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ABSTRACT Electric power audit text classification is one of the important research problem in electric
power systems. Recently, kinds of automatic classificationmethods for these texts based onmachine learning
or deep learning models have been applied. At present, the development of computing technology makes
‘‘pre-training and fine-tuning’’ the newest paradigm of text classification, which achieves better results
than previous fully-supervised models. Based on pre-training theory, domain-related pre-training tasks
can enhance the performance of downstream tasks in the specific domain. However, existing pre-training
models usually use general corpus for pre-training, and do not use texts related to the field of electric
power, especially electric power audit texts. This results in that the model does not learn too much electric-
power-related morphology or semantics in the pre-training stage, so that less information can be used in
the fine-tuning stage. Based on the research status, in this paper, we propose EPAT-BERT, a BERT-based
model pre-trained by two-granularity pre-training tasks: word-level masked language model and entity-level
masked language model. These two tasks predict word and entity in electric-power-related texts to learn
abundant morphology and semantics about electric power. We then fine-tune EPAT-BERT for electric
power audit text classification task. The experimental results show that, compared with fully supervised
machine learning models, neural network models, and general pre-trained language models, EPAT-BERT
can significantly outperform existing models in a variety of evaluation metrics. Therefore, EPAT-BERT can
be further applied to electric power audit text classification. We also conduct ablation studies to prove the
effectiveness of each component in EPAT-BERT to further illustrate our motivations.

INDEX TERMS Pre-trained language model, text classification, electric power audit text, natural language
processing, masked language model.

I. INTRODUCTION
Text classification has been widely applied in electric power
information processing [1], [2], [3], [4]. In researches of
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electric power audit information processing, the automatic
and standardized classification of electric power audit texts
in the form of natural language is a key problem to be solved.
On the one hand, with the acceleration of the digitization,
a large number of audit texts have been accumulated in the
audit process of electric power enterprises, including the audit
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FIGURE 1. Several examples of provided audit problem descriptions
(used as electric power audit texts in this paper) and their corresponding
categories.

problem description, problem category, referenced provision,
and audit opinions recordedmanually by auditors. These texts
are obviously unstructured and ambiguous. Influenced by
the auditors’ personalized language expression and subjective
judgment, manual classification will leads to low efficiency
and insufficient accuracy. Therefore, how to efficiently clas-
sify these texts with high accuracy is the practical demand of
power enterprises to improve the efficiency of audit informa-
tion processing.On the other hand, the audit texts of electric
power enterprises are short texts in specific fields, which have
distinct industry characteristics such as high text similarity
and fuzzy classification boundary. They are different from
general languages. Therefore, the direct application of exist-
ing text classification models can not consider the features
of the domain-specific electric power audit texts. Existing
models should be further improved to adapt to these features
and improve the classification effectiveness.

The electric power audit text classification is a stan-
dard text multi-classification task. Given the audit problem
description, we need to predict a corresponding category.
Figure 2 shows several samples of electric power audit texts,
each of which includes an audit problem description and a
corresponding category. As can be seen from Figure 2, differ-
ent audit problem description corresponds to different issue
categories. For general audit departments, there are usually
dozens of categories in total, each category corresponds to
a large number of audit problem descriptions recorded by
the audit department previously, so that it is unnecessary to
consider the problem of sample imbalance, such as few-shot
learning, dataset sampling, etc.

Text classification based on machine learning and neural
network algorithms has been paid attention [5]. Many text
classification models including RNN [6], LSTM [7], and
FastText [29] etc. have also been gradually applied to the

processing of texts related to electric power audit. For
example, Chen et al. [8] used category mixed embedding
method to classify power texts hierarchically. Zhao et al. [9]
used classic TF-IDF and word vector technology to classify
the power audit text. Chen et al. [10] introduced a professional
dictionary for the audit field and classified the audit text
using the bi-directional recurrent neural network BiLSTM.
Feng et al. [11] further introduced the attention mechanism
on the basis of BiLSTM to mine the defect text of power
equipment. The development of these related work illustrates
that, first, text classification is developing from machine
learning to deep learning [9], [11]. Second, domain exper-
tise is very important for text information mining [10] and
should be further integrated into the deep learning model to
improve the performance of downstream tasks.

In recent years, ‘‘pre-training and fine-tuning’’ paradigm
has gradually become the latest research direction of text
classification. Compared with the previous fully-supervised
neural network models, pre-trained models can achieve better
results in various natural language processing tasks [12].
However, existing pre-trained models such as BERT [13]
and ERNIE [14] are all pre-trained using common cor-
pora, such as Wikipedia data, and do not use texts related
to the electric power field, especially the electric power
audit field, for pre-training. Intuitively, we deem that corpus
related to electric power domain is closer to the semantic
domain of the power audit text classification task. From
the perspective of pre-training theory [24], [25], domain-
related pre-training tasks can enhance the performance of
domain-related downstream tasks. Therefore, in this paper,
we aim to improve electric power audit text classification task
by modifying pre-training tasks of a Pre-trained Language
Model (PLM). To achieve this, we propose two granularity
of power audit text pre-training tasks: word-granularity
masked language model (WMLM) and entity-granularity
masked language model (EMLM). These two pre-training
tasks use large-scale power text as training corpus, and let
the model complete word-granularity prediction and entity-
granularity prediction, so as to leverage the morphology,
grammar and related knowledge in the power text. Based
on these two pre-training tasks, we proposes a BERT-based
model EPAT-BERT (Electric Power Audit Text-BERT) for
power audit text classification. We evaluate and compare
EPAT-BERT with strong baseline models to prove its effec-
tiveness in electric power audit text classification task, and
then conduct ablation studies to illustrate the effectiveness of
each component of EPAT-BERT, including the influence of
two pre-training tasks, and the order of them.

II. ELECTRIC POWER AUDIT TEXT CLASSIFICATION WITH
PRE-TRAINED LANGUAGE MODEL
A. ELECTRIC POWER AUDIT TEXT CLASSIFICATION
Text classification is one of the basic tasks in natural lan-
guage processing. As a kind of natural language text, electric
power audit text is recorded by the auditors of electric power
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enterprises, which is of great significance for the enterprises
to conduct audit works. Audit texts usually contain audit
contents and methods, audit concerns, audit findings, refer-
enced provision, audit opinions, problem classification, and
other information manually recorded by the auditors. Several
common audit texts are shown in Figure 2. Each audit text
requires auditors to manually mark a classification labels to
achieve the classification of audit texts. However, large-scale
labeling of classification labels manually means consuming
manual labour and material resources, and is inefficient and
prone to be error. Therefore, efficient automatic classification
of electric power audit texts has become an urgent problem to
be solved.

Before the emergence of ‘‘pre-training and fine-tuning’’
paradigm, traditional natural language processing tasks usu-
ally required a large-scale fully-supervised training dataset
to achieve end-to-end neural network training. Given the
data x = {w1,w2, . . . ,wn} and the corresponding category
label y, the model needs to learn the conditional probability
distribution p(y|x) from the known data. In general, the model
may be a machine learning classifier or a deep neural network
which maps the input (a piece of natural language) into
the output (a class label). These methods achieve satisfying
results in many basic classification tasks, like sentiment anal-
ysis, spam detection, and face recognition.

B. PRE-TRAINING
With the advance of natural language processing model
BERT [13], computer vision model MAE [15] and cross
modal retrieval model CLIP [16], pre-trained language
model (PLM) and fine-tuning have become one of the
important research fields in all kinds of research fields. The
meaning of pre-training is to design a training task which
is not directly related to the downstream task but can learn
internal information of a language from large-scale general
corpus. The meaning of fine-tuning is to use the pre-trained
model to train the downstream tasks again. The earliest
pre-training models focused on obtaining the semantics of
a single word and obtaining its word embedding [5], [17].
Later, the emergence of models such as CoVe [18] and
ELMo [19] made it possible to extract contextual features.
With the emergence of Transformer network [20], emerging
models such as BERT [13] and GPT [21], [22] have made
‘‘pre-training and fine-tuning’’ a new paradigm of solving
natural language processing tasks [23]. One advantage of this
model is that since the model has learned a large amount
of morphology and semantic information in the pre-training
stage, only a small amount of fully-supervised data is required
for re-training the model in the fine-tuning stage, and it is
experimentally proved that PLMs can achieve better results
than non-pre-trained neural model [13], [21], [22].

BERT [13] model is a classic PLM, which uses the encoder
of Transformer network [20] as the basic structure, as shown
in Figure 2 (a). The BERT model takes a sentence as input,
for example, assuming that the input sentence is‘‘all safety

FIGURE 2. Two Stages of the Pre-trained Language Model BERT. The
meaning of Chinese input in the figure is ‘‘all safety tools and instruments
are provided by the subcontractor’’.

tools and instruments are provided by the subcontractor’’.
The model will automatically add a special token ‘‘[CLS]’’
before this sentence to indicate the beginning of this sentence,
and add an ‘‘[SEP]’’ token after this sentence to indicate
the end of this sentence. Then, the model converts the input
into an ID sequence, obtains the sequence of corresponding
word vectors, and then encodes the word vector sequence to
obtain the contextual output corresponding to each word. The
original BERT model designs two pre-training tasks: masked
language model (MLM) and next sentence prediction (NSP).
As shown in Fig. 2 (a), the MLM task masks part of tokens in
the input sentence ([M] for a special token ‘‘[MASK]’’), and
then lets the model predict which token should be filled in the
masked position. The NSP task combines the two sentences
A and B, and lets the model judge whether A is followed by B.
After pre-training, the BERT model can be seen as a text
encoder, which maps semantically similar texts to similar
feature spaces, while texts with large semantic difference
will be far away in the feature space after BERT encoding.

C. FINE-TUNING
Taking BERT as an example, its pre-training task MLM is
defined as predicting a masked token in the input sequence,
which is totally different from downstream tasks like text
classification, sentence similarity calculation, and part-of-
speech tagging. However, it is deemed that the pre-trained
model can still learn general language structure, such as
Chinese morphology and grammar in the pre-training stage.
When the model uses additional data of downstream tasks for
further training, the parameters in the network will change
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slightly on the original basis of pre-trained parameters. This
process is called ‘‘fine-tuning’’. As shown in Fig. 2 (b),
for different downstream tasks, such as text classification,
text generation and reading comprehension in natural lan-
guage processing, a learnable neural network layer can be
added downstream of the pre-training model, so that the
pre-trained parameters and the newly introduced parameters
of the newly-introduced layer can be trained together. In this
paper, for the electric power audit text classification task, the
input is a description of the audit problem. The sentence is
encoded by BERT, then the BERT outputs a vector represen-
tation of the sentence. Finally, the vector is then transformed
by a full-connected layer to predict the corresponding cate-
gory label. This is a typical downstream task of text classi-
fication. After fine-tuning, original parameters in BERT
and newly introduced parameters of the fully-connected
layer can be trained together, so that the fine-tuned BERT
becomes a powerful text classifier.

III. EPAT-BERT: A MULTI-GRANULARITY PRE-TRAINED
LANGUAGE MODEL FOR ELECTRIC POWER AUDIT TEXT
CLASSIFICATION
Existing pre-trained language models such as BERT can be
further fine-tuned to complete the text classification task.
However, for the field of electric power audit, there is
no suitable and universal pre-trained language model and
pre-training task. As a result, there is no domain-specific
pre-trained model in electric power audit text, so there is
still much room for improvement in the task of electric
power audit text classification. Recently, several relevant
studies have shown that, domain-specific pre-training tasks
can improve the down-streaming tasks. For example, Law-
Former [26] is a LongFormer [27] encoder that is pre-trained
with Chinese legal provisions, SciBERT [28] is a BERT
model trained with scientific texts. In this paper, we introduce
relevant texts in the electric power field to improve the effec-
tiveness of downstream electric power audit text classifica-
tion. Therefore, for this situation, we propose two pre-training
tasks related to electric power audit texts, and proposes a
pre-trained language model EPAT-BERT, for electric power
audit text classification.

A. DESIGN OF PRE-TRAINING TASKS
As the downstream task, electric power audit text clas-
sification has been clarified. On the other hand, how to
design robust and reasonable pre-training tasks will be the
key to improve the classification ability. In recent years,
For electric power audit texts, first of all, this paper uses
word-granularity masked language model of the origi-
nal BERT [13] model as one of the pre-training tasks, but
the pre-training text should be adjusted from the Chinese
Wikipedia used by BERT to electric-power-related text col-
lected from the Internet. We do this so that the model can
learn more morphology and semantics related to electric
power contents and is closer to the downstream audit text
classification task.

FIGURE 3. Two pre-training tasks of EPAT-BERT. The meaning of Chinese
input in the figure is ‘‘all safety tools and instruments are provided by the
subcontractor’’.

In addition, compared with general texts, electric power
texts will contain more professional terms, concepts, and
representations, which always needs to be presented more
accurately than general texts. Only using word-granularity
masked language model is inaccurate [14]. Therefore, the
entity-granularity masked language model is designed in
this paper. The model not only predicts the masked words in
the pre-training stage, but alsomasks the entities composed of
multiple words or phrases, and then predicts them. This pro-
cess allows the model to learn entity-granularity knowledge
that related to electric power audit, like some long concepts
that rarely occur in general texts, not just limited to general
morphology and semantics. In the following subsections,
we will introduce the two-granularity pre-training tasks in
detail, then explain how to construct, train, and evaluate the
EPAT-BERT model.

B. WORD-GRANULARITY MASKED LANGUAGE MODEL
As shown in Figure 3 (a), staying consistent with BERT
model, the word-granularity masked language model task
randomly selects 20% of the Chinese characters in a para-
graph of text to mask, and then uses the output vectors
corresponding to the mask positions to let the model predict
the Chinese characters. In Figure 3 (a), ‘‘[M]’’ represents a
special mask token ‘‘[MASK]’’. Since the pre-training corpus
is changed from general Chinese texts to electric-power-
related texts, themodel can learn the vocabulary and grammar
informationmore relevant to electric power in the pre-training
stage, so that it can theoretically achieve better results in the
downstream tasks related to electric power texts.
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In order to train the word-granularity masked language
model, it is necessary to set a word-granularity loss function
at the corresponding position of each masked Chinese char-
acter for optimization. Consistent with the BERT [13] model,
the cross entropy loss function is selected in this paper.

C. ENTITY-GRANULARITY MASKED LANGUAGE MODEL
Electric power audit text are usually highly professional short
texts, in which the entities and knowledge related to electric
power audit industry often appear, yet these entities and
knowledge do not appear frequently in general texts. The
existing research [14] shows that, for this kind of text, there
will be severe inaccuracy problem in the training stage of
single word-granularity masked language model task. For
example, for the masked sentence ‘‘the second largest city in
China is the mask in [MASK] [MASK]’’, it is prone to predict
incorrect cities, because the content to be predicted in this
sentence is knowledge related, while the word-granularity
masked language model task pays more attention to lexical
information when prediction, and sometimes ignores these
knowledge information.

In order to make up for the defects of the word-granularity
masked language model, in this paper, we propose an entity-
granularity masked language model task. Specifically,
as shown in Figure 3 (b), unlike the word-granularity ran-
dom mask, EPAT-BERT first identifies the entity part in the
sentence according to a professional vocabulary and syntax
analysis toolkit in the electric power field. Then these entities
are masked one by one randomly. When the amount of mask
exceeds 20% of the total length of the sentence, the mask pro-
cess will be stopped. Through this entity-granularity masking
method, the content that the model needs to predict during
pre-training process not only contain morphology or seman-
tics contained in words, but also to learn the corresponding
facts or knowledge in the texts. This is helpful for themodel to
further understand the text in a higher perspective, especially
for electric power audit text, which is highly integrated with
professional knowledge.

D. MODEL CONSTRUCTION AND TRAINING
1) MODEL TRAINING IN THE PRE-TRAINING STAGE
In the pre-training stage, the input vector representation of
EPAT-BERT model is consistent with that of BERT model.
The input vector at the corresponding position of each word
w is composed of three parts: (1) The vector of the word
representation Ww: that is, the initial word vector of the
word, which is used to distinguish different Chinese char-
acters. In this paper, we use the Word2Vec toolkit to obtain
the original word vectors. (2) Position representation Pw of
the word: we use absolute position coding [20] to incorporate
sequence position information into input data. (3) Segment
representation Sw: when the input contains multiple sen-
tences or parts, different segments should be represented with
different codes, while the input of EPAT-BERT has only one
part, so the segment representation is unique. Finally, the

vector representation Vw of each word w is the summation
of the representations of three parts:

Vw = Ww + Pw + Sw (1)

For the two pre-training tasks, cross-entropy loss func-
tion with L2 regular term is used to measure the difference
between predicted values and real values, and the loss func-
tion is optimized using AdamW learner with a learning rate
of 5e-5. In the pre-training stage, the training data is used to
optimize parameters in the model. The batch size is set to
be 8. After every 8000 training rounds, the loss function is
calculated on the validation set with a 5-fold cross validation.
When the loss function does not fall in the 8000 training
rounds, the pre-training process will be stopped, so as to
avoid overfitting. The model is built using transformers and
PyTorch libraries. Since EPAT-BERT needs to be pre-trained
from scratch, its model parameters are all initialized ran-
domly. After pre-training, its all parameters are stored to be
fine-tuned later.

In order to realize the random mask of the input data,
OwnThink knowledge graph (www.ownthink.com) is intro-
duced to mark the entities contained in the input text. Then,
each word in the corresponding entity that should be masked
is replaced with a special mask token ‘‘[MASK]’’. After
transformed by EPAT-BERT, the position of each ‘‘[MASK]’’
in the input will be transformed again by a hidden layer
vector. By connecting a fully-connected layer, the word at the
corresponding position of each ‘‘[MASK]’’ can be predicted,
so as to carry out end-to-end training. We believe that by
introducing the entity-granularity masked language model
task, the model can learn more content related to domain
knowledge on the basis of the word-granularity language
model task, so as to more accurately understand the text
related to the power field and improve the performance of
the downstream classification task.

2) MODEL TRAINING IN THE FINE-TUNING STAGE
The input vector representation of EPAT-BERT in the fine-
tuning stage is the same as that in the pre-training stage,
which is also composed of the vector representation of words,
position coding of words and segmented representation of
words. In the fine-tuning stage, according to existing work,
in order to complete text classification task, we need to add
a special mark ‘‘[CLS]’’ at the beginning of the input text.
The output vector corresponding to the ‘‘[CLS]’’ token can
then be seen as the vector representation of the entire input
text. After that, a fully-connected layer can be added on
the upper layer of EPAT-BERT, whose number of neurons
is the total number of categories of the audit text that need
to be classified. So far, the whole EPAT-BERT has formed
an end-to-end neural architecture. In the training stage, the
loss function with L2 regularization is used for optimization.
In the test stage, we select the category corresponding to the
neuron with the highest output probability as the prediction
category to achieve the purpose of automatic classification of
audit text.
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IV. EXPERIMENTS AND RESULT ANALYSIS
A. EXPERIMENTAL SETUPS
This experiment runs on a GPU cloud server. The specific
configuration is as follows: the CPU uses Intel (R) Xeon
(R) silver 4114 CPU@2.20GHz, GPU is four NVIDIA Titan
V, each with 12GB VRAM. The server memory is 256GB
and the hard disk capacity is 2T. The software packages
and frameworks required for the experiment include pytorch
1.7.1, transformers 4.7.0, scikit learn 0.24.2, numpy 1.19.5,
pandas 1.1.5 and matplotlib 3.3.4. For the BERT and our
proposed EPAT-BERT, we use the pre-trained Chinese BERT-
base as the original model.1 The neural network structure of
Chinese BERT is totally the same with English BERT model.
The only difference between them is the way of tokenization
of the text: the English BERT-base applies BPE tokenization,
while the Chinese BERT-base tokenizes Chinese texts in units
of Chinese characters.2

B. DATASET
In order to obtain electric power texts, the professional vocab-
ulary in electric power field is first sorted into a vocabulary
list V , and then, we search web pages that contain one or
more vocabularies in V . We use the web pages candidate set
provided by Yahoo. We then record the web pages set as W .
Using the extraction algorithm based on regular expression,
texts in set W is extracted as the pre-training corpus in this
paper, which is recorded as C . The C contains 1.5M pieces of
texts. We then divide C into training set (95%) and validation
set(%5).We do not use much validation data like 20% or 30%
because the scale of C is large enough, and 5% of the data
from C is enough for validation. In the pre-training stage,
when the loss of each round of the model on the validation
set does not continue to decline, the training will be stopped.
In the fine-tuning stage, we select 1,500 electric power audit
texts from the daily audit records of a electric power company
to form a dataset T , which is divided into training set with
1,000 pieces of data and test set with 500 pieces of data.
There are 24 categories in total, and we sample the data
categories evenly, so that the amount of data for each category
is approximately equal. The process achieves fairness for
each category. We also split the training set into 800 pieces of
training data and 200 pieces of validation data. The training
set is used to optimize the model. After each training round,
the F1 score is calculated on the validation set. When the F1
score on the validation set does not drop anymore compared
with the last training round, the training is stopped. Then, the
evaluation metrics are calculated on the test set. F1 score is
adopted as the basis for early stop because this metric is a
synthesis of other metrics, which has representative signifi-
cance. By dividing the model into training set, validation set
and test set, it can ensure that the model can achieve the best
generalization ability, which is better than the case of dividing
the model into training set and test set only.

1The Chinese BERT-base: https://huggingface.co/bert-base-chinese
2https://github.com/electricAudit/auditTextClassification/

C. BASELINE MODELS AND EVALUATION METRICS
In order to illustrate the effectiveness of EPAT-BERT pro-
posed in this paper, we design several groups of baselinemod-
els to be compared. First, we implement several main-stream
traditional machine learning algorithms, including Naive
Bayes, SVM, GBDT, AdaBoost, and XGBoost. In these algo-
rithms, the input text is represented as a bag-of-words vector,
then the models classify the vector in different manners.

In addition, two deep learning models commonly used
for text classification are selected: text convolution neural
network (TextCNN): the word vector sequence correspond-
ing to the text is regarded as a matrix, and the convolution
neural network is used to extract spacial features of the
matrix and conduct end-to-end learning for text classification.
Long short-term memory network (LSTM): the word vector
sequence corresponding to the text is sequentially sent to the
LSTM, and then an end-to-end learning process is performed.

Finally, in order to demonstrate the effectiveness of the
electric power text pre-training task, the general pre-trained
BERT model is selected for comparison. Compared with
our proposed EPAT-BERT, the original BERT model does
not contain entity-level masked language model task, and it
is pre-trained with general texts, instead of electric-power-
related texts. Therefore, we deem that EPAT-BERT can
achieve better performance thanBERT,which is also themain
emphasis of this paper.

We use classification accuracy, precision, recall, and F1
score, four commonly-used evaluation metrics, to evaluate
our proposed model, and compare with existing text classi-
fication baselines. For the detailed implementation of these
four metrics, we recommend to read [6].

D. EXPERIMENTAL RESULTS
The evaluation metrics calculated in different models on the
test set are shown in Table 2. All the results are calculatedwith
5-fold cross validation. Based on the experimental results,
we can obtain the following conclusions: (1) Compared with
traditional machine learningmodels (Naive Bayes and SVM),
deep learning models like TextCNN and LSTM based on
neural networks can achieve better results in four evalua-
tion metrics, which proves that the models based on neural
network is superior to traditional machine learning models
based on statistical learning. (2) Compared with deep learn-
ing models, pre-trained language model BERT has further
improved the experimental results in four evaluation metrics.
(3) The text classification model EPAT-BERT proposed in
this paper is significantly better than the general pre-trained
model BERT, which confirms the effectiveness of the two
granularity pre-training tasks proposed in this paper and
the promotion of the field related pre-training to the field
downstream tasks. We further apply the t-test to illustrate
the significance of our proposed EPAT-BERT compared with
existing baselines. The t-test results are also shown in Table 2.
It can be seen that, except for the Precision, other three
metrics (Accuracy, Recall, and F1-score) all pass the t-test
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TABLE 1. The experimental results of electric power Audit text
classification on four evaluation metrics. The Bold Indicates the Best
Results Compared with Other Models. The ‘‘†’’ denotes outperforming the
best baseline (BERT) in t-test with p < 0.05.

TABLE 2. Experimental results of Ablation studies.

with p < 0.05, showing that the improvements over all
evaluation metrics are significant.

E. RESULT ANALYSIS
EPAT-BERT model focuses on two pre-training tasks: word-
granularity masked language model and entity-granularity
masked language model. Therefore, it is important to
explore the impact of these two pre-training tasks on
the experimental results. To achieve this, two groups of
ablation experiments are further designed in this paper.
In each ablation study, we remove a single module of
the EPAT-BERT model, or change the settings of these
modules, then compare the ablation results with original
EPAT-BERT model. The experimental results are shown
in Table 2.

In the first group of experiments, the pre-training tasks
of word-granularity and entity-granularity masked lan-
guage model in EPAT-BERT are removed and recorded as
EPAT-BERT w / o. W and EPAT-BERT w / o. E respectively.
The experimental results show that, when the two pre-training
tasks in the model are removed, the model decreases in the
four classification evaluation metrics, which proves that the
two granularity pre-training tasks both have an important role
in further improving the classification effect of electric power
audit text. In addition, the effect of entity-granularity pre-
training on downstream tasks is more significant than word-
granularity pre-training. In the second group of experiments,
the effects of the training order of the two pre-training tasks
in EPAT-BERT on the experimental results are explored.
In the experiment, ‘‘-WE’’ means that word-granularity is
performed first, and then entity-granularity masked lan-
guage model training is performed. ‘‘-EW’’ is the oppo-
site, which indicates that we first pre-train EPAT-BERT
with entity-granularity masked language model, followed by
word-level masked language model. The experimental results
show that, compared with completing two pre-training tasks
sequentially (‘‘-WE’’ and ‘‘-EW’’), the fusion of the two tasks
is better, which is used in our proposed EPAT-BERT model,
and the order of the two tasks has no significant effect on the
results.

V. CONCLUSION
With the development of computer science and machine
learning technology, electric power industry has accumulated
a large number of audit texts. It has become a key problem for
electric power enterprises to classify these audit texts quickly
and automatically with high accuracy. The ‘‘pre-training and
fine tuning’’ paradigm has greatly improved the effectiveness
of various natural language processing tasks. This paper inte-
grates this paradigm into the text classification task of power
audit, and proposes two-granularity pre-training tasks: word-
granularity and entity-granularity masked language model.
The experimental results show that, comparedwith traditional
machine learning models, fully-supervised models based on
deep neural networks and general pre-training language mod-
els, our proposed EPAT-BERTmodel can significantly exceed
existing models in accuracy, precision, recall, and F1 score
of the classification of electric power audit texts, and can be
applied to audit work of electric power industry to improve
the efficiency and accuracy of audit analysis.

EPAT-BERT model has strong expansibility and easy pop-
ularization. Since it uses texts related to electric power for
pre-training, it can be expanded and complete any down-
stream tasks related to electric power text by modifying
down-streaming neural network layers of the pre-training
module. For example, it can be applied to the classification of
other related texts related to electric power, automatic genera-
tion or retrieval of audit opinions, project type annotation, etc.
EPAT-BERT is based on the classical pre-training language
model BERT proposed in 2019. Theoretically, the model can
also be based on other pre-training model frameworks, but it
does not belong to the scope of this paper, and can be further
studied as one of the future research directions.
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