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ABSTRACT In recent years, vein-based biometric recognition has received ever-increasing attention from
both academia and industry, due to the advantages it offers over traditional biometric traits such as fingerprint,
iris, and face. Nonetheless, some issues related to the use of vein biometrics still need to be investigated and
understood. Specifically, in this study, we speculate about the gender-related variations in vein patterns,
and their effects on biometric verification performance. An analysis on the feasibility of recognizing male
and female subjects depending on their hand-vein patterns, and on the level of similarity characterizing
the biometric templates extracted from male and female populations, are here carried out considering three
different databases. Specifically, the public VERA dataset, containing samples of palm-vein patterns, and
two datasets containing images of finger-vein patterns, i.e., the UTFVP public database, and an in-house
dataset collected with an on-the-move contactless modality, are here considered. The obtained experimental
results show that the approach here proposed to perform gender recognition allows to reach an accuracy up to
95.83% on the public finger-vein UTFVP dataset, and to outperform the current state-of-the-art on the public
palm-vein VERA dataset, with accuracy at 93.55%. It is also shown that vein-based biometric systems can
benefit from the exploitation of information regarding the gender of the considered subjects, with achievable
recognition rates that can be significantly improved by designing a biometric verification system relying on
gender-specific models for extracting the employed discriminative templates.

INDEX TERMS Biometric recognition, gender recognition, vein biometrics, deep learning.

I. INTRODUCTION
Biometric technologies are nowadays widely adopted in sev-
eral applications dedicated to human recognition and iden-
tity management. A biometric system collects and exploits
physical, behavioural, or cognitive traits, characterized by
properties such as universality, uniqueness, permanence,
measurability, performance, acceptability, and robustness to
circumvention, to generate a set of discriminative features
employed as user’s identifiers. In the recognition phase, the
features extracted from the biometric probe are compared
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with those stored in a database during the enrolment stage,
in order to either verify the identity claimed by the presented
user or to determine the identity itself.

It is worth remarking that, when collecting a subjects’
biometric trait, ancillary information related to the individual
such as age, gender, or height, to cite a few, can be estimated
from the recorded data. Characteristics like the aforemen-
tioned ones are commonly indicated as soft biometric traits,
since they are not discriminative enough to automatically
distinguish among different individuals. Nonetheless, soft
biometric traits can be helpful for a variety of uses [1].
First of all, they offer a semantic interpretation of the col-
lected data, meaning that they can provide descriptions easily
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understandable by humans, and therefore useful in surveil-
lance applications since the information they bring can be
directly compared with what is perceived by human opera-
tors. Soft traits can be also exploited to design recommen-
dation systems offering customized products and services
depending on the users’ age and gender. Furthermore, soft
biometric characteristics can be employed to improve or
expedite the recognition process performed through conven-
tional biometric traits. In fact, soft attributes can be either
fused with the primary biometric characteristics to generate
more discriminative users’ representations, therefore improv-
ing the achievable recognition performance, or employed to
perform a search space reduction in identification systems,
by filtering out irrelevant subjects on the basis of the available
ancillary information.

Among soft biometric traits, gender is one of the most
investigated one, also considering that gender recognition is
a fundamental capability of human beings in social life, with
people deemed capable of carrying out this task with an error
rate of about 10% on average [2]. Automatizing this human
capability would be crucial in domains such as surveillance,
forensics, entertainment, and marketing. According to foren-
sic studies, the skull of a person, and more specifically the
chin and the jawbone, contains the most significant gender
indicators [3]. Not surprisingly, most of the literature on auto-
matic gender recognition has focused on the analysis of face
traits [4]. Results in the range of 90% - 95% correct recogni-
tion have been achieved using facial features to determine a
person’s gender, with the attainable performance depending
on several factors, such as the pose of the considered individ-
ual, the presence of occlusions, the acquisition environment,
and so forth [5]. For scenarios where only profile face images
are available, the shape of the ear has been exploited to infer
a person’s gender [6]. The characteristics of the eyes have
been also deeply investigated to perform gender recognition,
with discriminative characteristics found in a person’s iris [7],
as well as in the periocular region [8]. Also, fingerprints
have been evaluated to perform gender recognition [9]. The
hand shape has been instead extensively analyzed in several
forensics studies, while few automatic approaches have been
so far proposed [10]. Among behavioural traits, speech [11]
and gait [12] are among the characteristics most investigated
to perform gender recognition, and studies on signature and
keystroke dynamics have been also recently proposed [13].

Within this framework, in this paper, we investigate the
influence of individuals’ gender on the discriminative capa-
bilities of features extracted from the hand vein patterns,
which have recently received an increasing level of atten-
tion from the biometric research community. In fact, hand
vein patterns possess several interesting properties encour-
aging their exploitation for automatic people recognition.
For instance, vein patterns can be captured through non-
invasive devices, being also possible to design contactless
acquisition procedures for their collection. As subcutaneous
structures, they are intrinsically more robust to presentation
attacks than exposed biometric traits, such as fingerprint,

face, or iris. They also inherently guarantee liveness detec-
tion. More importantly, it has been shown that vein pat-
terns are characterized by an entropy higher than many other
widespread biometric traits, thus guaranteeing recognition
performance comparable with those related to fingerprint and
iris characteristics [14]. As a consequence, several commer-
cial devices relying on vein patterns have been deployed in
the last few years for real-life applications.

Nonetheless, soft characteristics related to hand vein pat-
terns have been so far neither properly investigated nor
exploited [15]. In this regard, the present study explores
gender-specific effects on the hand vein patterns collected for
automatic people recognition. In more detail, in this paper,
we first investigate the possibility of performing gender
recognition relying on hand vein patterns. Then, an evaluation
of possible differences in the score distributions depending
on the subjects’ gender is carried out. Furthermore, we also
evaluate whether a biometric verification process relying on
hand vein patterns could benefit from the information related
to the gender of the considered subjects. Such possibility
has been for instance evaluated for face images in [16],
where the soft characteristics extracted to perform gender
recognition are jointly used together with the primary user-
specific features, by resorting to a score-level fusion of the
extracted information. Differently from the work in [16],
in our approach, we employ strategies relying on neural net-
works to specifically learn hand vein feature representations
in a way dependent on the gender of the presented user, with
the aim of evaluating whether such gender-aware processing
could improve the recognition performance.

The paper is organized as follows. Section II outlines the
physiological background of vein biometrics, also providing
arguments regarding the gender-related anatomical character-
istics of hand veins. Previous studies on gender recognition
using vein patterns are also discussed. The deep learning
approaches employed to analyze the considered traits are
then described in Section III, while the databases used in
our experiments are introduced in Section IV. The performed
tests are then presented in Section V, which includes discus-
sions regarding gender effects on the recognition rates achiev-
able using hand vein patterns, the feasibility of performing
gender recognition relying on hand veins, and the possibility
of estimating gender-specific discriminative characteristics
through the employed deep learning methods.

II. HAND VEIN PATTERNS
The uniqueness of vessel patterns on the back of hand has
been first speculated in the late 19th century byArrigo Tamas-
sia, a professor of forensic medicine at Padua University [17].
Nevertheless, the real potential of vascular biometrics had
not been noticed until 1987 when Joe Rice, considered the
father of vein biometrics, introduced the first hand-vein-based
biometric recognition system [18].

The acquisition of images depicting subcutaneous vein
patterns, through non-invasive and contactless devices, relies
on two properties of the human body, namely the therapeutic
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FIGURE 1. Light absorption (left) and therapeutic (right) windows.

and the light absorption windows, represented in Figure 1.
The former window contains wavelengths in the range from
650nm to 1350nm, where the light has its maximum depth of
penetration into the human tissue. The latter is instead the
wavelength interval, within the therapeutic window, where
oxygenated and deoxygenated haemoglobin reach their light
absorption peaks (DeoxyHb: 760nm; OxyHb: 900nm), main-
taining a level of absorption greater than that of water [19].
According to these characteristics, when a hand is illumi-
nated with near-infrared (NIR) light in wavelength windows
between 700nm and 900nm, the NIR absorption capability of
haemoglobin makes the blood vessels appear dark, while the
surrounding tissue let the light passing, thus appearing bright.
A vein pattern capturing device is therefore constituted by
a NIR camera equipped with a NIR illuminator, working in
either transmission or reflection modality.

Besides these general characteristics of human tissues,
there are also some gender-related differences in the anatomy
of vein vessels, and in their NIR light absorption capability,
which is also observable in the examples of Figure 2:

• the diameter of vein vessels can be notably different
between male and female subjects. Medical studies have
associated an increased vein diameter with greater age
and male gender [20], [21];

• male and female subjects have different haemoglobin
levels in the blood. In more detail, women have mean
haemoglobin levels approximately 12% lower than
men [22]. Since the vein pattern images are obtained
because of the light absorption capacity of haemoglobin
under NIR illumination, female vein patterns look paler
than those of males because of such discrepancy in
haemoglobin levels.

Due to the aforementioned differences, it is expected that
the acquisition process of vein patterns from female sub-
jects may produce images with characteristics quite differ-
ent from those of male subjects. Some studies have been
already conducted with the aim of investigating whether it is
possible to perform gender recognition based on hand vein
patterns. In an early attempt [23], it has been shown that
information about the gender of subjects can be extracted
from finger vein patterns by resorting to local binary patterns
(LBP) features, and using a K -nearest-neighbour (KNN)
classifier. Tests performed over the MMCBNU finger vein
database [24], comprising images of finger vein patterns
taken from 100 volunteers coming from 20 countries, have
shown the possibility of reaching a gender recognition

FIGURE 2. Left-hand female and male vascular pattern samples from
VERA palm, R3VEIN vein and UTFVP vein datasets, respectively.

accuracy greater than 95%. The work in [23] has been also
recently extended, using centre symmetric LBP descriptors
and weighted KNNs, to investigate palm vein patterns [25].
Tests have shown the possibility of achieving an accuracy of
about 95.8% over the public VERA dataset, which contains
images of left and right-hand vein patterns recorded from
110 subjects [26]. However, as shown in [27], such perfor-
mance is attainable only when training the employed classi-
fiers with images from all the subjects in the VERA dataset,
and including samples from both the available recording ses-
sions in the training datasets. Conversely, when only samples
from a single session are employed for training purposes,
the achievable recognition rates notably worsen, with the
approaches in [23] and [25] significantly outperformed by the
method proposed in [27], which relies on a shallow neural
network based on regularized extreme learning machines
(ELMs), able to achieve an accuracy of 93.40% on the VERA
dataset.

Hand-dorsal vein patterns have been instead examined
in [28], where an in-house database comprising samples
collected from 98 females and 102 males, whose ages vary
from 19 to 62, has been considered, and an unsupervised
sparse feature learning approach has been employed to
perform gender recognition. The same database has been
exploited in [29], where methods relying on deep learning
have been used by applying transfer learning to VGG [30] and
AlexNet [31] architectures, and achieving a gender recogni-
tion accuracy at 91.6% with the former network.

However, none of the aforementioned studies has inves-
tigated whether any relevant difference exists between the
score distributions obtained from male and female sub-
jects when performing automatic biometric recognition.
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TABLE 1. Network employed to process hand vein patterns for both
gender and people recognition tasks. The original Densenet-161 CNN has
been modified by adding a custom embedder preceding the final
classification layer.

More importantly, the utility of designing gender-specific
feature extraction processes, in order to improve the achiev-
able biometric verification rates within the hand vein biomet-
ric framework, has not been evaluated so far.

The present paper is the first contribution trying to exploit
information related to gender when performing biometric
recognition on subjects whose hand vein patterns are col-
lected for verification purposes.

III. HAND-VEIN FEATURE LEARNING
In the performed tests, the features employed to perform
both gender and biometric recognition are learned through an
approach relying on neural networks.While hand-crafted fea-
tures such as the alreadymentioned LBP have been employed
for a long time to perform biometric recognition, in the past
10 years we have witnessed an ever-increasing adoption of
neural networks in biometric applications, thanks to the swift
proliferation of novel deep learning techniques and low-cost
computational units. The use of deep learning approaches
has allowed to design algorithms that are more robust, con-
venient, and descriptive, in terms of feature extraction and
comparison, than what has been possible using standard
machine learning solutions. In more detail, several recent out-
standing results have been attained by exploiting one of the
most important features of neural networks, that is, transfer
learning. In fact, this methodology allows transferring a well-
performing approach from one domain to another, typically
compensating for the lack of available training data in the
target scenario, with the highly-effective representations esti-
mated in the original context.

Such approach is employed also here to perform gen-
der recognition based on hand vein patterns. Specifically,
we exploit the same approach employed in [32] to extract

discriminative features from hand vein patterns when per-
forming automatic people recognition. A modified version of
the Densenet-161 convolutional neural network (CNN) [33],
described in Table 1, has been in fact introduced in [32]
to process the considered traits through a stable and con-
solidated network, defined in literature for image classifica-
tion tasks, after having performed a fine-tuning depending
on the desired purpose. In the employed architecture, each
conv layer comprises convolution, batch normalization, and
ReLU stages. Having already proved the effectiveness of a
transfer learning approach relying on the network described
in Table 1 to perform biometric recognition based on hand
vein patterns, this method is here evaluated also for gender
recognition.

With reference to the employed network in Table 1, the
hyperparameter U in the classification layer is set to 2 when
performing gender recognition, which is therefore treated as a
binary classification scenario. In this context, recent progress
in the design of CNNs have shown that a soft-L1 loss, which
is the differentiable version of the F1 function computing true
positives, false positives, and false negatives as a continuous
sum of likelihood values, has the capability of boosting the
achievable classification performance [34]. For this reason,
for gender recognition, the modified Densenet-161 is fine-
tuned relying on a soft-L1 loss.

Conversely, when employing the network in Table 1 for
biometric recognition purposes, the parameterU refers to the
total number of unique identities considered during the train-
ing phase. In this case, the additive angular margin penalty
(AAMP) [35] has been employed as a loss function, due to
its ability at reducing the intra-class variance, and increas-
ing inter-class variance, as demonstrated in [36]. Differently
from the standard softmax, commonly employed to train net-
works for identification purposes, the AAMP loss has shown
better generalization capabilities, being therefore a suitable
solution to train a network for generative representations
that guarantee not only separability, yet also discriminability,
among subjects not taken into account during the training
stage. This is a fundamental requirement when taking into
account realistic training and testing operating conditions as
in Section V.
The initialization of the network parameters is performed

using the weights of the pre-trained Imagenet model. As for
the custom embedder layer of Densenet-161 in Table 1, unit
weight initialization is employed for batch normalization,
and Glorot uniform initialization is preferred for the fully-
connected layers.

During training, stochastic gradient descent (SGD) with a
batch size of 32 is used for back-propagation, with a learning
rate initially set to 0.01, and then divided by 10 after the loss
reaches a plateau. Momentum is set to 0.9 for speeding up the
convergence of gradient vectors, and the maximum number
of training epochs is set to 120. While searching the best
hyper-parameters of AAMP [35], the penalty margin is set
to m ∈ [0.3, 0.7] with step size 0.05, and the scale is set to
s ∈ [16, 96] with step size 16.
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TABLE 2. Overview of vein databases used in this study.

When testing the trained networks, a standard binary clas-
sification process is performed when carrying out gender
recognition. On the other hand, the network trained for bio-
metric recognition is employed as a feature extractor when
comparing two distinct samples for verification purposes.
In more detail, the Euclidean distance between a pair of
feature representations, generated from enrolment and probe
samples, is computed, and compared against a pre-set thresh-
old to decide on the authenticity of the claimed identity.
As it will be detailed hereafter in Section V, realistic open-
set scenarios, in which data from a given class are used
exclusively for either training or testing, but never both, have
been considered in the performed tests for hand-vein-based
gender and biometric recognition.

IV. EMPLOYED DATABASES
Three hand vein datasets including gender labels for each sub-
ject, described in the following sections, have been employed
in the tests to evaluate the feasibility of vein-based gender
recognition, and the feasibility of improving the verification
performance of a biometric system relying on gender-specific
representations of vein patterns. Detailed information about
these databases is provided in Table 2. To use the considered
images as input to the employed network in Table 2, all
samples in each dataset are re-sized into 224 × 224 pixels
and normalized to have zero mean and unit variance before
feeding them into the recognition systems.

A. VERA DATABASE
The VERA palm vein dataset [26] has been collected in
Haute Ecole Specialisee de Suisse Occidentale in Sion.
The database contains 2.200 palm vein images taken from
40 women and 70 men subjects, whose ages are between
18 and 60, with an average of 33 years. For each subject, vas-
cular patterns of the right and left palms have been captured
during two distinct sessions, with five pictures taken for each
hand during each session.

B. UTFVP DATABASE
The UTFVP dataset has been collected from 60 subjects at
the University of Twente. The dataset contains 1440 images,
taken from 16 female and 44 male subjects. For each subject,
vascular patterns from the index, ring, and middle fingers of
both hands have been captured twice during each recording
session. A total of 360 different classes are therefore avail-
able. The dataset comprises samples collected during two
sessions, separated by an average time-lapse of 15 days, for
each subject. The width of the visible blood vessels ranges
from 0.3–1.6mm,with a pixel density for the acquired images
of 126 pixels per centimetre.

C. R3VEIN DATABASE
The R3VEIN database has been introduced in [38], and con-
tains acquisitions of vein patterns from subjects interacting
with the employed device while passing their hands over it,
therefore implementing an on-the-move recording strategy.
Four different NIR cameras, with exposure rates set at E1 =

12µs, E2 = 16µs, E3 = 20µs, and E4 = 24µs, have
been used in the employed acquisition device, to capture vein
images with varying levels of received light. The database
employed for tests in [38] contained finger vein patterns
collected from 100 subjects. An extended version of that
database, comprising data from an additional amount of other
100 subjects, for a total of 200 participants and 400 classes
in the R3VEIN dataset, is here employed to perform tests
investigating the role of gender on vein biometrics.

The whole dataset has been collected by recording
sequences of frames depicting the moving hands. Each
subject has provided 10 image sequences, each consist-
ing of 9 frames, for left and right hands, with a total of
144.000 frames collected from 200 subjects, of which 71 are
females and 129 males. In the present study, a total of
36.000 tone-mapped high-dynamic-range (HDR) samples are
generated from the low-dynamic-range images captured by
each of the 4 cameras at different exposure rates as detailed
in [38], and employed in the performed tests as inputs to the
network in Table 2.

It is worth remarking that, in terms of the number of sam-
ples, the used R3VEIN database is one of the largest datasets
collected for vein biometrics in the academic literature.

V. EXPERIMENTAL ANALYSIS AND DISCUSSION
The performed tests are detailed in the following sections,
each focusing on one of the three aspects considered in our
research: Section V-A presents the results related to the two-
class gender recognition performed on hand vein patterns.
The differences between score distributions computed from
male and female subjects in a biometric recognition system
are then discussed in Section V-B. Finally, the possibility of
discriminating between male and female subjects, and learn-
ing gender-specific characteristics when performing biomet-
ric verification using hand vein patterns, thus designing
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a two-step sequential recognition system, is outlined in
Section V-C.

As already mentioned, open-set training and testing
methodologies are considered for each experiment. This
means that, when performing tests on each of the considered
datasets, the available subjects are split into two equal-size
disjoint partitions, each exclusively used either to train the
employed networks or to perform recognition tests. When
dealing with multi-session databases (VERA and UTFVP),
biometric recognition tests are performed taking enrolment
and verification samples from different recording sessions.

A. GENDER RECOGNITION BASED ON VEIN PATTERNS
Since all databases considered in this study are not bal-
anced (female/male ratio on VERA, UTFVP and R3VEIN
are 40:70, 16:44, 71:129, respectively), two different training
and testing strategies are employed during the performed
experiments:

• unbalanced scenario: all the available data are
employed, with the original female/male ratio of each
dataset preserved in both training and testing subsets,
ensuring that female and male classes are represented in
these partitions with the same proportions of the whole
datasets;

• balanced scenario: only a subset of each dataset is used,
in order to have an equal number of male and female
classes in both training and testing subsets.

In addition to evaluating the effectiveness of the
customized Densenet-161 proposed in [32] for gender recog-
nition, other two CNNs have been considered for compar-
ative purposes in the performed tests. Specifically, also the
Resnext-101-32 × 8d [39] and VGG19-bn [30] architectures
have been taken into account. The latter network allows
performing a comparison between the proposed approach and
the one exploited in [29] for gender recognition.

The results obtained on the VERA database are reported in
Table 3 in terms of precision, recall, and their harmonicmean,
theF1 score, obtainedwhen considering either female ormale
subjects as the positive class. The weighted average of the
values computed for the two classes is also reported, aswell as
the overall accuracy. The comparison across the recognition
models shows that the modified Densenet-161 outperforms
the other benchmark CNN architectures, with the proposed
approach being therefore preferable to alternatives relying on
other networks such as VGG in [29].

In the unbalanced scenario, resorting to the proposed mod-
ified Densenet-161 CNN guarantees an F1 score at 91.07%
and 94.95%, respectively considering female and male sub-
jects as a positive class, for an overall 93.55% accuracy and
93.54% F1 score. Such results are slightly better than those
obtained by the state-of-the-art gender-recognition approach
in [27] over the VERA database. It is yet to be remarked
that the training here performed has been conducted only on
half of the available subjects, while samples from the first
recording session of all the subjects in the VERA database
have been employed for training purposes in [27], according

to an unrealistic closed-set experimental scenario. Actually,
training the employed network on more subjects would allow
for achieving even better performance. In order to prove this
point, we have also evaluated the performance achievable in
an open-set scenario where 80% of the available subjects are
used for training, and the remaining 20% are employed for
testing. In a 5-fold cross-validation, our approach has reached
an accuracy at 96.82%, with F1 scores of 95.71% and 97.47%
for female and male classes, respectively, therefore achieving
results notably better than those obtained, with the same
experimental protocol, using LBP descriptors and weighted
KNNs in [25].

The higher performance observed for male subjects may
be due to the larger amount of data available for training,
which therefore has a significant effect on the fine-tuning of
the considered network. Conversely, in a balanced scenario,
the behaviours observed for female and male classes get very
close, respectively resulting in 93.38% and 93.37%F1 scores.
In this condition, the performance for female subjects actually
improves, achieving a result comparable to the one obtained
for male subjects. Yet, the overall accuracy slightly drops
to 93.37%, which might be due to the lower sample size
available during the training period.

As for the other considered databases, Table 4 shows the
results obtained over the UTFVP database, with the overall
accuracy in unbalanced and balanced scenarios at 95.83%
and 94.27%, respectively. On the other hand, the results in
Table 5 show that, for the R3VEIN database, the accuracy in
unbalanced and balanced scenarios are 89.47% and 88.07%,
respectively. Even here, the performance on male subjects is
better than that for female classes in the unbalanced scenarios,
while very close results are instead obtained when consider-
ing a balanced condition.

The recognition performances achieved on UTFVP and
VERA databases are significantly higher than what is accom-
plished on the R3VEIN dataset. Such a gap in gender recog-
nition rates can derive from the differences in acquisition
hardware and data collection procedures. For instance, in the
UTFVP database, fingers have been placed on a platform for
image capturing. The images on the R3VEIN database have
been instead collected with a contactless and on-the-move
acquisition protocol.

The results obtained on all three considered datasets con-
firm that hand vein patterns can be employed to perform
gender recognition, with performance levels similar to those
accomplished with face, ocular, or speech traits.

B. EFFECTS OF GENDER ON VERIFICATION
SCORE DISTRIBUTIONS
The analysis so far performed highlights that differences
between the vein pattern images acquired from male and
female subjects exist and can be used to perform gender
recognition. It is yet to be investigated whether such differ-
ences may have an effect on the performance of a biometric
recognition system relying on hand vein patterns. In order
to shed light on this aspect, tests are conducted separately

VOLUME 11, 2023 11705



R. S. Kuzu et al.: Gender-Specific Characteristics for Hand-Vein Biometric Recognition

TABLE 3. Gender recognition performance on VERA.

TABLE 4. Gender recognition performance on UTFVP.

TABLE 5. Gender recognition performance on R3VEIN.

on the female and male populations, for both the considered
databases. The proposed modified Densenet-161 network in
Table 1 has been employed for such tests on biometric recog-
nition capabilities, having already shown in [32] and [36]
that this approach guarantees recognition rates better than
alternatives relying on other CNN architectures.

In more detail, the employed network has been trained for
120 epochs according to both the balanced and imbalanced
strategies described in Section V-A. Using the trained net-
work as feature extractor, the following dissimilarity score
distributions have been estimated for a biometric verification
task:

• male genuine scores (M-gen), obtained by comparing
pairs of vein patterns extracted from the same hands of
male subjects only;

• male impostor scores (M-imp), obtained by compar-
ing pairs of vein patterns extracted from two distinct
male subjects, considering the same hand. This kind
of impostor attempt resembles what would happen in a
real-life application, where it is expected that amale sub-
ject is employed to impersonate a male legitimate user.
Besides being a condition dictated by common sense,
the differences observed in Section V-A between vein
patterns frommale and female subjects would in fact not
recommend to use impostors with a gender different than
the target user when carrying out impersonation attacks;

• female genuine scores (F-gen), obtained by comparing
pairs of vein patterns extracted from the same hands of
female subjects only;

• female impostor scores (F-imp), obtained by comparing
pairs of vein patterns extracted from two distinct female
subjects, considering the same hand.

The distributions obtained in the imbalanced scenario,
with all the available data employed, are depicted in
Figures 3(a), 3(b) and 3(c), respectively referred to VERA,
UTFVP and R3VEIN databases. Tables 6, 7 and 8 report
relevant statistical information regarding the estimated dis-
tributions, in terms of mean and standard deviation, for both
balanced and imbalanced scenarios.

The obtained results confirm that notable differences
between the score distributions referred to male and female
populations are present. This is more evident in the UTFVP
database. In more detail, the dissimilarity scores in the female
genuine distributions are typically greater than those referred
to the male population. Moreover, the impostor dissimilarity
distributions related to female subjects are characterized by
values smaller than those achievable when considering the
male population. In brief, when vein patterns are processed
without taking into account gender-specific characteristics,
the intrinsic anatomical differences mentioned in Section II
make it harder, for the female population with respect to the
male one, to perform genuine comparisons characterized by
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FIGURE 3. Dissimilarity score distributions of a vein-based biometric verification system, for male and female populations, in the imbalanced scenario,
with Modified Densenet-161.

TABLE 6. Statistics of distributions computed on VERA.

TABLE 7. Statistics of distributions computed on UTFVP.

TABLE 8. Statistics of distributions computed on R3VEIN.

small dissimilarities, and impostor comparison resulting in
high distances. It is worth noting that, although such obser-
vations are less evident in the balanced scenario, where the
employed networks are trained with an equal number of male
and female classes, they are indeed still valid, testifying the
need for properly addressing such gender-dependent discrep-
ancies. Toward this aim, it would be desirable to process the
considered vein traits differently, depending on whether they
belong to male or female populations. The following section
details how a gender-aware biometric verification system
could be designed, in order to improve the overall achievable
recognition performance.

C. GENDER-AWARE VEIN BIOMETRIC VERIFICATION
In order to lower the observed performance disparity, and
to enhance the verification capabilities of a biometric sys-
tem by taking into account gender information, a gender-
aware verification system has been designed as depicted
in Figure 4. It is there assumed that different networks,

specifically trained for male and female populations, extract
discriminative features during enrolment. For verification, the
proposed processing pipeline first performs gender recogni-
tion based on the acquired trait, and then further processes
the provided input depending on the output of the first stage.
As described in Section III, the Euclidean distance between
L2-normalized enrolment and probe features are computed,
and a genuine/impostor decision is taken depending on a pre-
set threshold.

In more detail, the training procedure performed to define
the employed networks consists in an initial baseline training,
where the employed customDensenet-161 network in Table 1
is trained for 60 epochs with the whole set of available data,
comprisingmale and female classes altogether. After this first
step, gender-specific training is performed, fine-tuning the
computed parameters generating two distinct branches for the
two populations, till reaching the 120th epoch.

The effects of such gender-aware processing are quantita-
tively shown in Figure 5, which reports the receiver operat-
ing characteristic (ROC) curves obtained, in the imbalanced
scenario, when resorting to gender-specific representations of
the acquired vein patterns. Following the proposed approach,
an improvement in recognition capability, with respect to a
baseline, gender-unaware system such as the one employed
to compute the score distributions discussed in Section V-B,
is achieved.

In more detail, for the VERA palm vein dataset, the overall
equal error rate (EER) goes from 4.37% to 4.08%, with a
notable improvement in the false non-match rate (FNMR)
achieved for false match rate (FMR) equal to 0.1%, which
goes from 48.10% to 36.00%. For tests on the UTFVP
dataset, the EER improves from 0.42% to 0.30%, with an
improvement on the FNMR @ FMR = 0.1% going from
1.32% to 0.71%. For tests on the R3VEIN dataset, the EER
improves from 0.64% to 0.55%, with the FNMR @ FMR =

0.1% going from 14.50% to 6.25%.
Additional results are provided in Tables 9, 10 and 11,

which respectively report the EERs obtained on female and
male populations over the VERA, UTFVP, and R3VEIN
databases, for both a baseline (gender-unaware) and the
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FIGURE 4. High-level representation of gender-aware (bi-modal) vein recognition pipeline where CNN models are based on Densenet-161 architecture.

FIGURE 5. ROC curves for the used datasets, for baseline and gender-aware recognition systems, in the imbalanced scenario.

FIGURE 6. ROC curves for the used datasets, for baseline and gender-aware recognition systems, in the balanced scenario.

proposed gender-aware systems. On UTFVP, in the unbal-
anced scenario, the achieved improvement is exclusively
due to the better discriminatory capability achieved for tem-
plates of female subjects, while a notable improvement is
also observed for the male population when considering the
VERA and the R3VEIN datasets. For all the considered

databases, better results are obtained for the male population,
with respect to the female one.

In order to evaluate whether this result is actually due to
the intrinsic anatomical differences mentioned in Section II,
instead of only to the availability of more training samples
from male classes, the ROC curves achieved for balanced
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TABLE 9. Verification performance, in terms of EER, on VERA.

TABLE 10. Verification performance, in terms of EER, on UTFVP.

TABLE 11. Verification performance, in terms of EER, on R3VEIN.

training strategies are depicted in Figure 6, with the corre-
sponding EERs also reported in Tables 9, 10 and 11. Besides
the overall performance worsening with respect to the unbal-
anced scenario, due to the usage of fewer training samples,
the same behaviour already observed is also obtained in
these conditions, with a notable performance improvement
obtained using the proposed gender-aware recognition sys-
temwith respect to the baseline one, and better discriminatory
representations obtained for both female and male classes.

VI. CONCLUSION
The relevance of gender-specific characteristics in the
exploitation of hand vein patterns for biometric recognition
purposes has been investigated in this paper. Tests performed
on three databases have been first conducted to evaluate
the feasibility of performing gender recognition through the
analysis of hand vascular patterns. The obtained results tes-
tify that recognition rates similar to those achievable with
face data can be actually accomplished. It has been then
evaluated whether the anatomical specific characteristics of
female and male populations could affect the discriminatory
capabilities of the templates extracted from the considered
traits, and employed for user recognition purposes. Actually,
it has been observed that the score distributions associated to
vascular patterns from female subjects are characterized by
larger intra-class and lower inter-class values, with respect to
those related to male subjects. Furthermore, a novel gender-
aware pipeline to be used for people verification has been
eventually proposed. The obtained EERs show that it is
actually possible to improve the achievable recognition per-
formance and reduce the gender-dependent discrepancy of
recognition capabilities, by designing frameworks taking into
account gender-dependent characteristics to extract discrimi-
native biometric templates.
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