
this improved function. For a smooth transition from the
soft to the hard threshold, there is a continuous decrease in
the compression amount when wavelet coefficients increase
continuously, and no compression processing is performed
when the wavelet coefficients exceeded a certain value. The
outcomes obtained from their experiment showed that in the
ultrasonic echo data, noise can be suppressed by utilizing
an improved threshold function. The method shows good
accuracy, improves the signal-to-noise ratio, and for defect
signal its waveform characteristics are retained which is
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FIGURE 4. (a) Schematic representation of the experimental setup,
(b) laboratory setup [23].
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FIGURE 5. Effect comparison of noise reduction. (a) soft threshold
denoising. (b) hard threshold denoising. (c) improved threshold
denoising. (d) and complete flowchart for denoising algorithm [24].

conducive to identifying defects. However, the developed
method focuses on sub-surface defect detection and ignores
surface faults. The summarized techniques for ultrasonic
sensing are shown in Table 1.
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TABLE 1. Summarized reviews on ultrasonic sensing.

Serial = Author Sensor/Device
No. (Year)
1 (Brizuela Ultrasonic Sensors
etal.,
2011) [22]
2 (Montinaro = Lasers and interferometer device
etal.,
2019) [23]
3 (Sun and Ultrasonic Sensors
Lu, 2021)
[24]

B. STRAIN GAUGES

For railway track and train components, wheel defects are
harmful, and an important source of damage to the railway
rolling stock and infrastructure. Because of this vibration,
emissions and noise can also be generated and mitigating
these are costly. Detection of wheels defect is achieved by uti-
lizing a commercial wheel impact load detector (WILD) [25]
based on CMS, which comprises a series of strain gauges.

Sensor 5

FIGURE 6. The configuration of six sensors installed under the rail [26].

In this regard, Alemi et al. [26] proposed and validated the
fusion technique with the help of lab tests to examine its appli-
cability to detect wheel flats and non-roundness. This method
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Technique Scope Online/Offline = Remarks
Rayleigh waves Wheel Offline The paper lacks in
based Ultrasonic Flats information
signal processing (length and loss of
material)
regarding original
new wheel flat.
Signal processing Surface Offline Reconstruction of
with a pulsed IR and defects accurately
Nd:YAG laser subsurface stills need to be
faults of improved
wheel
tread
Wavelet transform Sub- Online Decomposition
and threshold surface layers may affect
denoising defects the denoising
algorithm and be
the reason for
useful information
loss
Sensors
Wheel‘—’ /N
Sleepers i i l l

RLC_0L1 RLC_0L2 RLC_0L3 RLC_OL¢

FIGURE 7. Multiple vertical wheel force measurements of a train wheel
by the four sensors of one measurement bar [27].

gathered data from multiple sensors to re-create a new infor-
mative pattern, which provides an inclusive description of the
condition of the wheels. Therefore, a testing rig consisting of
awheel, a circular rail, and a rotating arm is developed. Under
the rail, six strain sensors have been installed symmetrically
with 60-degree intervals over the rail circle to measure the
rail strain by their system, as shown in Figure 6. Detection of
several defects of the wheel including the out-of-round and
flat wheels have been tested and validated with the results of
fusion technique by providing informative patterns.

To detect and classify defects of wheel automatically,
Krummenacher et al. [27] proposed two machine learning
techniques, based on the data collected with the aid of wheel
load checkpoints (WLC). It measured the vertical force of
the wheel by a sensor system installed permanently on the
railway network. Four measurement bars 1m long with four
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FIGURE 8. Schematic of a vehicle containing the damaged wheel [29].

strain gauges are attached per measurement bars in each
WLC, as shown in Figure 7. Since two measurement bars on
each side with the installation of 4 sensors, were estimated
eight times at different wheel parts when each wheel passes
over the WLC. Their method learns wheel defects of different
types automatically and during normal operation, and pre-
dicts whether the wheel is defective or not. The first technique
used a support vector machine algorithm for classifying time
series data with novel features. The second technique utilized
DL-based convolutional neural networks to learn features
automatically from a 2-dimensional data representation or
from time series data. Multiple datasets were constructed to
evaluate the performance of their method for the defect types
such as non-roundness, shelling, and flat spot. The perfor-
mance on detecting wheel faults related to non-roundness
and flat spot wheels is improved by employing a neural
network approach and measurement system by modelling
multi-sensor structure based on shift invariant networks and
multiple instances learning. Further, their method lacks in
predicting severity scores for the wheel defects and optimiza-
tion for precision in the neural network model.

Zhou et al. [28] designed a technique based on multi-
sensor fusion for precise positioning and recognition of wheel
flats. The spatial distribution of rail strain characteristics was
simulated under different conditions of wheel flats which
were analyzed by the use of the numerical method. Based
on this, their method utilized a multi-sensor arrays layout
scheme which is more efficient and effective in capturing
the wheel flats response. For algorithm validation, wheel
profiles that were inspected offline were fed into the numer-
ical model to simulate multi-sensor array output data, and
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identification of the defective wheels was also conducted by
this algorithm. The results of their offline inspection demon-
strated that during railway wheel passage the algorithm can
locate and detect the wheel flats accurately under complex
conditions.

Mosleh et al. [29] developed a multi-sensory layout scheme
to detect the occurrence of wheel flats on freight and pas-
senger train. It relies on the dynamic response of the train
track with the aid of 3D numerical simulation for wheel
flats detection. To assess the layout schemes’ sensitivity with
respect to the type of sensors (accelerometer and strain gauge)
and their installation position, defined acceleration, and shear
measurement points. For input, 19 positions of the track are
evaluated by considering the accelerations and shear values,
as shown in Figure 8, and by envelop spectrum approach
using the analysis of spectral kurtosis the wheel flats were
identified. The accuracy of the system based on the detection
of wheel flats with the influence of the sensors type and their
position is analyzed.

The summary of the techniques for strain gauge sensing is
provided in Table 2.

C. FIBER BRAGG GRATING

For high-speed rail, defects that occur in wheel tread are very
critical and challenging, as a deviation of a small radius in
wheel defects may give rise to damage [30].

For monitoring the condition of the railway infrastructure,
fiber optics cables play an important role, which is installed
alongside the railway tracks.

In this study, Liu and Ni [31] developed a method for
track-side monitoring of wheel conditions based on Fiber
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TABLE 2. Summarized reviews on strain gauge sensing.

Serial Author (Year) Sensor/Device Technique Scope Online/Offline Remarks
No.
1 (Alemi et al., Strain Sensors Data Fusion Out of Offline For the samples, small deviation can be
2018) [26] Model round and seen from their average that relates to
Wheel Flats wheel flats and out of roundness, but this
deviation fails to provide detailed insight
regarding wheel defects.
2 (Krummenacher et | Strain gauges Machine Out of Online Augmentation of dataset 2 SVM,
al., 2018) [27] learning roundwheels introduces noise while training and
algorithms: and wheel because of that, the classifier error rate
Support flats tends to be over-reported.
vector
machine and
DL
algorithm:
CNN
3 (Zhou et al., 2020) | Strain Sensors Multi-sensor Wheel flats Offline Sudden fluctuation arises when the wheel
[28] fusion directly hits rail above sensors, cause
greater amplitude, which may draw
wrong conclusion regarding wheel flats
4 (Mosleh et al., Accelerometer Envelope Wheel flats Offline Strain gauge signal contaminated by
2021) [29] and strain gauge spectrum noise may cause problem in
approach distinguishing healthy and defective
using spectral wheel
kurtosis
analysis
Bragg Gratings (FBG). On the rail foot, two FBG strain gauge
arrays are mounted for the way-side sensing system. These y
sensors at the paired rails get excited by-passing wheelsets —=
and accordingly measure the dynamic strains. Each FBG
array is 3 m in length to make sure of full coverage i.e., Wheel

a little longer than the circumference of the wheel, for the
detection of potential defects of the wheel tread. This detec-
tion algorithm is divided into three steps: 1. preprocessing
of strain data with the help of a method for smoothing the
data to eliminate the trends; 2. examining novel responses for
the normalized data by outlier analysis; 3. identification of
local defects on the extracted novel responses in step 2 with
the aid of refined analysis. Liu et al. [32] in another study,
investigated that the minor defects of the wheel can produce
anomalies with lower amplitude in contrast with the effect
of wheel load. Therefore, it is needed to extract the features
based on defect-sensitive data by using advanced signal pro-
cessing techniques. Keeping this in mind, the Bayesian blind
source separation (BSS) technique is explored in which the
response signal of rail is decomposed to get the components
that have defect-sensitive features. Consequently, by analyz-
ing anomalies based on Chauvenet’s criterion the potential
defects are detected. Different speeds occupied by trains on a
sensor-based rail track to monitor the condition of wheels, the
deployment of FBG-based sensor array is shown in Figure 9.
Their technique achieved adequate and acceptable accuracy
results in the detection of wheel defects when the train occu-
pied higher speed i.e., greater than 30 kph. Their algorithm
also detects a small defect having a depth (radius deviation)
of 0.05 mm or 0.06 mm successfully.
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FIGURE 9. Deployment of FBG sensor array and configuration of the
online monitoring system [31], [32].

For detecting and quantifying online dynamic wheel flats
when trains reached high speed, Gao et al. [33] demonstrated
and developed a novel detection system for wheel flats based
on the reflective optical position sensor. Their system con-
tains two sensors that are attached along each rail to estimate
the impact of the wheel-rail force of the whole circumference
with the help of detecting the collimated laser spot displace-
ment, as shown in Figure 10. To establish a relationship quan-
titatively between the length of the wheel flat and the sensor
signal, a vehicle-track coupling dynamics analysis model is
developed. The multi-body dynamic method and element
method are coupled together to achieve this. The effects of
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TABLE 3. Summarized reviews on fiber bragg grating sensing.

Serial Author Sensor/Device Technique Scope Online/Offline Remarks
No. (Year)
1 (Liu & FBG Statistical Wheel Online Occurrence of False positive when the train
Ni, 2018) Estimation Tread speed exceeds 30 kph.
(31]
2 (Liu et FBG Sensor Array | Signal Out-of- Online When the train runs at a lower speed (less than
al., 2019) processing and | round 20 kph), it is difficult to perceive anomalies
[32] Bayesian blind | (OOR) originating from minor wheel defects in the
source defects on measured rail dynamic response.
separation wheel tread
(BSS)
3 (Gao et Reflective Optical | Statistical Wheel Online The paper lacks quantitative detection
al., 2020) | Position Sensor Estimation Flats information on railway wheels running at high
[33] speed.
4 Ni & Distributed FBG Statistical Wheel Online Monitoring data from a single sensor may give
Zhang, Sensor Estimation by tread faults rise to results of false negative diagnostics
2021) Bayesian
[34] probabilistic

wheel flat lengths, load, train speed, as well as impact forces
position were evaluated and simulated. The assessment of the
system has been carried out through laboratory investigation,
simulation, and field tests.

Recently, Ni and Zhang [34] developed a Bayesian proba-
bilistic technique for quantitative as well as online assessment
of conditions of railway wheels with the use of wayside
distributed FBG strain-monitoring data. Their technique is a
non-parametric and fully data-driven approach. Strain sensors
with distributed FBG are mounted densely along rail length
providing ease in the detection of minor defects of the wheel.
In this implementation, each array of the sensor comprises
21 evenly spaced FBG gauges at intervals of 0.15 m on each
single-track rail foot. To enable the rolling action sensing of
the whole wheel tread circumference, the instrument covered
the total range of 0.3 m. For the acquisition and processing of
data, FBG sensors are linked via optical cables to an optical
interrogator of high speed which is computer controlled. The
responses of the dynamic strain of the rail track are measured
during the train’s passage and are processed to obtain the val-
ues of the normalized cumulative distribution function. Later,
a model of probabilistic reference about the sparse Bayesian
learning technique is constructed. An innovative Bayesian
null hypothesis significance testing with regards to intrinsic
Bayes factor having scale-invariant data is performed. This
approach is independent of the Jeffreys-Lindley paradox and
is followed by newly monitored data gathered from possible
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defective wheels to detect faults in the wheel and to assess the
condition of the wheel quantitatively.

The summarized techniques for fiber optic sensing are
given in Table 3.

D. LASER AND CAMERA
For the safe operation of railway vehicles, the geometric
parameter of wheel diameter plays a significant role, which
needs to be dynamically measured. The allowable error for
dynamic measurement of wheel diameter is 0.3 mm [35].
The majority of the existing systems and methods based on
dynamic measurements do not satisfy this requirement for
high-speed vehicles. Considering this, Zheng et al. [35] for
the first time developed a simplified method for measuring
the diameter of train wheels precisely and dynamically by
utilizing three one-dimensional laser displacement transduc-
ers (1D-LDTs) depicted in Figure 11. Factors affecting the
accuracy of measurement were analyzed. As a key factor,
rail deformation caused by the wheel-rail interaction force
at low-speed (20 km/h) and high speed (300 km/h) was
determined using a combination of finite element methods
and multi-body dynamics. Moreover, field experiments are
performed to confirm the performance of the enhanced mea-
suring system. It is shown that repetitive error and system
error measurement are both less than 0.3 mm.

Pan et al. [36] developed a measurement system based on
the fusion of multiple sensory data, as shown in Figure 12.
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FIGURE 10. The schematic diagram of the installed sensor modules and
the rail vertical deformation: (a) The installation location of the sensor;
(b) The schematic diagram of the sensor; (c) The rail vertical
deformation [33].
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FIGURE 11. Schematic of the measurement method using three 1D-LDTs:
(a) setup; (b) schematic diagram [35].

Laser sensors acquire the cross profile of wheels when the
measuring wheel passes over the rail. Measured profiles
are divided into two groups. Later, measured wheel profiles
are reconstructed with respect to one another for an entire
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profile-parameterized segment. Furthermore, to overcome
the missing data in wheel profiles, the rigid alignment and
multi-sensor data fusion technique is adopted. However, the
measurement accuracy is improved by resisting the induced
data related to error noise. With an entire cross profile of
the wheel, accurate and reliable parameters of wheel size
are gained. In addition, the feasibility and robustness of this
approach are evaluated by real-time experiments, meeting
the requirements of the railway industry. The actual experi-
mental tests showed the strength and measurement accuracy
dynamically.

(a)
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Image processing Reconstruction of
profile datasets
profiles
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FIGURE 12. Wheel size measurement system: (a) Schematic diagram of
wheel section profile acquisition; (b) Schematic diagram of wheel profile
diagnosis system [36].

=3

Amu et al. [37] implemented the ML method to antici-
pate flaws in the wheel of the railway vehicle by utilizing
the R-CNN algorithm. For detection, an algorithm based
on a selective search method is used, which estimates the
hierarchical assemblage of similar regions rapidly with high
recall based on the size, texture, color, and shape compati-
bility of the wheel image. Image segmentation is performed
to extract regions of interest (ROI). Later, ROIs are fed
into a convolutional neural network (CNN) for classifica-
tion. CNN identifies different defect types (type 1: ther-
mal cracking defect, type 2: inherent defect, type 3: rolling
contact fatigue cracks, and type 4: shattered rim defect)
in railway wheels. Moreover, the precise location of the
defects on the wheel tread is also determined. To evaluate
the effectiveness of this process, multiple data sets are estab-
lished by utilizing the train and test wheel images with 2D
representations.

For revolving structures like railway wheels, Sun et al. [38]
proposed a framework for reconstructing symmetrical 3D
revolving structures by making use of a pose-unconstrained
profile of a normal section. The profile of a normal section
with the aid of general 3D profiles of the section was obtained
by a multi-line structured light-vision sensor. Firstly, a model
is developed to evaluate the revolving axis that measures the
profile of the normal section using relative points. After that,
the model is embedded into an algorithm based on an iterative
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FIGURE 13. Overview of their framework. (a) Acquiring general section profiles at different viewpoints. (b) Iterative optimization algorithm for each
viewpoint: estimating the axis with corresponding points and calculating normal section profile with the axis. (c) Registering multiple partial normal

section profiles to get a complete normal section profile [38].

scheme to improve the corresponding points and measure
the profile of a normal section accurately. Simulation results
showed that their algorithm is suitable for various shapes of
3D revolving structures and is vigorous against defects of
local surfaces. Moreover, authors conducted real experiments
to reconstruct the profile of the normal section with respect to
the 3D wheel, as shown in Figure 13. The algorithm outcomes
demonstrated the 0.065 mm of mean precision and 0.007 mm
of repeatability with respect to standard deviation, which
concludes the robustness of the sensor towards the position
and poses.

To measure the geometrical parameters of wheel tread
dynamically and precisely in a complex environment,
Ran et al. [39] developed a measurement system based on
a line-structured light vision sensor. In this measurement
system, skeleton extraction based on a sub-pixel extraction
of the laser-stripe center is illustrated. Crucially decreas-
ing the complex environmental lightning interference in the
field and enhancing the accuracy of extraction. For further
improving the stability and accuracy of measurements, the
dynamic effect of anomaly error due to the measurement on
the outcomes is analyzed. Field tests are conducted to verify
the system’s performance. The outcomes showed that the
stability and accuracy of measurements are enhanced after
the correction of anomaly error, mainly for the value of flange
slope and flange height.

In railway vehicles, in-situ measurement of shaft diameter
is considered to be an important factor. For this purpose,
Tan et al. [40] established a shaft diameter-based measure-
ment model by the formation of an ellipse through the inter-
section of the surface of the measured shaft and the light
plane. Ellipse center coordinates and the normal vector of the
light plane are acquired with respect to the coordinate system
of the camera. Later, the oblique elliptic cone equation is
established by getting the camera’s optical center and ellipse
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at the top and bottom respectively. Further, the shaft diameter
measurement model is obtained through the established equa-
tion of the image plane and oblique elliptic cone, as illustrated
in Figure 14. Lastly, with a lathe and the checkerboard cali-
bration plate, the accuracy of the shaft diameter measurement
model is tested. The model demonstrated accurate test results
for instance when the diameter of the shaft is 36.162 mm,
it reaches 1250 r/min of speed, with 0.019 mm of maximum
average measured error.

Emoto et al. [41] proposed an automated system for
inspecting and monitoring the wheels’ condition by utilizing
laser sensors and cameras for image data, as depicted in
Figure 15. To simulate the actual condition of the wheel,
experiments were performed on a 20% scaled wheel model.
Firstly, for measuring profile, original CAD data was com-
pared with respect to measured data. However, it was found
that due to the laser beam reflection, obtaining the profile
measurement entirely was difficult. Subsequently, computer
vision was used for detecting the defect of the surface. Instead
of segmentation or DL techniques, their scheme focused on
the image processing method based on ROI extraction, and
for reducing lighting effects, Contrast Limited Adaptive His-
togram Equalization (CLAHE) filter was chosen to handle the
issues such as inequalities of orbital reflectance and illumina-
tion. The relationship between the rate of detection and values
of the accumulator confirmed its effectiveness for detect-
ing surface defects on testing data of known defects. This
development of the whole system brought the advancement
in existing monitoring processes and accurate measurements
which were done manually.

For an accurate knowledge of the geometry profile fea-
ture of the tread wheel, a mechanism based on on-machine
measurement by utilizing a 1D laser sensor is investigated
by Liu et al. [42]. With the combination of specific tread
profile morphology and laser sensor measurement model, the
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TABLE 4. Summarized reviews on laser and camera sensing.

Theoretical
image plane

CCD Camera

{0, x, y, z} is the camera coordinate system;
{0, X Y, Z} is the world coordinate system.

FIGURE 14. Diameter measurement with the line structured light

vision [40].

number

Serial Author Sensor/Device Technique Scope Online/ Remarks
No. (Year) Offline
1 (Zheng et | Three 1-D laser- Statistical Estimation, Wheel Diameter | Online Train passing through transducers generates
al.,2019) | displacement Multi-body dynamics, vibration which affects the value of the
[35] transducers and finite element measured distance error
methods
2 (Pan et High-speed Multi-sensor Data Wheel size Online There is some deviation in the trigger position
al.,, 2019) | cameras, laser Fusion measurement due to the error of the trigger signal by the
[36] beams electromagnetic trigger device
3 (Amu et Camera R-CNN algorithm Surface faults Online The paper lacks justifying quantitative
al., 2020) information.
[37]
4 (Sun et Multi-line Profile modeling Wheel Online Few correspondence errors exceeded 0.1 mm
al., 2021) | structured light- geometric but overall follow the normal distribution.
[38] vision sensor parameters
5 (Ran et Camera, light Machine vision Wheel Online Need to optimize the change in flange height
al., 2021) | source geometric from a distortional wheel tread profile, as
[39] parameters obtaining this parameter is difficult to obtain.
Moreover, fixing this iterative scheme can be
time-consuming.
6 (Tan et Camera Shaft diameter Wheel diameter | Online Measurement error of the rotating shaft is high
al., 2021) measurement model because the image quality of the light strip
[40] decreases in the rotating shaft as compared to
the static shaft.
7 (Emoto Laser sensors and | Computer vision; Wheel profile Offline Need to capture the proper shape of the wheel
etal, camera image processing and surface profile in different illumination conditions and
2021) defect improve partial measurement of the wheel, as
[41] the effect of lightning increase measurement
error.
8 (Liu et 1-D laser sensor On-machine Wheel tread Offline Variations in the roughness levels for the
al., 2021) measurement model profile wheel tread profile may affect measurement
[42] accuracy.
hal Oblique elliptic cone (b eenler Camera for serial

Camera for wheel

Laser sensor

FIGURE 15. Laser and vision sensors based automated inspection

correspondent on-machine measurement model of the wheel
tread profile was developed. This measurement model was
designed in accordance with the characteristics of curved and
inclined profiles. Adaptive error correction was studied to
enhance the complex profile measurement and to suppress
the laser sensors measurement error. In the calibration and
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system [41].

test experiments, more than 30% of the error was suppressed
by this method. Finally, the laser-based measurement method
was applied practically to the wheel tread profile measure-
ment on a wheel-set lathe lying underfloor. These exper-
iments not only enhance the accuracy of wheel geometry
measurements but also improve the mechanical strength of

VOLUME 11, 2023



M. Z. Shaikh et al.: State-of-the-Art Wayside Condition Monitoring Systems for Railway Wheels

IEEE Access

the machine tool, which is essential for railway vehicles to
operate safely.

The summarized techniques for laser and camera sensing
are provided in Table 4.

E. ACOUSTIC EMISSION

The railway industry is concentrated on improving mainte-
nance and remote condition monitoring of the rolling stock
to lower the chances of failure. High operating speeds of
trains may deteriorate an axle bearing leading to consequen-
tial derailments, loss of life, and serious disruption to net-
work operations. For wayside fault diagnosis and condition
monitoring of the wheelset bearing of a high-speed train,
AE technology is appropriate to utilize because of its high
sensitivity and high frequency [43], [44], [45].

In this direction, Amini et al. [46] discussed the con-
sequences of measurements concerning wayside high-
frequency AE, as shown diagrammatically in Figure 16,
by producing artificial damage in the axle bearing of freight
rolling stock in Long Marston, UK. Time spectral kurtosis
(TSK) was used in the data analysis of AE. Also, the wheelset
position identification is considered to lower the influence of
ambient noise and ambiguity in the acquired results. Differ-
entiating the signal from faulty bearings and non-Gaussian
noises proved to be challenging for the data gathered from a
real train. Conventional methods of analysis such as moving
kurtosis and moving RMS, although have the capability of
distinguishing the defects of axle bearing, are not ideally good
when there is a low signal-to-noise ratio. Unnecessary noises
occurred in the braking system, leading to an increase in
kurtosis slightly and raising the RMS value, which results in
incorrect fault identification. TSK, using time and frequency
domains including kurtosis values for each frequency band,
has been shown to increase the ability to identify the defects
of bearing in such cases. Moreover, another source of noise
that rises the amplitude of AE in the raw data is engine noise,
which is eliminated by applying the threshold-based method
to increase the ability to diagnose. From the obtained results,
it is found that the time spectral kurtosis can distinguish the
faults of axle bearing from the randomly generated noises by
various sources which include the interaction of wheel-rail,
braking, and variation in the speed of the train.

Further, Aktas et al. [47] proposed a novel system based
on Parametric-Constraint Optimization techniques for the
detection of wheel flats, and this approach can be adapted
by several CMS remotely. A novel “defect-score curve”” was
introduced to detect the wheel flats with an effective tech-
nique and efficient computation. The condition of the defect
was recognized with the comparison of the estimated defect-
score curve and threshold-curve interpreted by the false alarm
rates and desired detection. Set a 100% false alarm rate,
for good system performance but with a cost of increasing
computational complexity and training time due to a large
number of points in the defect-score curve. To evaluate the
effectiveness of their method, numerous field tests at the
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TCDD rail network were conducted on various train speeds
and conditions of wheel flats and achieved an accuracy of up
to 90 %.
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FIGURE 16. Simplified outline of wayside installation configuration [46].

Furthermore, the interference of the wheel-rail rolling
mechanism crucially affects the detection accuracy of wheel
faults. To solve the aforementioned problem, Chang et al. [48]
proposed a novel method of detection, as illustrated in
Figure 17, which includes an Improved Synthesize Health
Index (ISHI) with a Time-Adaptive Threshold (time-ATH).
To acquire the information regarding faults from wheel-
generated signals, a complete set of features containing
multiple types of features was extracted from AE signals.
It calculates time-ATH for detecting the faulty wheel signals
and lowers the impact of interference of wheel-rail rolling.
Their method was fully validated in real datasets, and the
outcomes determined that their method carry out a surpassed
detection accuracy and detection rate. The summary of the
techniques for AE sensing is given in Table 5.

Moreover, reviewing several sensing systems shows the
ongoing research activities in a particular domain, as depicted
in Figure 18.

IIl. COMMERCIAL WAYSIDE SYSTEMS FOR WHEEL
FAULT DIAGNOSIS

The installation of sensors on the track for condition mon-
itoring is intended to ensure the smooth operation of the
rolling stock and eliminate the chances of sudden disruption
of the railway track. However, there is less reliability in these
systems, and in most cases, railway vehicles are checked at
the depot before they go into service. Such inspections are
prone to human error and are time-consuming. For many
years, these techniques have been utilized, but the rise in
damaged wheelsets caused by heavier loads, higher speeds,
and altered operating conditions has led railway stakeholders
to re-assess these inspection approaches. Considering the
importance of efficient automated systems, Brickle et al. [49]
reported on current and prospective automated systems that
include rail-based sensors for wheel-set condition monitoring
(WCM). Research authorized by the Rail Safety and Standard
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TABLE 5. Summarized reviews on ae sensing.

Serial Author Sensor/Device Technique Scope Online/Off | Remarks
No. (Year) line
1 (Amini et Acoustic Time spectral kurtosis Axle Offline A small and calculated window size for TSK
al., 2016) Emission Sensor analysis on high- bearing analysis provides better resolution but needs a
[46] frequency acoustic defects longer processing time.
emission signals and
signal processing
2 (Aktas et Acoustic Parametric Constraint Wheel Online High-speed trains produce irregular peaks and
al., 2018) Emission Sensor Optimization methods Flats noise when hit by wheel flats on the rail,
[47] and statistical estimation which may abruptly vary the detection rate and
false alarm rate.
3 (Chang et Acoustic Time adaptive threshold | Wheel Offline A lower standard deviation of ISHI is
al., 2022) Emission Sensor technique and statistical | Flats obtained, which allows noise interference
[48] estimation suppression. But, if the time window is large,
it leads to lower time resolution and misses the
ISHI related defects that possess the average
effect in the time window.
Researches Conduct n Different Sensing Systems
Laser <€— Wheel
transmitter
/q__,.Dcﬁ:cl Rail
T
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FIGURE 17. Experiment condition (a) system structure of AE experiment,
(b) experiment equipment, (c) receiving sensor and mechanical clamp,
and (d) pre-amplifier [48].

Board (RSSB) UK recognized the practical categories of
automated WCM inspection systems as followed; wheel pro-
file detectors, bogie performance detectors, wheel impact
detectors, wheel tread condition monitoring detectors, acous-
tic bearing defect detectors, hot axle bearing and hot/cold
wheel detectors, automatic vehicle identification systems,
and brake disc condition detectors.

Nowadays, real-time CMS is crucially required in railway
inspection system that mainly comprises of intelligent sens-
ing devices with the help of video cameras, lasers, etc. For
WCM, several companies are working in this domain and
have developed various commercial products, as shown in
Figure 19, such inspection system products are:
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FIGURE 18. Research in several sensing systems.

1. Trimble TreadView system [50] utilizes state-of-the-art

3D laser scanning and digital imaging technology to
automatically scan the flange, wheel tread, and areas
where the plate surface across the whole wheel circum-
ference at mainline operating speed. Also, this system
is designed to work in all weather and ambient light.
For the wayside system, Trimble Wheel-View [51]
provides wheel profile measurement information for
dynamic trains automatically. It is an efficient and fast-
paced program for improving the maintenance of wheel
procedures and skipping/removing derailments due to
worn-out wheels. It enhances the maintenance effi-
ciency of the wheel by recognizing rapid maintenance
procedures based on the use of wheel-wear standards
and early detection of wheel damage.

. PSI Technics Automated Train Inspection System [52]

provides an effective intelligent solution by the use
of robotics and Al for the automatic inspection and

VOLUME 11, 2023



M. Z. Shaikh et al.: State-of-the-Art Wayside Condition Monitoring Systems for Railway Wheels

IEEE Access

TABLE 6. Wayside inspection system.

Manufacturer - In- Scope Operating | Ease of in-
spection System Speed stallation
‘Wheel Impact Detectors

Trimble TreadView | 1. Damaged or broken flange and wheel sections. Mainline Yes
[50] 2. Slid flats and wheel flats. operational

3. Wheel out-of-roundness. speeds

4. Spalled and Shelled tread.
LBFoster - Salient 1. Impact Force Monitoring 50km/hto | Yes
Systems [54] 2. Train, Vehicle, and Wheel Information 300 km/h

3. Automated Alarm Notifications

4. Reduces derailment, bearing damage, and rail fatigue

5. Detect wheel tread irregularities
Track 1Q — Wheel 1. Wheel impact detection 10 km/hto | Yes
Condition Monitor 2. Weight measurement at different levels 160 km/h
[53] 3. Vehicle end-to-end (ETE) and side-to-side (STS) imbalance

4. Detection and reporting of poor wheel load distribution

5. Detailed surface defect detection via imaging systems

6. Optimize bogie maintenance, and minimize the impact on infra-

structure and rolling stock by generating alarms for tread defects and

loading problem
Apna Technologies | 1. Impact loads caused by wheel defects according to the defined Mainline Yes
& Solutions threshold and the severity of the defect operational
(ApnaTech) — 2. Monitor Speed, number of axles, and their condition speeds
Wheel Impact Load | 3. Measures average dynamic wheel load for all wheels
Detection — WILD 4. Determines Maximum Dynamic Wheel Load for all points of con-
[55] tact

5. Points out the exact position of the defective wheel from loco for

easy examination

6. Detects Rake Type ICF, LHB & Goods Train and publishes image

of rolling stock

7. Relates each axle with the engine or coach/wagon or brake van as

well as its position in the identified rolling stock

Wheel Profile Detectors

Trimble WheelView | 1. Flange height, width, and slope. 0 km/h to Yes
[51] 2. Tread hollow and rim thickness. 140 km/h

3. Full wheel profile measurement and wheel diameter on the basis of

witness groove.
MERMEC Train 1. Flange Height and Width Measuring | Yes
Monitoring Systems | 2. Flange Gradient speed up to
- Wheel Profile & 3. Back-to-Back Wheel Gauge 250 km/h
Diameter [54] 4. Rim Thickness

5. Wheel Diameter and differences in Wheel Diameter

6. Hollow Tread

7. Reconstruction of full Wheel Profile

8. Online detection of wheel surface defects, such as spalling, flat

spots, shelling, etc.
Hegenscheidt MFD | 1. Fully automated wheelset diagnosis without personnel expenditure, | Drive- Yes
— ARGUS I [56] round the clock through op-

2. Precise and easy-to-access information on the state of all wheelsets, | eration

along with their history and a wear forecast from the wheelset data-

base

3. Tactile measurement of the radial run-out, and depth of the flat-

spots

4. Optical measurement of the wheel profiles of standard gauge trains

and trams
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TABLE 6. (Continued.) Wayside inspection system.

Track 1Q — Wheel 1. Wayside machine vision-based wheel profile measurement system 10km/hto | Yes
Profile Monitor [53] | with high accuracy 160 km/h.

2. Detection of flange height and width

3. Detection of Hollow Tread and Rim thickness
PSI Technics - 1. Detection of wheel-related defects (non-pneumatic tires, deep or Mainline Yes
Automated Train thin wheel flanges, wheel diameter deviations on the same axle, etc.) operational
Inspection System 2. Wheel inspection (wheel profile, wheelset, axle box, steel tire) speeds
[52] 3. wheel flange protection

Bogie Performance Detectors

Wayside Inspection | 1. Delivers unparalleled in-service assessments of individual bogies Up to 300 Yes
Device - TBOGI- and wheelsets km/h
HD [57] 2. Pinpoints the source of accelerated wear issues

3. Identifies the specific defects responsible for characteristic rail wear

4. Quickly singles out any bogies experiencing higher than normal

rolling resistance (up to 40% higher)

5. Reduce the risk of unscheduled maintenance and derailment.
Nagory Foster 1. Monitor Individual Vehicle Stability 50km/hto | Yes
Private Limited — 2. Monitor Fleet Performance 300 km/h
Hunting Truck 3. Reduce Track Damage
Detector [58] 4. Prevents Lading Damage

5. Automatic Car Counting and Identification

6. Identify critical instances where the wheel flange and rail gage face

geometry may promote flange-climb derailments
Track 1Q - Bogie 1. Bogie geometry inspection and tracking problem detection 10 km/hto | Yes
Geometry Monitor 2. Hunting detection 160 km/h
[53] 3. Angle of Attack measurement

4. Tracking position measurement

5. Derailment prevention
PSI Technics - 1. Running gear inspection Mainline Yes
Automated Train 2. Identification of wear or deformation operational
Inspection System 3. Recording of displaced or lose components speeds
[52] 4. Detection of open or leaking hatches, open suspended doors, and

damaged door systems

5. Visual wheel truck/bogie inspection

6. Inspection of connections/threaded/bolted joints

7. Detection of laterally displaced springs/shock absorbers

8. Detection of visible defects that affect the underbody’s structural

integrity such as cracks

Acoustic Bearing Defect Detectors

Transportation 1. Identify roller bearings with internal defects in freight and passen- Operating Yes
Technological ger cars speed in
Center, inc. (TTCI) | 2. Reduced burn-offs and derailments most cases
- Trackside 3. Reduced hot-bearing train stops, and delays is 32 km/h
Acoustic Detection | 4. Locomotive bearing detection to 96 km/h
System [59] 5. Detection of High-risk defects (growlers and multiples)

6. Detection of Cup defects, Cone defects, and roller defects

7. Defect severity prioritization
Track IQ - In-Board | 1. Detection of defects of in-board axle journal bearings 20 km/hto | Yes
Bearing Monitor 2. Detection of rolling surface defects in bearing components on the 70 km/h
[53] underframe

3. Reduce in-service failures

4. Improved safety through detection and removal of defective mate-

rial in advance of catastrophic failure
Apna Technologies | 1. Designed to monitor roller bearings Mainline Yes
& Solutions 2. Identify the bearings with internal defects before overheating, ulti- | operational
(ApnaTech) - mately a failure, and costly train stops. speeds
Trackside Acoustic | 3. Remote monitoring and diagnostic capability
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TABLE 6. (Continued.) Wayside inspection system.

Detection System- 4. Lightning protected
TADS [55] 5. Two outputs for suspected defects: defect location and severity

ranking

Brake-Disk Condition Detectors

Track IQ — Brake 1. Brake Shoe/Pad Detection 10km/hto | Yes
Inspection Monitor | 2. Brake Shoe/Pad Thickness Measurement: + 2 mm 160 km/h.
[53] 3. Securing Key Detection

4. Other critical defect of brakes

5. Forecast the maintenance interval based on historical data
MERMEC Train 1. Measures overall disc thickness Measuring
Monitoring Systems | 2. Measures minimum disc thickness (hollowing of the disc) speed up to
- Brake 3. Measures thickness to the limit groove on the left and right side of | 250 km/h
Measurement and the disc
Inspection [54] 4. Shoe Thickness and Shoe Asymmetrical Wear

5. Detect missing Shoe

6. Measures Pad Thickness and Pad Asymmetrical Wear

7. Detect Missing Pad and its misalignment
PSI Technics - 1. Detection of broken/missing axle box covers and extensive wheel Mainline Yes
Automated Train disk damage operational
Inspection System 2. Detection of worn or missing brake linings/brake blocks, broken or | speeds
[52] missing brake beams, brake block keys, pull rods, damaged or missing

hand brake wheels, broken, damaged, or missing springs, and suspen-

sion springs

3. Inspection of spring-operated brake and electromagnetic shoe brake

Hot Axle Bearing and Hot/Cold Wheel Detectors

Ibérica Tecnologica | 1. VM vibration protection and threshold monitoring 0 km/h to Yes
En Sistemas De 2. Measuring all Standard axle bearing types 500 km/h
Seguridad 3. Entire bearing surface is continuously measured
Ferroviarios, SI, 4. Automatic identification of locomotives, wagons, and train compo-
(ITSS) - Pegasus- sitions
Hot Wheel Detector | 5. Hot wheel and Hot axle box detector
[60] 6. Thermal imaging of brakes and axle bearings

7. Redundant Auto calibration (RAC) and self-control

8. Scans disc, rim brakes, and all kinds of axle bearings
Voestalpine 1. Reduce derailment 0 km/h to Yes
Railway Systems - 2. Detect and monitor locked brakes, overheated loosened wheel rims | 450km/h
PHOENIX as well as broken wheel disks
HBD/HWD Hot 3. Monitor the temperature profile of the measured axles, wheels,
Box and Hot Wheel | and/or brake discs
Detection [61] 4. With an adapted temperature measurement level, cold wheels are

also detected
Southern 1. System is modular by design and can attach multiple devices, such | Mainline Yes
Technologies as bearing and wheel scanners, a dragging equipment detector, a operational
Corporation - high/wide load detector, etc. speeds
SMARTSCAN NG | 2. Monitor bearing and wheel temperature
[62] 3. Provides an ambient temperature indication for an STC defect de-

tector system
Apna Technologies | 1. The hot box detector is installed at the axle box level to check the Axle scan- | Yes
& Solutions temperature, both at the near axle and far axle. ning speed
(ApnaTech) — Hot 2. The hot wheel detector is installed at the track level to measure up to 250
Box Detector [55] wheel temperature. km/h

3. Automatic identification of Hot Box and Hot Wheel for railway op-

erations

4. Generates reports for each train with axle box and wheel tempera-

tures

5. Automatic identification of the rolling stock type

VOLUME 11, 2023
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FIGURE 19. Inspection systems; (a) Trimble WheelView system [51],
(b) Trimble TreadView system [50], (c) Track 1Q [53], (d) MERMEC Train
Monitoring Systems [54], (e) PSI Technics Automated Train Inspection
System [52].

monitoring of trains quickly. The product includes the
portals of the sensor which comprises image processing
pipelines to document and record anomalies, damage,
or wear to the train’s sides, roof, and structure of the
train underbody.

4. Track-1Q [53] has a reputation for being a professional
supplier, manufacturer, and operator of wayside equip-
ment for condition monitoring and data management
systems in the railway industry. Products for Track
1Q’s rolling stock monitoring include WCM, Bearing
Acoustic Monitor (Rail-BAM), Bogie Geometry Mon-
itor (BGM), and the vision-based systems for moni-
toring and evaluating the surface condition and wheel
profile, components of the bogie, wagon sides, brakes,
couplers, and trailer. Rail-BAM is a prognostic tool and
can predict bearing faults even months before the actual
occurrence. BGM uses proximity or position sensors to
determine any anomalous kinematic behavior.

5. MERMEC Train Monitoring Systems [54] majorly
provide a wayside real-time solution for measuring
wheel profile and diameter, brake inspection and
measurement, pantograph inspection and measure-
ment, and wheel surface defects detection. Differ-
ent sensors are installed on the trackside for measur-
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ing essential wheel parameters. The sensing system
includes lasers, video cameras, and an ad-hoc illumi-
nating system. The system installation is feasible and
can be installed on any railway infrastructure. It gives
robust identification of defective components and pro-
vides the least track out-of-service for easiness.

These inspection systems automatically inspect and mon-
itor bogie brakes, bogie components, undercarriage parts,
wagon sides, couplers, wheel profile, and surface condition
for the prevention of derailment, maintenance scheduling,
preventative maintenance, and to reduce rail and track dam-
age caused by overly worn railway wheels. Inspection and
measurement features of some commercialization devices
for automated inspection and safety operation for railway
management systems are given in Table 6.

IV. SUMMARY AND FUTURE DIRECTIONS

The design process of wayside systems is generally driven by
the fault that it is intended to detect. The choice of sensors and
communication between the wayside system and to control
room, data processing techniques, and real-time inferencing,
depends on the fault type being identified. In this paper,
the wayside research is categorized based on its sensing
end. However, other distinctions could be made in terms of
algorithmic techniques for defect identification and gather-
ing further insights to predict the effects of identified faults
on railway operations. Strain gauge based systems such as
WILD, and WLC in earlier years of their development used
signal processing and estimation theory techniques to detect
tread surface deformities. However, recently data fusion and
ML-based techniques are being used for more coherent pat-
tern recognition of different faults and have resulted in com-
paratively better results. On the other hand, ultrasonic and AE
still use signal processing and estimation theory techniques
such as advanced versions of wavelet transform and Bayesian
probabilistic estimation techniques to identify a pattern in
the time series data. Similarly, FBG-based research which is
a rather new sensing paradigm is going in the same direc-
tion. Imaging sensors-based research in terms of algorithmic
techniques could be further divided into wheel tread fault
detection and wheel profile variations. Wheel tread fault
detection techniques is using ML and DL-based systems.
Profile measurement along with help from a laser input (due
to the need for depth information) and 3D characteristics. For
this, the required high operating speeds are kept simple on the
algorithmic level and vary from system to system.

Recently, DL has revolutionized the field of pattern recog-
nition and information processing in general. Better time
series and sequential data processing techniques such as gra-
dient boosters [63] Long Short Term Memory (LSTM) [64]
and Auto-Regressive models [65] could be used for more
accurate feature extraction from ultrasound, strain gauge,
FBG, and acoustic sensors’ data. On the other hand, there are
several options available for fault identification from image
data. Algorithms such as You Only Look Once (YOLO)
provide fast and accurate real-time predictions and the effort

VOLUME 11, 2023



M. Z. Shaikh et al.: State-of-the-Art Wayside Condition Monitoring Systems for Railway Wheels

IEEE Access

needed for their on-edge synthesis has been greatly reduced
due to the presence of large, automated tools and software
frameworks. DL examples present in the wayside research
are very premature and other venues need to be explored for
better fault detection results. For the wheel profile estimation,
3D information extraction from 2D data is a progressing
field [66] which may replace the usage of an additional
component such as lasers for aiding in the 3D information
extraction.

V. CHALLENGES

A. ECONOMIC VIABILITY

Deployment of wayside systems greatly reduces component-
related failure incidents [67] Report published by the Federal
Railroad Administration (FRA) US determined that increased
deployment of wayside detectors greatly reduced the number
of component-related failure issues

According to the FRA of the USA, every equipment-
related railway accident cost financial damages of around
18300 USD on average. It is suggested in studies [68] that
automated wayside systems will only fail to detect faults 5 in
100 times.

For setting a rough reference point, consider the case exam-
ple of Pakistan railways. Pakistan railways, from Aug 2018 to
June 2019 reported 54 Accidents. Out of which 39 were
equipment failure-related derailments [69]. This value may
vary but it is safe to say that about 72% of accidents were due
to equipment. From Aug 2018 to Dec 2019 Pakistan Railway
lost 410 million in railway accidents [70].

If 72% of this cost (295.2 million) is due to equipment-
related failure, then deployment of automated wayside
inspection systems could have saved 95% (280 million) in
just one and half years and the lives of 110 people who were
unfortunate victims of these accidents.

However, there is a need for region-based case studies
to establish if wayside systems are economically viable to
deploy for railway industries.

B. DESIGN CHALLENGES FOR EARLY DIAGNOSIS
1) SENSING END CHALLENGES
Wayside systems are equipped with different types of sensors.
WILD and Wheel Profile Measurement Systems (WPMS) are
examples of such systems. Strain gauges, FBG sensors, and
high-speed cameras equipped with laser sensors are typically
used sensors in these systems [13]. However, vision sensors
have a clear advantage over the other counterparts as strain
gauges or FBG sensors need to be laid below the track. Hence,
once installed these systems do not provide portability [14].
Vision sensor systems can be relocated from one position to
another depending on the traffic flow and provide ease of
monitoring. However, these systems need proper calibration
before functioning. A single vision sensor based track-side
system installed on a junction can monitor all the trains
coming on different tracks [14].

Strain gauges are the commonly used sensors in wheel
defect CMS. These sensors monitor the impacts of faulty
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wheels over the rail and if the strain is above a certain
threshold, then the wheel is dissembled and taken for an
in-workshop assessment. However, strain gauges can only
detect defects when they have become severe enough to cause
impacts on the wheel and have already caused damage to rail
infrastructure [71]. Hence, early detection is not possible with
these sensors. Fiber-based sensing technology is a rather new
sensing paradigm being adapted for wheel condition monitor-
ing [31]. However, these sensors similar to strain gauges need
to be laid under the rails and cannot be moved once installed.
Ultrasonic and AE sensors are other types of sensors used
in wayside inspection. However, the response speed is very
slow and the vehicle needs to be slowed down to get more
precise data [24]. On the other hand, high-speed cameras
aided by laser sensors provide reliable, fast, and accurate
information from the wayside about wheel profile and wheel
tread defects. In addition to that, it also provides flexibility
in terms of the portability of wayside systems [24], [38],
[39], [72]. These sensors with proper calibration and aided
by powerful algorithmic techniques such as DL could be
deployed alone for early detection of wheel tread defects and
variations in wheel profile.

2) PROCESSING TECHNIQUES CHALLENGES

In previous sections, it has already been discussed that vision
sensors have a clear advantage including portability and early
detection capability. However, defect identification from a
moving target (wheel) is a challenging task in itself. It is hard
to classify the naturally occurring faults from the image data
since most of the time surface defects appear in conjunction
with each other and it’s hard to visually distinguish them from
one another. Since fault classification leads to the cause of
the fault for the development of the prognostic system, it is
necessary to distinctly identify fault types. Another challenge
is the greatly varying light conditions in the surrounding
environment. Visual inspection systems (VIS) for wheels
need to have reflection, shadow, and motion blur tolerance
for efficient functioning. VIS should also be able to capture
the entire circumference of the wheel and needs to have
the required field of view, frames per second, and working
distance. Processing techniques should also satisfy the mem-
ory, latency, and throughput requirements under operational
conditions. Apart from DL, advanced signal processing tech-
niques such as Wavelet transform and Kalman filtering could
be used as a preprocessing step to get more coherent data and
deeper insights into the performance of vehicle operation.

C. PROBLEMS, KNOWLEDGE GAPS, AND

FUTURE SUGGESTIONS

Traditional wayside systems for online condition monitoring
of wheel profile and tread such as WILD are equipped with
strain gauges [26], [27], [29]. These systems help identify
faults when they are severe enough to put stress on the rails.
However early detection of the faults is not possible through
these systems. Additionally, these systems do not offer porta-
bility and are harder to deploy onsite. However, WILD is
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also one of the most deployed wayside system, and fur-
ther research into using advanced signal processing and DL
techniques for getting the most out of the current pool of
deployed systems could be explored. This will help the indus-
try upgrade its fault detection systems without bearing the
infrastructural cost of new systems. FBG sensors are a new
type of optical sensor recently being explored by researchers
for wheel condition monitoring [28], [31], [32]. These sensors
provide more resolution and sensitivity and enable the detec-
tion of faults early. However, similar to strain gauges these
sensors also need to be laid under the rails and cannot be
moved once installed. Further research could be potentially
aimed toward the manufacturing of portable versions of FBG
sensors to ease the installation process of these systems.
Additionally, considering the high fidelity of data acquired
by FBG sensors, further methods of estimating the useful life
of the rolling equipment, and derailment risk factor could
be developed. Vision sensors are very useful for the early
detection of wheel tread faults coupled with machine vision
and image processing [36], [72], [73]. Advanced algorithmic
techniques for ROI segmentation, data quality enhancement
and profile estimation are yet to be explored. DL techniques
have revolutionized the field of pattern recognition in recent
years and help extract useful features even from noisy or
cluttered data. Another knowledge gap is the simultane-
ous consideration of wheel tread faults and geometric pro-
file parameters. Since these are closely associated with one
another, a more synergetic approach is needed to get more
precise information about the wheel condition.
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