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ABSTRACT With the advances in deep learning, including Convolutional Neural Networks (CNN), auto-
mated diagnosis technology using medical images has received considerable attention in medical science.
In particular, in the field of ultrasound imaging, CNN trains the features of organs through an amount of
image data, so that an expert-level automatic diagnosis is possible only with images of actual patients.
However, CNN models are also trained on the features that reflect the inherent bias of the imaging machine
used for image acquisition. In other words, when the domain of data used for training is different from that
of data applied for an actual diagnosis, it is unclear whether consistent performance can be provided by the
domain bias. Therefore, we investigate the effect of domain bias on the model with liver ultrasound imaging
data obtained from multiple domains. We have constructed a dataset considering the manufacturer and the
year of manufacturing of 8 ultrasound imaging machines. First, training and testing were performed by
dividing the entire data, in a commonly used method. Second, we have utilized the training data constructed
according to the number of domains for the machine learning process. Then we have measured and compared
the performance on internal and external domain data. Through the above experiment, we have analyzed the
effect of domains of data on model performance. We show that the performance scores evaluated with the
internal domain data and the external domain data do not match. We especially show that the performance
measured in the evaluation data including the internal domain was much higher than the performance
measured in the evaluation data consisting of the external domain. We also show that 3-level classification
performance is slightly improved over 5-level classification by mitigating class imbalance by integrating
similar classes. The results highlight the need to develop a new methodology for mitigating the machine
bias problem so that the model can work correctly even on external domain data, as opposed to the usual
approach of constructing evaluation data in the same domain as the training data.

INDEX TERMS Domain bias, multi-domain learning, ultrasonography, liver fibrosis.

I. INTRODUCTION

Ultrasound (US) images, which can be obtained without
harmful radiation being applied to the human body, are
mainly used in the medical field. In abdominal radiology,
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US images are most used in the continuous observation of
patients with liver cirrhosis or chronic hepatitis to detect
hepatocellular carcinoma and evaluate the degree of liver
fibrosis [1]. US images are taken using the reflected wave
of a sound wave pulse [2]. Unlike superficial organs, such
as the breasts and thyroid gland, the liver is located deep
inside the human body. Therefore, during the process of
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FIGURE 1. Schematic diagram of convolutional neural network using multi-domain datasets. We trained VGGNet, ResNet, DenseNet, EfficientNet, and ViT.
The data from machine E is not used for training the models. Models were evaluated using five and three-level classifications.

transmitting and receiving signals inside the human body,
which has numerous obstacles, the signals are weakened and
the probability of exposure to various noises increases. Com-
pared to other medical imaging technologies, diagnosis using
US imaging tends to be highly dependent on the competence
of an expert.

For objective diagnoses, research on US imaging diag-
nosis based on the use of deep convolutional neural net-
works (DCNNs) has been actively conducted. A DCNN
is an algorithm mainly applied in imaging and has shown
excellent performance in various applications, such as image
segmentation and classification. US imaging diagnosis using
DCNN s is objective as it eliminates individual differences
in disease diagnosis and shows performance comparable to
that of radiologists. Existing automated classification mod-
els were trained and evaluated using images acquired from
machines limited to a specific domain. There are many types
of US imaging machines, and each machine has its own noise.
A model trained on images acquired from a single device is
biased toward the characteristics of the corresponding imag-
ing device. In other words, only images acquired from the
same domain as the data used for learning are correctly diag-
nosed. However, US images used in most studies are either
acquired by a single machine or used without consideration
of the imaging machines [3]. Some studies have reported that
this may not work effectively for images acquired from infre-
quently used machines [4], [5], [6]. It is difficult to guarantee
the level of performance when US images obtained using
a new device are used for diagnosis. Therefore, application
and analysis of DCNN learning using multi-domain data is
required for generalized automatic diagnosis.

In this study, liver US images obtained from 8 different
US instruments were used to analyze the machine bias prob-
lem. Considering that there are several different types of
US equipment (and of different ages), multi-domain data is
expected to reflect real clinical situations. The liver US image
data set consists of five stages of cirrhosis according to the
METAVIR scoring system: no fibrosis (F0), portal fibrosis
(F1), periportal fibrosis (F2), septal fibrosis (F3) and cirrhosis
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(F4). We use VGGNet, ResNet, DenseNet, EfficientNet and
ViT, which are deep learning models mainly used for image
classification. US images obtained from eight different US
machines were used for the learning of each model. Finally,
diagnostic validity was tested using images obtained from
a new domain machine. The classification performance for
each class and the effectiveness of class unification for similar
symptoms were evaluated.

TABLE 1. CNN-based diagnosis study using data collected with a single
US machine.

Reference Machine Task Performence
[9] ACUSON S1000  Fatty Liver Disease 0.906
[10] ACUSON S2000 Breast Tumor 0.741
[11] Sonosite X-Porte Pleural Effusion 0911
[12] Aixplorer Liver Fibrosis 0.937

A. RELATED WORKS

In this section, we describe related works on Al-based
US image classification. Some related research works were
searched from PubMed or Google Scholar engine. A vari-
ety of disease classification studies have been conducted
through CNN-based deep-learning models using organ ultra-
sound images [7]. In many studies, deep learning models
successfully diagnose diseases by training features from
ultrasound images [8]. The dataset used in the study con-
sists of images collected from single or multiple ultrasound
machines. The research mentioned in Table 1 proposes an
automated disease diagnosis system using data collected
from a single ultrasound machine. Reddy etal. [9] pro-
posed a framework using convolutional neural networks and
transfer learning to improve the accuracy of fatty liver dis-
ease classification using ultrasound images. They validated
fatty liver disease classification performance with 90.6%
accuracy using the VGG-16 pre-trained with the ImageNet
dataset. Ultrasound images used in the experiment were
collected with Siemens’s ACUSON S1000. Zhou et al. [10]
proposed a new multi-task learning framework for tumor
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segmentation and classification in breast ultrasound images.
The proposed framework verified the breast tumor
segmentation and classification performance with a mean
dice similarity coefficient of 0.778 and an accuracy of
74.1%. Ultrasound images used in the experiment were
collected with Siemens’s ACUSON S2000. Tsai et al. [11]
developed a deep learning-based automated system for the
automatic detection of pleural effusion in lung ultrasound
images. For efficient and stable classification, a regular-
ized spatial transformer network (Reg-STN) structure was
proposed. The proposed system verified the classification
performance of pleural effusion with an accuracy of 91.12%.
Ultrasound images used in the experiment were collected
with FujiFilm’s Sonosite X-Porte. Xue et al. [12] proposed
a multimodal ultrasound imaging-based radiomics transfer
learning method that combines image information of gray
scale modality and elastogram modality to classify liver fibro-
sis in liver ultrasound images. Using a model pre-trained with
the ImageNet dataset, they compared models with and with-
out transfer learning. Liver fibrosis grading performance was
validated with an area under the roc curve(AUC) of 93.7%.
Ultrasound images used in the experiment were collected
with SuperSonic Imagine’s Aixplorer. Automated diagnostic
systems using data collected from a single instrument have
been validated with meaningful performance. However, it has
not been validated with data collected with external domains,
and validation on external domain data can not guarantee
consistent performance with validation on internal domain
data.

The study mentioned in Table 2 proposed an automatic
diagnosis system using data collected from multiple ultra-
sound machines. Cheng and Malhi [13] evaluated the per-
formance of transfer learning using VGGNet and CaffeNet
pre-trained with the ImageNet dataset for the classification of
abdominal ultrasound images. Abdominal ultrasound images
were classified into 11 categories, and classification per-
formance was verified with an accuracy of up to 77.9%.
Ultrasound images used in the experiment were collected
with Philips’s EPIQ 7 and Toshiba’s Aplio XG. Kuo et al.
[14] evaluated the performance using a pre-trained ResNet
on ImageNet to automatically diagnose chronic liver disease
from renal ultrasound images. The classification performance
was verified with an accuracy of 85.6%. Ultrasound images
used in the experiment were collected with GE’s LOGIQ
E9 and LOGIQ P3. Roy et al. [15] presented a new deep
network derived from spatial transformer networks for lung
ultrasound image segmentation. They verified the segmen-
tation performance of imaging biomarkers of COVID-19 in
lung ultrasound images with a Dice score of 0.75. Ultrasound
images used in the experiment were collected with Min-
dray’s DC-70 Exp, Esaote’s MyLab Alpha, Toshiba’s Aplio
XV, and ATL’s Ultrasound Probes. Zhu et al. [16] developed
and evaluated TNet and BNet using VGG-19 pre-trained
on the ImageNet dataset to classify thyroid nodules and
breast lesions in ultrasound images. The classification per-
formance of thyroid nodules and breast lesions was verified
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TABLE 2. CNN-based diagnosis study using data collected with multiple
US machines.

Machine Task
Liver
Kidney
Spleen 0.779
Pancreas
Gallbladder

Reference Performance

EPIQ 7

1
(131 Aplio XG

LOGIQ E9
LOGIQ P3
DC-70 Exp
MyLab Alpha
Aplio XV
Ultrasound Probes
ACUSON Oxana
ACUSON S3000
[16] Apolio 500
LOGIQ E9
EPIQ 7
1022
ATL UM-9 HDI
HDI-3000
[17] HDI-5000
LOGIQ E9
ACUSON Sequoia
128XP
1022
EPIQ 7
MyLab 50
HI VISION Ascendus
[18] ALOKA Prosound F75
Voluson E8
LOGIQ E9
Vivid E9
ACUSON 52000
Voluson 730
Voluson 730 expert
Volusion E6
Volusion E8
[19] Volusion E10 Fetal Brain 0.963
ALOKA SSD-al0
ACUSON 52000
TUS-X200
UGEO WS80A
EPIQ 7

[14] Chronic Kidney Disease 0.856

[15] COVID-19 0.75

Thyroid Nodules 0.863
Breast Lesions 0.865

Liver Fibrosis 0.764

Thyroid Nodules 0.8732

with an accuracy of 86.3% and 86.5%, respectively. Ultra-
sound images used in the experiment were collected with
Siemens’ ACUSON Oxana and ACUSON S3000, Toshiba’s
Aplio 500, GE’s LOGIQ E9, and Philips’ EPIQ 7. Lee et al.
[17] evaluated METAVIR score prediction performance with
VGGNet pre-trained on ImageNet in liver ultrasound images.
The classification performance of liver fibrosis was veri-
fied with an accuracy of 76.4%. Ultrasound images used
in the experiment were collected with Philips’ 1U22, ATL
UM-9 HDI, HDI-3000, HDI-5000 and GE’s LOGIQ E9,
and Siemens’ ACUSON Sequoia, 128XP. Wang et al. [18]
proposed a deep learning method for diagnosing thyroid
nodules using multiple ultrasound images as inputs in one
examination. The proposed system verified the classification
performance of thyroid nodules with an accuracy of 87.32%.
Ultrasound images used in the experiment were collected
with Philips’ IU22, EPIQ 7 and Esaote’s MyLab 50, Hitachi’s
HI VISION Ascensus, ALOKA Prosound F75, and GE’s
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TABLE 3. Details of the data set used in the experiment. It was collected with 8 US machines of various companies and years of manufacture and

represents the number of patients at each stage of liver fibrosis.

Machine Manufacturer  Number of patients Manufactured year Fibrosis
FO F1 F2 F3 F4
EUB-7500 Hitachi 182 2009 43 27 28 29 55
1022 Philips 176 2009 88 13 7 16 52
ACUSON S2000 Siemens 106 2009 19 8 6 13 60
ACUSON Sequoia Siemens 65 2009 13 2 4 7 39
LOGIQ E9 GE 108 2013 46 4 6 17 35
ALOKA Prosound-F75 Hitachi 129 2016 31 29 28 11 30
LOGIQ E10 GE 127 2019 383 29 11 27 22
LOGIQ S8 GE 51 2019 13 10 11 8 9

Voluson E8, LOGIQ E9, Vivid E9, and Siemens’ ACUSON
S2000. Xie et al. [19] evaluated the performance of a deep
learning algorithm to segment and classify as normal or
abnormal in fetal brain ultrasound images. Segmentation and
classification performance was verified with a dice score of
0.941 and an accuracy of 96.3%. Ultrasound images used in
the experiment were collected with GE’s Volusion 730, Volu-
sion 730 expert, Volusion E6, Volusion E8, Volusion E10,
and Hitachi’s ALOKA SSD-al0 and Siemens’ ACUSON
S2000, Toshiba’s TUS-X200, Samsung’s UGEO WSS80A,
and Philips’s EPIQ 7. Experiments using data collected with
multiple ultrasound machines constituted training and vali-
dation data with images collected in the same domain. Such
a model may have generalized diagnostic performance, but
no study has yet directly analyzed the domain bias. The
domain bias problem of ultrasound images is a common
problem, but there are not many studies that have compared
the performance of internal and external verification data.
In this paper, data collected with various ultrasound machines
were reconstructed according to the number of machines
and verified with images collected from internal or external
domains.

Il. METHODS

A. DATA SOURCE

US images from a tertiary university hospital (Seoul
St.Mary’s Hospital) were used for training and validation.
Data from another university hospital (Eunpyeong St. Mary’s
Hospital) were used for testing. This study was licensed
by the institutions of both hospitals (KC20RISI0869 and
PC20RISI0229). The training/validation dataset consisted of
US images acquired from eight different machines (mainly
by six manufacturers), four to fifteen years old (Table 1),
whereas the test dataset consisted of US images from two
machines, which were three years old. Data from patients
who underwent liver biopsy or liver resection at Seoul St.
Mary’s Hospital between 2011 and 2020 and Eunpyeong
St. Mary’s Hospital between 2019 and 2020 are included.
In the case of a contracted liver or ascites, non-invasive
methods, such as transient elastic angiography, to evaluate
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liver fibrosis are error-prone. Among them, data from patients
who had a US liver examination within 3 months prior to
biopsy or surgery were included in this study, and data from
766 patients in the training/validation set and 189 patients
in the test set were included. A radiologist with 11 years of
experience in US abdominal imaging reviewed all images
and selected liver images using a convex probe commonly
applied to the abdominal organs. Doppler US images and
images showing biopsy needles were excluded. In this study,
for automatic diagnosis of liver fibrosis, METAVIR scores
were used to classify the status of US images. The METAVIR
score used to evaluate fibrosis consists of five grades: FO, F1,
F2, F3, and F4, where FO is a clear image without fibrosis, F1
is portal fibrosis without septum and minor abnormal areas,
and F2 is portal fibrosis with fewer septa and abnormalities
in a wider area than F1, F3 indicates many septa and no
cirrhosis and significant abnormalities, and F4 indicates liver
cirrhosis in sharp contrast to the normal region. F1, F2,
and F3 are the initial stages of cirrhosis, and it is difficult
to discriminate between abnormal regions in these stages
[20]. A visual identification of each METAVIR score using
US images depends on the empirical factors of the radiol-
ogist [21]. Using US images labeled by METAVIR score,
we experimented with five-level classification: FO, F1, F2,
F3, and F4. In addition, we grouped classes of similar stages
and performed experiments with three-stage classification:
normal conditions (F0), portal fibrosis (F1, F2, and F3),
and cirrhosis (F4). Classes F1, F2, and F3 can partake in
single group because the boundary between these levels is
ambiguous. Finally, during the experiment, we considered the
effectiveness of an automated diagnosis through both five and
three-level classification experiments.

B. DATA BALANCE AND PRE-PROCESSING

Liver US images were collected with eight machines, and
the distribution of fibrosis stages is shown in Table 4. Data
were annotated by a radiologist with specialized knowledge
in this field. When the model is being trained, the class
distribution ratio in the data set must be considered [22].
Unbalanced data causes overfitting or underfitting of certain
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LOGIQ E9

FIGURE 2. Examples of US images by US machine and stages of liver fibrosis. GE's LOGIQ E9, Hitachi’s ALOKA Prosound-F75, EUB-7500, Siemens’ ACUSON

$2000, ACUSON Sequoia, and Philips’ 1U22 were used.

TABLE 4. The number of data samples per fibrosis stage. Among the
advanced stages of liver fibrosis, relatively few intermediate stages, F1,
F2, and F3 are present. We perform three-level classification by grouping
intermediate stages.

METAVIR SCORE | The number of images
FO 2114
Fl1 861
F2 793
F3 857
F4 1698
Total 6323

classes when training a model [23], [24]. In particular, data
on diseases that are difficult to detect at an early stage, such
as cirrhosis, the number of samples that are progressing to
malignancy is relatively scarcer than the number of benign or
malignant samples. In general, FO and F4 are easily obtained,
and such data occupy more than half of the dataset. Class F4,
in which the cirrhosis of the liver has progressed significantly,
accounted for 27% of the dataset. However, the distributions
of F1, F2, and F3 were relatively low because only a few
patients were tested during the early stages of cirrhosis.
The proportions of F1, F2, and F3 in our dataset are 13%
each. Although the distribution of classes is unbalanced in
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the five-level classification, the distribution of classes in the
three-level classification is relatively uniform at 33%, 39%,
and 27%, respectively.

Data augmentation was performed to mitigate the class
imbalance problem of the five-level classification [25]. Data
augmentation of images using computer vision methods
resulted in efficient training from limited datasets [26]. Trans-
lation, rotation, flipping, cropping, noise generation, and
color jitter are used for such augmentation [27], [28]. How-
ever, if data augmentation is applied incorrectly, the inher-
ent meaning of the original data may be damaged by the
applied augmentation method. For example, if the data of
a liver cirrhosis image is augmented through cropping, the
cropped image can be considered normal if the cropped area
is local. In this case, the augmented data may correspond
to erroneous data that does not include cirrhosis. Thus, the
augmentation method should be considered to preserve the
inherent meaning. The liver US image has a pixel resolu-
tion of 800 x 600 and is a circular sector in shape. Ran-
dom cropping was not applied to avoid damaging the liver
fibrosis area. Random horizontal flips were applied to create
geometric diversity. Considering the fan shape, flipping and
rotation were not applied. Images resized to 224 x 224 pixel
resolution and pixel values normalized were used for model
training.
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C. MODELS

The models were trained using VGGNet-16 [29], ResNet-
50 [30], DenseNet-121 [31], EfficientNet-BO [32], and ViT
[33]. Each model commonly consists of an encoder f(9) and
a classifier g(6). The encoder f(6) extracts mid-level features
through convolution, and the classifier g(6) classifies the final
features as class. The output values of g were normalized
to probabilities using the softmax function. The objective
cross-entropy function was configured such that the probabil-
ity of the target class was maximized. Finally, the parameter
6 was trained to optimize the objective function.

1) VGGNET

VGGNet acquired second place in the 2014 ILSVRC. With
the advent of VGGNet, the depth of the network can be
increased. VGGNet succeeded in network training with a
depth more than twice that of AlexNet’s 8-layer model and
reduced the error rate of AlexNet by half in the ImageNet
challenge. Models before VGGNet showed good perfor-
mance by including 11 x 11 filters or 7 x 7 filters with
relatively large receptive fields. However, VGGNet used a
3 x 3 kernel size filter to reduce the number of training
parameters and increase the nonlinearity due to many recti-
fied linear units. VGGNet was increasingly used for trans-
fer learning because it was structurally simple and easy to
understand.

2) RESNET

ResNet won the 2015 ILSVRC. Microsoft developed it with
a layer depth of about 7, making ResNet as deep as that of
Google’s similar solution GoogleNet. ResNet uses a residual
block to solve gradient loss and explosion. The residual block
uses shortcuts to add input values to output values. Existing
neural networks are trained so that H(x) = x, but ResNet is
trained so that F(x) becomes 0 by defining H(x) = F(x) + x.
At this time, if this equation is differentiated, the added x
becomes 1, solving the problem of gradient loss. The num-
ber of parameters and the complexity of the network were
reduced by using a bottleneck design witha 1 x 1 convolution
layer added.

3) DENSENET

DenseNet was introduced at CVPR 2017. DenseNet solves
the vanishing gradient problem in a slightly different way
from ResNet, and can achieve high performance even in low-
depth networks. ResNet combines input values of previous
layers through add operations, whereas DenseNet improves
information flow by connecting all layers through concatenat-
ing operations. The vanishing gradient problem is alleviated
by directly passing the values of the initial feature map to
the values of the last feature map. Since the concatenation
operation requires the size of the feature map to be the same,
a dense block is introduced to make the size of the con-
nected feature map constant. Similar to ResNet, the amount
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of computation is reduced by using a bottleneck layer that
controls the input value channel.

4) EFFICIENTNET

EfficientNet was introduced at ICML in 2019. To improve the
performance of the model, the depth, width, and resolution
of the model were adjusted. As the depth increases, more
complex features can be captured, but it becomes difficult to
learn due to the problem of vanishing gradient. Increasing the
width of each layer increases the accuracy, but the amount
of computation increases in proportion to the square. If the
resolution of the input image is increased, detailed features
can be learned, but the amount of computation increases
in proportion to the square. When all three (depth, width,
and resolution) are increased to a certain extent, the size of
the model increases, but the accuracy decreases. Unlike the
existing method of manually adjusting these three parame-
ters, EfficientNet achieved state-of-the-art performance with
a smaller model by applying a complex scaling method that
can be automatically adjusted.

5) VIT

ViT was introduced at ICLR in 2020. Transformers have
been limitedly applied to the field of natural language pro-
cessing, where input data have one-dimensional sequences,
and the field of computer vision, where input data have
three-dimensional sequences. ViT was the first to introduce
transformers to computer vision, and it showed performance
similar to or higher than that of state-of-the-art models. ViT
uses a three dimension sequence converter by dividing the
image into patches and using the same concept as the token of
NLP. In this way, the computer vision task does not depend on
the CNN structure and can achieve better performance than
state-of-the-art models at about one-fifteenth of the computa-
tional cost. In this experiment, we used ViT-B/16 trained with
ImageNet 1k data and applied it with a patch size of 16 x 16.

D. TRANSFER LEARNING

We applied transfer learning to model training [34]. Learning
models from the scratch is valid only when the training data
samples are more than 5000 per class [35]. However, the
sharing of medical data from hospitals has been stopped
according to the personal information protection act [36].
In addition, the number of patients and statistics on disease
are limited locally. The restriction of training data causes bias
and model overfitting or underfitting [37]. Transfer learning
complements parameter optimization with small amounts of
training data using models trained on a wide range of data
sets from different domains [38]. In this study, a model pre-
trained with ImageNet was used to fine-tune the model with
the liver US images. During pretraining with ImageNet of
1000 classes, the model learns to extract high-level features
from images. Therefore, the pre-trained model’s convolu-
tional filters are more optimized than a model trained from
scratch when learning new data. It would be ideal to use
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a model pre-trained by ultrasound imaging, but it is diffi-
cult to acquire a quantity comparable to ImageNet for rea-
sons such as patient privacy issues. In particular, in most
medical image classification studies, such as US, MRI, CT,
and endoscopic images, the performance of transfer learning
using a pre-trained model with ImageNet has been verified
to be effective [7], [12], [13], [39]. To perform fine-tuning,
we adapted the output layer configuration to the number of
classes in a given dataset. We classified the liver US images
were classified into 5 detailed stages and 3 grouped stages.
When the post-trained data set and the pre-trained data set
are similar, the model can obtain effective results even if
the convolutional layer is frozen. However, in post-training
with US images, all parameters are retrained because the
intrinsic properties are different from ImageNet and medical
US images.

TABLE 5. Dataset configuration to evaluate model performance without
domain distinction. Data obtained from the six types of machines were
split in an 8:2 ratio for training and testing.

Machines Class The .number
of images

FO 1628

Fl 626

LOGIQ E9 Train | F2 581
ALOKA Prosound-F75 F3 608
ACUSON S2000 F4 1281
ACUSON Sequoia FO 411
EUB-7500 Fl 160
1022 Test | F2 148

F3 156

F4 325

E. MODEL TRAINING

In this section, we describe the details of the model train-
ing. To evaluate the performance of multi-domain learning,
training and test data were obtained from eight different
US machines. The first training dataset contains data from
LOGIQ E9 and ALOKA Prosound-F75 of similar age. The
second training dataset included data collected from the
LOGIQ E9, ALOKA Prosound-F75, ACUSON S2000, and
ACUSON Sequoia. The third training dataset included data
collected with the LOGIQ E9, ALOKA Prosound-F75, ACU-
SON S2000, ACUSON Sequoia, EUB-7500, and IU22. The
test data consisted of: 1) Validation dataset without distinc-
tion of the domain, 2) validation datasets collected with
LOGIQ E9 and ALOKA Prosound-F75 for evaluation in the
internal domain; 3) Validation datasets collected with LOGIQ
E10 and LOGIQ S8 for evaluation in external domains.
The ratio of the training and validation sets was 8:2. The
experimental data composition is shown in Table 5, Table 6.
All models used in the experiment were pre-trained using
the ImageNet dataset [40]. Cross-entropy loss with nega-
tive log-likelihood was used as the loss function for the
training phase. The optimization algorithm and learning-rate
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TABLE 6. Dataset configuration to evaluate model performance on
internal and external domain data. The model is trained on data acquired
from two, four, and six devices, respectively, and evaluated in two
domains same as an internal domain and against data acquired from two
external domains.

The number

Machines Class .
of images

FO 443

F1 137

2 Machines ALOKLAOI?IQ E9d 75 F2 176

rosound- B 138

F4 296
F 2

LOGIQ E9 F(l) g 22

4 Machines ALOKA Prosound-F73 Train | F2 234

ACUSON 52000 =) 275

ACUSON Sequoia i )

LOGIQ E9 FO 1628

ALOKA Prosound-F75 F1 626

6 Machines ACUSON S2000 F2 581

ACUSON Sequoia F3 608

EUB-7500, TU22 F4 1281

FO 112
Internal F1 35
drz):;li(; LOGIQ E9 F2 45
machines ALOKA Prosound-F75 B 13
Test F4 76
FO 75
Extergal LOGIQ E10 F1 75
domain LOGIQ S8 F2 64
machines F3 93
F4 92

scheduler used the Adam optimizer and cosine annealing
LR, respectively. The batch size was set to 64 and the initial
learning rate was started at 0.001 and adjusted to a value close
to zero with 50 epoch cycles by the scheduler.

F. EVALUATION METRICS

The diagnostic model was evaluated on the cirrhosis images
of the test set using the metrics of accuracy (1), preci-
sion (2), recall (3), and Fl-score (4) [41]. Here, TP, FP, TN,
and FN represent true positive, false positive, true negative,
and false negative, respectively. Accuracy is defined as the
number of correctly predicted data points divided by the total
number of data points. Precision is defined as the proportion
of data that are actually positive among the data predicted as
positive. Recall is defined as the ratio of the data predicted
to be positive to the actual positive data. Fl-score is the
harmonic mean of precision and recall.

TN + TP
Accuracy = (1)
TN + FP+ FN + TP
. TP
Precision = ——— )
TP + FP
TP
Recall = ——— 3)
TP + FN
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Precision x Recall
F1 — score =2 % — 4
Precision + Recall

Ill. RESULTS

TABLE 8. Three-level classification performance of the model on datasets
constructed without distinction of domains. Combine F1, F2, and F3 into
one class and measure the precision, recall, and F1-score of FO/F123/F4.

Table 7 shows the five-level classification performance of Model  Accuracy Class Precision Recall Fl-score
the models consisting of FO/F1/F2/F3/F4 as listed in Table 3. FO 0.8721 08127 08413
ResNet had the highest accuracy at 85.92%, and the average VGGNet 08342 Fl]ff 8'22?1) 8'2322 g'zzz
accuracy of the five models was 84.37%. Among all the 0 08559 08636 08771
models, the classification performances of FO and F4 were ResNet 08792  FI23 08691 08728 08710
higher than those of F1, F2 and F3. This result indicated F4 0.8852 0.9015 0.8933
that the classification of F1, F2, and F3 was weak. Thus, the FO 0.8813 0.8491 0.8649
classes with relatively small training data were underfitted DenseNet 0.8583 F123 08552  0.8276  0.8412
due to data imbalance. Fa 08366 09138 08735
FO 0.8916 0.8808 0.8862
TABLE 7. Five-level classification performance of the model on datasets EfficientNet 0.8775 F123 0.8599 0.8599 0.8599
constructed without distinction of domains. Precision, Recall, and F4 0.8848  0.8985  0.8916
F1-Score of FO/F1/F2/F3/F4 were measured. FO 0.8585 0.8564 0.8575
ViT 0.8533 F123 0.8525 0.8470 0.8497
Model Accuracy Class Precision Recall Fl-score F4 0.8480 0.8585 0.8532
FO 0.8637 0.8637 0.8637
F1 0.7848 0.7750 0.7799
VGGNet 0.8317 F2 0.8605 0.7500 0.8014 TABLE 9. Classification performance of the models on the internal
F3 07383 07051  0.7213 domain dataset.
F4 0.8442 0.9169 0.8791
FO 0.8744 08978  0.8860 The number of Model Accuracy
AU
"B 07548 07500 07524 VGGNet 0.8070  0.8544
F4 08780 09077  0.8926 ResNet  0.8259  0.8703
FO 0.8697 0.8929 0.8812 2 machines DenseNet 0.8133 0.8481
F1 0.7939 0.8187 0.8062 EfficientNet  0.8101 0.8734
DenseNet 0.8417 F2 0.8740 0.7500 0.8073 ViT 0.8354 0.8418
F3 07939 0.6667  0.7247 VGGNet  0.8070 0.8418
F4 0.8366 0.9138 0.8735 ResNet 0.8513 0.8639
FO 0.8802 0.8759 0.8780 4 machines DenseNet 0.8259 0.8576
F1 0.8506 0.8187 0.8344 X
EfficientNet  0.8517 F2 08483 08311 0839 EfficientNet  0.8196  0.8671
F3 07852 07500  0.6721 ViT 0.8449  0.8418
F4 0.8484 0.8954 0.8713 VGGNet 0.7943 0.8513
FO 0.8204 0.9002 0.8585 ResNet 0.8196 0.8703
F1 0.8456  0.7875  0.8155 6 machines DenseNet  0.8165 0.8576
ViT 0.8342 F2 0.8759 0.8108 0.8421 EfficientNet 0.8101 0.8576
F3 0.7812 0.6410 0.7042 ViT 0.8323 0.8291
F4 0.8507 0.8769 0.8636

Table 8 shows the three-level classification performance
of the models. Compared to the five-level classification,
the classification performances of FO and F4 were slightly
decreased and the classification performance of F123 was
slightly improved, which increased the overall model per-
formance. The five-level classification model showed weak
performance in F1/F2/F3, but the F1 score was relatively
uniform for the three-level classification model. ViT had the
highest accuracy at 87.92% and the average accuracy of the
five models was 86.45%.

A. PERFORMANCE OF THE MODELS ON THE INTERNAL
AND EXTERNAL DOMAIN DATASET

The models were individually trained on three different
domain data and evaluated using internal and external data.

VOLUME 11, 2023

Table 9 shows the performance of the multi-domain training
model on the data collected with LOGIQ E9 and ALOKA
Prosound-F75 of the internal domains. In the five-level classi-
fication, the models trained using data from two, four, and six
machines had an accuracy of 83.54%, 85.13%, and 83.23%,
respectively. In the three-level classification, the models
trained using data from two, four, and six machines had
an accuracy of 87.34%, 86.71%, and 87.03%, respectively.
Table 10 shows the performance of the multi-domain training
model on the data collected from the LOGIQ E10 and LOGIQ
S8 of the external domains. In the five-level classification,
the accuracies were 27.32%, 27.32%, and 26.32% for mod-
els trained using data from two, four, and six machines,
respectively. In the three-level classification, the accuracies
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TABLE 10. Classification performance of the models on the external
domain dataset.

The nun.lber of Model Accuracy
machines S-class  3-class
VGGNet 0.2732  0.4737
ResNet 0.1980  0.4662
2 machines DenseNet 0.2155 0.4561
EfficientNet 0.2381 0.4110
ViT 0.2581 0.4110
VGGNet 0.2431 0.4586
ResNet 0.2431 0.4135
4 machines DenseNet 0.2531  0.4687
EfficientNet  0.2707  0.4010
ViT 0.2732 0.4586
VGGNet 0.2281  0.4586
ResNet 0.2632 0.4536
6 machines DenseNet 0.2331 0.4286
EfficientNet  0.2431  0.3810
ViT 0.2281 0.4386

were 47.37%, 46.87%, and 45.86% for models trained using
data from two, four, and six machines, respectively.

IV. DISCUSSION

A deep learning-based automatic diagnosis model using
ultrasound images classifies ultrasound images to be used for
diagnosis by utilizing the feature extraction function acquired
through a large number of ultrasound images. Thus, if the
training data was acquired only for a specific device, there
is a possibility that the model was trained by reflecting the
bias of the device. That is, it may show different results from
the expected performance depending on which device the
image is acquired from. In general, to evaluate a classification
model is trained and evaluated by dividing a portion of the
data. We focus on whether there is a performance difference
depending on which equipment the images used for learning
and evaluation are acquired. To evaluate from internal domain
data, training data consisting of multi-domains is constructed,
and images of the same domain are used for evaluation.
When measuring the performance of a model for evaluation
on external domain data, the image acquired from specific
equipment is excluded and trained, and the excluded image is
used for evaluation. Generally, when images acquired from
all domains were trained and evaluated at a certain ratio, the
classification performance was higher than when evaluated in
the internal domain. When evaluated in the internal domain,
the classification performance was higher than when evalu-
ated in the external domain. In the case of learning with data
composed of two or more domains, when evaluated from data
separated from the training data, it was measured higher than
when evaluated with a single domain. As such, it was found
that when multiple domains were merged into one training
and evaluation set, a new domain was formed and reflected
in the model. Unless the model is acquired and evaluated on
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a specific machine, more generalized training data should be
used so that the model does not learn the bias of a specific
machine.

V. CONCLUSION

When the data used for training is not generalized, deep
learning models train with biases in the data. Since the
model depends mostly on the training data, the inclusion
of bias in the training data in the results is unavoidable.
Especially medical US data is more prone to potential bias
depending on the skill level of the experts collecting it
or the type of machine collecting the data. In this study,
We demonstrated the application of deep learning for the
automatic diagnosis of cirrhosis using liver US images to
analyze it. To alleviate the problem of partial or insuffi-
cient data for a specific class, we used transfer learning
and data augmentation methods. Additionally, classification
was performed by grouping F1/F2/F3 patients with sim-
ilar symptoms. It is possible to obtain a more effective
performance than the 5-level classification in the 3-level
classification (normal/progressive/severe). We also utilized
internal and external domain data to analyze machine bias.
The trained model classified it correctly from internal domain
data acquired on the same machine as the data used for
training. On the other hand, external domain data acquired
from new machines showed biased results that failed to
classify them properly. This means that the deep learning
model has not yet been trained to generalize enough to
classify images acquired by the new machine. Thus, it is
interpreted that the model has formed a bias that leads to a
particular outcome of the restricted domain data. The results
of these experiments could potentially be useful in alleviat-
ing the bias problem that is unavoidably caused by limited
machinery.

REFERENCES

[1] A. Tang, G. Cloutier, N. M. Szeverenyi, and C. B. Sirlin, ““Ultrasound
elastography and MR elastography for assessing liver fibrosis: Part 1, prin-
ciples and techniques,” Amer. J. Roentgenol., vol. 205, no. 1, pp. 22-32,
2015, doi: 10.2214/AJR.15.14552.

[2] U. Jung and H. Choi, “Active echo signals and image optimiza-

tion techniques via software filter correction of ultrasound system,”

Appl. Acoust., vol. 188, Jan. 2022, Art.no. 108519, doi: 10.1016/j.

apacoust.2021.108519.

C. DeBrusk, “The risk of machine-learning bias (and how to prevent

it),” MIT Sloan Manage. Rev., 2018. [Online]. Available: https://sloan

review.mit.edu/article/the-risk-of-machine-learning-bias-and-how-to-
prevent-it

[4] M. Blaivas, L. N. Blaivas, and J. W. Tsung, “Deep learning pitfall: Impact
of novel ultrasound equipment introduction on algorithm performance and
the realities of domain adaptation,” J. Ultrasound Med., vol. 41, no. 4,
pp. 855-863, Apr. 2022, doi: 10.1002/jum.15765.

[5] W. K. Moon, Y.-W. Lee, H-H. Ke, S. H. Lee, C.-S. Huang, and

R.-F. Chang, “Computer-aided diagnosis of breast ultrasound images

using ensemble learning from convolutional neural networks,” Comput.

Methods Programs Biomed., vol. 190, Jul. 2020, Art. no. 105361, doi:

10.1016/j.cmpb.2020.105361.

Z. Cao, L. Duan, G. Yang, T. Yue, and Q. Chen, “An experimental study

on breast lesion detection and classification from ultrasound images using

deep learning architectures,” BMC Med. Imag., vol. 19, no. 1, p. 51,

Jul. 2019, doi: 10.1186/s12880-019-0349-x.

3

—

[6

VOLUME 11, 2023


http://dx.doi.org/10.2214/AJR.15.14552
http://dx.doi.org/10.1016/j.apacoust.2021.108519
http://dx.doi.org/10.1016/j.apacoust.2021.108519
http://dx.doi.org/10.1002/jum.15765
http://dx.doi.org/10.1016/j.cmpb.2020.105361
http://dx.doi.org/10.1186/s12880-019-0349-x

Y. Joo et al.: Classification of Liver Fibrosis From Heterogeneous Ultrasound Image

IEEE Access

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Dan, L. Zhang, G. Cao, W. Cao, G. Zhang, and H. Bing,
“Liver fibrosis classification based on transfer learning and FCNet for
ultrasound images,” IEEE Access, vol. 5, pp. 5804-5810, 2017, doi:
10.1109/ACCESS.2017.2689058.

S. Liu, “Deep learning in medical ultrasound analysis: A review,”
Engineering, vol. 5, no. 2, pp.261-275, Apr. 2019, doi: 10.1016/
j-eng.2018.11.020.

D. S. Reddy, R. Bharath, and P. Rajalakshmi, “A novel computer-
aided diagnosis framework using deep learning for classification of fatty
liver disease in ultrasound imaging,” in Proc. IEEE 20th Int. Conf.
e-Health Netw., Appl. Services (Healthcom), Sep. 2018, pp. 1-5, doi:
10.1109/HealthCom.2018.8531118.

Y. Zhou, H. Chen, Y. Li, Q. Liu, X. Xu, S. Wang, P.-T. Yap, and D. Shen,
“Multi-task learning for segmentation and classification of tumors in
3D automated breast ultrasound images,” Med. Image Anal., vol. 70,
May 2021, Art. no. 101918, doi: 10.1016/j.media.2020.101918.

C.-H. Tsai, “Automatic deep learning-based pleural effusion classification
in lung ultrasound images for respiratory pathology diagnosis,” Phys.
Medica, vol. 83, pp. 38-45, Mar. 2021, doi: 10.1016/j.ejmp.2021.02.023.
L.-Y. Xue, Z.-Y. Jiang, T.-T. Fu, Q.-M. Wang, Y.-L. Zhu, M. Dai,
W.-P. Wang, J.-H. Yu, and H. Ding, “Transfer learning radiomics
based on multimodal ultrasound imaging for staging liver fibrosis,”
Eur. Radiol., vol. 30, no. 5, pp.2973-2983, May 2020, doi: 10.1007/
s00330-019-06595-w.

P. M. Cheng and H. S. Malhi, “Transfer learning with convolutional neural
networks for classification of abdominal ultrasound images,” J. Digit.
Imag., vol. 30, no. 2, pp. 234-243,2017, doi: 10.1007/s10278-016-9929-2.
C.-C. Kuo, C.-M. Chang, K.-T. Liu, W.-K. Lin, H.-Y. Chiang,
C.-W. Chung, M.-R. Ho, P-R. Sun, R.-L. Yang, and K.-T. Chen,
“Automation of the kidney function prediction and classification through
ultrasound-based kidney imaging using deep learning,” NPJ Digit. Med.,
vol. 2, no. 1, p. 29, Apr. 2019, doi: 10.1038/s41746-019-0104-2.

S. Roy, “Deep learning for classification and localization of
COVID-19 markers in point-of-care lung ultrasound,” IEEE
Trans. Med. Imag., vol. 39, no. 8, pp.2676-2687, Aug. 2020, doi:
10.1109/TMI1.2020.2994459.

Y.-C. Zhu, A. AlZoubi, S. Jassim, Q. Jiang, Y. Zhang, Y.-B. Wang,
X.-D. Ye, and H. Du, “A generic deep learning framework to classify
thyroid and breast lesions in ultrasound images,” Ultrasonics, vol. 110,
Feb. 2021, Art. no. 106300, doi: 10.1016/j.ultras.2020.106300.

J. H. Lee, I. Joo, T. W. Kang, Y. H. Paik, D. H. Sinn, S. Y. Ha, K. Kim,
C. Choi, G. Lee, J. Yi, and W.-C. Bang, “‘Deep learning with ultrasonogra-
phy: Automated classification of liver fibrosis using a deep convolutional
neural network,” Eur. Radiol., vol. 30, no. 2, pp. 1264-1273, Feb. 2020,
doi: 10.1007/s00330-019-06407-1.

L. Wang, L. Zhang, M. Zhu, X. Qi, and Z. Yi, “Automatic diag-
nosis for thyroid nodules in ultrasound images by deep neural net-
works,” Med. Image Anal., vol. 61, Apr. 2020, Art. no. 101665, doi:
10.1016/j.media.2020.101665.

H. N. Xie, N. Wang, M. He, L. H. Zhang, H. M. Cai, J. B. Xian, M. F. Lin,
J. Zheng, and Y. Z. Yang, ““Using deep-learning algorithms to classify fetal
brain ultrasound images as normal or abnormal,” Ultrasound Obstetrics
Gynecol., vol. 56, no. 4, pp. 579-587, Oct. 2020, doi: 10.1002/uog.21967.
A. Tang, G. Cloutier, N. M. Szeverenyi, and C. B. Sirlin, “Ultrasound
elastography and MR elastography for assessing liver fibrosis: Part 2,
diagnostic performance, confounders, and future directions,” Amer. J.
Roentgenol., vol. 205, no. 1, pp. 33—40, 2015, doi: 10.2214/AJR.15.14553.
K. Patel and G. Sebastiani, “Limitations of non-invasive tests for
assessment of liver fibrosis,” JHEP Rep., vol. 2, no. 2, Apr. 2020,
Art. no. 100067, doi: 10.1016/j.jhepr.2020.100067.

A. Smith, K. Baumgartner, and C. Bositis, “Cirrhosis: Diagno-
sis and management,” Amer. Family Physician, vol. 100, no. 12,
pp. 759-770, Dec. 2019. [Online]. Available: https://www.ncbi.nlm.
nih.gov/pubmed/31845776

F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, ‘“Data imbal-
ance in classification: Experimental evaluation,” Inf. Sci., vol. 513,
pp. 429-441, Mar. 2020, doi: 10.1016/j.ins.2019.11.004.

J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class
imbalance,” J. Big Data, vol. 6, p. 27, Dec. 2019, doi: 10.1186/s40537-
019-0192-5.

M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the
class imbalance problem in convolutional neural networks,” Neural Netw.,
vol. 106, pp. 249-259, Oct. 2018, doi: 10.1016/j.neunet.2018.07.011.

VOLUME 11, 2023

(26]

(27]

(28]

(29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” J. Big Data, vol. 6, no. 1, pp. 1-48, Dec. 2019, doi:
10.1186/540537-019-0197-0.

A. Mikolajczyk and M. Grochowski, ‘“‘Data augmentation for improv-
ing deep learning in image classification problem,” in Proc. Int.
Interdiscipl. PhD Workshop (IIPhDW), May 2018, pp. 117-122, doi:
10.1109/ITPHDW.2018.8388338.

N. Parmar, “Image transformer,” in Proc. 35th Int. Conf. Mach.
Learn., vol. 80, Jul. 2018, pp.4055-4064. [Online]. Available:
https://proceedings.mlr.press/v80/parmar18a.html

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015, arXiv:1512.03385.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE CVPR, Jul. 2017,
pp. 4700-4708, doi: 10.1109/CVPR.2017.243.

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” 2019, arXiv:1905.11946.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x 16 words: Trans-
formers for image recognition at scale,” 2020, arXiv:2010.11929.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning,” in Proc. Int. Conf. Artif. Neural Netw., 2018,
pp. 270-279, doi: 10.1007/978-3-030-01424-7_27.

M. Shaha and M. Pawar, “Transfer learning for image classification,”
in Proc. 2nd Int. Conf. Electron., Commun. Aerosp. Technol. (ICECA),
Mar. 2018, pp. 656-660, doi: 10.1109/ICECA.2018.8474802.

D. Shen, G. Wu, and H. Suk, “Deep learning in medical image anal-
ysis,” Annu. Rev. Biomed. Eng., vol. 19, pp. 221-248, Jun. 2017, doi:
10.1146/annurev-bioeng-071516-044442.

1. Bilbao and J. Bilbao, “Overfitting problem and the over-training in the
era of data: Particularly for artificial neural networks,” in Proc. 8th Int.
Conf. Intell. Comput. Inf. Syst. (ICICIS), Dec. 2017, pp. 173-177, doi:
10.1109/INTELCIS.2017.8260032.

S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based
medical image classification for disease diagnosis,” J. Big Data, vol. 6,
no. 1, p. 113, Dec. 2019, doi: 10.1186/s40537-019-0276-2.

T. Rahman, M. E. H. Chowdhury, A. Khandakar, K. R. Islam, K. F. Islam,
Z. B. Mahbub, M. A. Kadir, and S. Kashem, “Transfer learning with
deep convolutional neural network (CNN) for pneumonia detection
using chest X-ray,” Appl. Sci., vol. 10, no. 9, p. 3233, May 2020, doi:
10.3390/app10093233.

H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu,
C. Xu, and W. Gao, “Pre-trained image processing transformer,” 2020,
arXiv:2012.00364.

L. Alzubaidi, J. Zhang, A. J. Humaidi, and A. Al-Dujaili, “Review of deep
learning: Concepts, CNN architectures, challenges, applications, future
directions,” J. Big Data, vol. 8, p. 53, Mar. 2021, doi: 10.1186/s40537-
021-00444-8.

YUNSANG JOO received the B.S. degree in
computer engineering from Gachon University,
Seongnam, South Korea, in 2022. His research
interests include machine learning, artificial intel-
ligence, computer vision, and medical imaging
analysis.

HYUN-CHEOL PARK received the B.S. and M.S.
degrees in computer engineering from Chosun
University, Gwangju, South Korea, in 2015 and
2017, respectively, and the Ph.D. degree in IT
convergence engineering from Gachon Univer-
sity, Seongnam, South Korea, in 2022. He is
currently working as a Research Professor with
the Department of Al Software, Gachon Univer-
sity. His research interests include machine learn-
ing, artificial intelligence, computer vision, and
medical imaging analysis.

9929


http://dx.doi.org/10.1109/ACCESS.2017.2689058
http://dx.doi.org/10.1016/j.eng.2018.11.020
http://dx.doi.org/10.1016/j.eng.2018.11.020
http://dx.doi.org/10.1109/HealthCom.2018.8531118
http://dx.doi.org/10.1016/j.media.2020.101918
http://dx.doi.org/10.1016/j.ejmp.2021.02.023
http://dx.doi.org/10.1007/s00330-019-06595-w
http://dx.doi.org/10.1007/s00330-019-06595-w
http://dx.doi.org/10.1007/s10278-016-9929-2
http://dx.doi.org/10.1038/s41746-019-0104-2
http://dx.doi.org/10.1109/TMI.2020.2994459
http://dx.doi.org/10.1016/j.ultras.2020.106300
http://dx.doi.org/10.1007/s00330-019-06407-1
http://dx.doi.org/10.1016/j.media.2020.101665
http://dx.doi.org/10.1002/uog.21967
http://dx.doi.org/10.2214/AJR.15.14553
http://dx.doi.org/10.1016/j.jhepr.2020.100067
http://dx.doi.org/10.1016/j.ins.2019.11.004
http://dx.doi.org/10.1186/s40537-019-0192-5
http://dx.doi.org/10.1186/s40537-019-0192-5
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/IIPHDW.2018.8388338
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/978-3-030-01424-7_27
http://dx.doi.org/10.1109/ICECA.2018.8474802
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1109/INTELCIS.2017.8260032
http://dx.doi.org/10.1186/s40537-019-0276-2
http://dx.doi.org/10.3390/app10093233
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.1186/s40537-021-00444-8

IEEE Access

Y. Joo et al.: Classification of Liver Fibrosis From Heterogeneous Ultrasound Image

O-JOUN LEE received the B.Eng. degree in soft-
ware science from Dankook University, in 2015,
and the Ph.D. degree in computer science and
engineering from Chung-Ang University, in 2019.
He has been an Assistant Professor with The
Catholic University of Korea, Republic of Korea,
since September 2021. Also, he was a full-time
Researcher with the Pohang University of Sci-
ence and Technology, Republic of Korea, from
September 2019 to August 2021. He has applied
the networked data analysis models and methods to various unstructured
data, such as social media, bibliographic data, medical knowledge base,
and traffic flow data. His research interests include networked data analysis
based on unsupervised/self-supervised representation learning and graph
convolutional networks.

CHANGHAN YOON received the M.S. and Ph.D.
degrees in electronic engineering from Sogang
University, Seoul, South Korea, in 2009 and 2013,
respectively. He was a Postdoctoral Research
Associate with NIH Resource Center for Medi-
cal Ultrasonic Transducer Technology, University
of Southern California, Los Angeles, CA, USA
and the Georgia Institute of Technology, Atlanta,
GA, USA. He is currently an Assistant Professor
of biomedical engineering with Inje University,
Gyengnam, South Korea. His current research interests include medical
ultrasound and photoacoustic imaging systems and their clinical applications
and ultrasound microbeams.

9930

MOON HYUNG CHOI received the B.S., M.S.,
and Ph.D. degrees in radiology from The Catholic
University of Korea, Seoul, South Korea, in 2009,
2016, and 2017, respectively. She is currently
working as an Assistant Professor at the Depart-
ment of Radiology, Eunpyeong St. Mary’s Hos-
pital, The Catholic University of Korea. Her
research interests include prostate imaging, hepa-
tobiliary pancreas imaging, and abdominal/urinary
imaging.

CHANG CHOI (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
engineering from Chosun University, in 2005,
2007, and 2012, respectively. He has been
an Assistant Professor with Gachon Univer-
sity, since 2020. He has authored more than
50 publications, including papers in prestigious
journals/conferences, such as IEEE Communica-
tions Magazine, IEEE TRANSACTIONS ON INDUSTRIAL
INForMATICS, IEEE TRANSACTIONS ON INFORMATION
Forensics AND StcURITY, IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,
IEEE INTERNET OF THINGS JOURNAL, Information Sciences, and Future Gen-
eration Computer Systems. His research interests include intelligent infor-
mation processing, semantic web, smart IoT systems, and intelligent system
security. He received academic awards from the Graduate School of Chosun
University, in 2012. He also received the Korean Government Scholarship
for graduate students (Ph.D. course) in 2008. He has served or is currently
serving on the organizing or program committees of international confer-
ences and workshops, such as ACM RACS, EAIBDTA, IE, ACM SAC, and
IEEE CCNC/SeCHID. He has also served as a Guest Editor for high profile
journals, such as IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, Future
Generation Computer Systems, Applied Soft Computing, Multimedia Tools
and Applications, Journal of Ambient Intelligence and Humanized Comput-
ing, Concurrency and Computation: Practice and Experience, Sensors, and
Autosoft.

VOLUME 11, 2023



