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ABSTRACT Let F represent a digitized version of an image f (x, y). Assume that the image fits inside a
rectangular region and this region is subdivided into M × N squares. We call these squares the shifted box
functions. Thus f (x, y) is approximated by M × N matrix F . This paper proofs that F can be recovered
exactly and uniquely from the Radon transform of f using only one selected view angle with a well selected
family of MN lines. The paper also proposes a precise method for computing the Radon transform of
an image. The approach can be categorized as an algebraic reconstruction, but it is merely a theoretical
contribution for the field of limited data tomography.

INDEX TERMS Algebraic reconstruction, radon transform, tomography, limited data tomography.

I. INTRODUCTION
In this paper, we propose a new algebraic reconstruction
algorithm for tomography using only one selected view angle
of projection with a selected family of projection lines. Our
proposed approach is a nontraditional algebraic approach,
recursive, but a theoretical solution.

Tomography is defined as the process of recovering an
object frommeasurements that are line integrals of that object
at a known complete set of view angles. In 1917 Radon, [1],
showed that it is possible to recover a suitably regular real
valued function f from the set of all projections f ∨ (p, ϕ) for
angles of projections ϕ, and all lines p = x cosϕ + y sinϕ.
Radon’s work found applications in the field of computed
tomography [2], [3], [4], [5]. In this context, f (x, y) corre-
sponds to the density of tissue at a point (x, y) in some plane
slice through a human body and the Radon transform is a
measure of the logarithm of the absorption of an x-ray beam
that passes through the body along the line L. In addition to
its use in the medical imaging; tomography has been suc-
cessfully applied in various applications such as Digital Rock
Physics, for instance [6], [7]. Additionally, image registration
techniques utilize the integral transforms approach includ-
ing the Radon transform, and others. Different approaches
are proposed to recover spatial transformations relating two
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images using their Radon transforms [8], [9], [10]. Another
major approach related to Radon transform uses invariant
pattern recognition [11], [12], [13].

In the field of tomography, there are several cate-
gories of reconstruction algorithms for approximating the
inversion of Radon transform [2]; this includes: signal
space convolution and frequency space filtering in which
the filtered back projection is one possible approach;
series methods and orthogonal functions; Fourier meth-
ods, that comes from the Fourier slice theorem; algebraic-
iterative methods and others. The Algebraic Reconstruction
Technique (ART), Simultaneous Iterative Reconstruction
Technique (SIRT), and, the Simultaneous Algebraic Recon-
struction Technique (SART); all were developed for tomogra-
phy applications [14], [15], [16], [17], [18]. In fact, the ART
methods are based on Kaczmarz’ method [19], [20]. Modern
approaches for the low-dose computed tomography problem
and denoising includes what is known today as ‘‘the machine
learning for image reconstruction’’ [21], [22], [23], [24], such
as batch gradient descent, stochastic gradient descent, and
many others.

The original inversion formula given by Radon [1], is valid
when f is continuous with compact support and that the
projections f ∨ (p, ϕ) are given for all lines-infinite set of
projections, not a discrete one. In the traditional tomography,
a full range of projections are available. These projections
are given over 0 to π with a fine uniformly spaced radial
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values defining the lines of integration. The term limited
set of Radon projections takes different forms due to dif-
ferent applications or mathematical assumptions associated
with it. Examples of variations of mathematical assumptions
can include, only few projections are available, or projec-
tions are available on a limited range of angles, or other
conditions. The problem of recovering a function f (x, y)
from a limited set of Radon projections has been dealt
with in the mathematical and engineering literatures, for
instance, [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41]. Examples of
different approaches include interpolating the missing views
such as [25], spectrum analysis [24], statistical iterative meth-
ods [27]. A common approach is the theory of using different
moments to recover the function, [28], [29], [30].

Another major approach is the algebraic reconstruction
methods which are optimization-based iterative methods to
compensate for the imaging artifacts induced by the lim-
ited projections [31]. Algebraic reconstruction approaches,
such as [14], [15], [16], [17], [18], and [31], perform
better than the traditional filtered-back projection method,
at the expense of computational cost. To better constrain
the solution, compressive sensing techniques [32], [33]
have been applied to promote sparsity in reconstruc-
tions. As said, the Machine learning for image reconstruc-
tion [21], [22], [23], [24], [34], [35], [36], [37] provide an
alternative. These studies are essentially focused on image
processing with pre-trained deep networks, either to in-paint
sinogram images [34], [35], or to correct artifacts in recon-
structed images [36], [37].

In this paper, we present a new theoretical algorithm for
tomography using only one selected view angle of projection
with a well selected family of MN lines. In fact, we pro-
pose a direct algebraic reconstruction solution by recovering
the image piece by piece, for example column by column.
In doing so, we solve small linear systems recursively.We use
the unit box function to represent each pixel of the image
which allows us to use a closed form formula for the Radon
transform of the box; so that the system matrix is exact. The
result of this work is a pure computation and may not be
applied for a real tomography problem. The work is orga-
nized as follows: In section II, we give background material
regarding the Radon transform, image representation, and a
review of the algebraic reconstruction method. In section III,
we present our theorem for algebraic reconstruction from
one view angle of projection as well as a demonstration.
A numerical evaluation is presented in section IV. Finally,
the conclusion is written in section V.

II. BACKGROUND MATERIAL
This section presents a review of three mathematical tools
and notation that will be used in this work. These tools are:
a review of the Radon transform, image representation using
the box function, and a review of the algebraic reconstruction
method.

Let (x, y) designate the coordinates of points in the plane
and consider a function f defined on some domain D of R2.
Consider the line L in the plane whose equation in the normal
form is given by

L = {(x, y) : x cosϕ + y sinϕ = p} (1)

One way to write the Radon transform of f along the line L
is:

f ∨ (p, ϕ) =

∫
∞

−∞

f (p cosϕ−t sinϕ,p sinϕ+t cosϕ)dt (2)

We refer to f ∨ (p, ϕ) or f ∨
ϕ (p) as the Radon projection of f .

More precisely, the term Radon projection, in this work,
means a single non-negative number equals to the line integral
of f along one line specified by the pair (p, ϕ).

Among the basic properties of Radon transform is the
shifting property that is relevant to our discussion: If g is
obtained from f by the real translation parameters x0, y0 so
that

g (x, y) = f (x − x0, y− y0), then :

g∨ (p, θ) = f ∨ [p− (x0 cosθ + y0 sinθ) , θ] (3)

Another common tool that we need is the ‘‘Box Function’’,

B (x, y) :=1 for 0<x<1, 0<y<1 and zero otherwise,
(4)

as shown in Fig 1a. By direct calculations [2], we obtain the
analytical form of the Radon transform of this function

B∨ (p, ϕ)=



p
sinϕ cosϕ

, 0 < p < sinϕ

1
cosϕ

, sinϕ ≤ p ≤ cosϕ

sinϕ + cosϕ − p
sinϕ cosϕ

, cosϕ<p<sinϕ+cosϕ

(5)

FIGURE 1. (a): The Box function in (4), (b) a shifted box in (6). (c) spatial
coordinate system (x,y), as well as the pixel indexing system.

In this paper, we will be working with a function that is
made of shifted box functions. Let M ,N be two positive
integers and let

Bij (x, y) = B [x − (j− 1) , y− (M − i)] , where

i = 1, . . . ,M , and j = 1, . . . ,N
(6)

represents a shifted box function, as shown in Fig. 1b.
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Define the function,

f (x, y) :=

∑M

i=1

∑N

j=1
Fij.Bij(x, y) (7)

where Fij are real positive values. In this way, the function f
is a non-negative real valued function defined on the compact
support [0,M ] × [0,N ] that is subdivided into MN boxes.
We work with both spatial coordinate system (x, y), as well
as the pixel indexing system (i, j), as suggested in Fig 1c.
Let f ∨ (p, ϕ) be the Radon transform of f in (7), using (3)

and (5) to obtain:

f ∨ (p, ϕ)

=

∑M

i=1

∑N

j=1
Fij.B∨

ij (p, ϕ)

=

∑M

i=1

∑N

j=1
Fij.B∨ [p−{(j−1) cosϕ+(M−i) sinϕ}, ϕ]

(8)

One can always map a givenM×N image to f with Fij being
the grey levels of the image. Exact calculations can then be
performed.

Finally, we review the basics of the algebraic reconstruc-
tion approach. Algebraic methods basically work with a lin-
ear systemAx = b that is generated from the raw projections.
Given k views of an image at the angles ϕ1,ϕ2, . . . , ϕk . The
system is built so that the entries of matrix A are the Radon
transforms of boxes B∨

ij (p, ϕ). These entries are nonzero only
if the line of projection passed through the pixel (i, j), as in
Fig. 2. Thus, matrix A is a sparse matrix. The column vector x
is an MN × 1 column of theMN unknows {F ij}, written as:

x= [F11,F12, . . .F1N ,F21,F22 . . . ,F2N ,

FM1,FM2 . . . ,FMN ]T

(9)

where T is for the transpose. Assuming m projections (lines)
for each angle, then we have mk equations. In this way,
the size of matrix A is (mk × MN ). The vector b is an
(mk × 1) column vector of the measurement f ∨ (p, ϕ). Every
single choice of a fixed angle ϕ at a fixed radial value p gen-
erates one equation for the above system. A typical equation
of this system would be of the form:

B∨

11 (p, ϕ) .F11 + · · · + B∨

1N (p, ϕ) .F1N + B∨

21 (p, ϕ) .F21

+ · · · + B∨

2N (p, ϕ) .F2N
+ . . . + B∨

M1 (p, ϕ) .FM1 + · · · + B∨
MN (p, ϕ) .FMN

= f ∨ (p, ϕ) (10)

In matrix from, we have,
B∨

11(p, ϕ) . . . B∨

1N (p, ϕ) . . . B∨

M1(p, ϕ) · · · B∨
MN (p, ϕ)

... . . . .
. . .

...

· . . . . . .

B∨

11(p, ϕ) . . . B∨

1N (p, ϕ) . . . B∨

M1(p, ϕ) . . . B∨
MN (p, ϕ)



×



F11
...

F1N
:

FM1
:

FMN


=



f ∨(p, ϕ)
...

.

.

.

.

f ∨(p, ϕ)


(11)

Each row of the matrix A corresponds to a new pair p, ϕ,
and each entry of b is the Radon transform at that new
pair p, ϕ.

FIGURE 2. A projection for (10).

III. METHODOLOGY
A. A PROPOSITION
Let f (x, y) be a non-negative real valued function such
that,

(a) f (x, y) is a piecewise continuous of the form f (x, y) :=∑M
i=1

∑N
j=1 Fij.Bij(x, y) defined in (7).

(b) In this way, the function f is defined on the com-
pact support [0,M ] × [0,N ] that is subdivided into
MN boxes.

(c) Let f ∨ (p, ϕ) be the Radon transform of f . This trans-
form is well defined and is calculated in (8).

Then, the following theorem hold.
Theorem 1: Under the above assumptions, the value of f

is completely determined by f ∨ (p, ϕ) using one angel of
projection, ϕ0, and a family ofMN lines pi,j such that:

ϕ0 =
π

2
− α; with α = tan−1(M ), and

pi,j := (j− 1) cosϕ0 + (M − i+ 1) sinϕ0,

i = 1, . . . ,M , and j = 1, . . . ,N (12)

The following constructive proof demonstrates an algorithm
to determine f .
Proof: The approach here is an algebraic reconstruction.

Consider the required family of lines (12). From (1), the
line pi,j passes through the point (j − 1,M − i + 1). Let
us recover the first column of f by backward recursive
calculations using the data f ∨

(
pi,1, ϕ0

)
, i = 1, . . . ,M .
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Observe that:

1
sinα

F
M ,1

= f ∨
(
pM ,1, ϕ0

)
1

sinα
F
M−1,1

+
1

sinα
F
M1

= f ∨
(
pM−1,1, ϕ0

)
1

sinα
F
M−2,1

+
1

sinα
F
M−1,1

+
1

sinα
F
M1

= f ∨
(
pM−2,1, ϕ0

)
Notice that 1

sinα is the length of the segment of the line pi,j
that lies within the box.

In general, we solve for FM−I ,1, using the equation

1
sinα

∑I

i=0
FM−i,1= f ∨

(
pM−I ,1, ϕ0

)
, I=0, . . . ,M − 1

(13)

Fig 3, in the demonstration section, illustrates the idea with
M = N = 4, assuming one angle of projection, say ϕ0, with
16 lines.

So far, we have recovered the first column of f . To recover
the next column, we update the data. Let

g2 (x, y) := f (x, y) after the first column of f

×has been zeroed out.

(14)

Accordingly,

g∨

2 (p, ϕ) = f ∨ (p, ϕ) −

∑M

i=1

∑1

j=1
Fij.B∨

ij (p, ϕ) (15)

The first column of g2 is now zeros. To recover the second
column of g2, which is the second column of f , we use the
lines pi,2, i = 1, 2, . . . ,M where equation (13) is now:

1
sinα

∑I

i=0
FM−i,2=g∨

2
(
pM−I ,2, ϕ0

)
, I=0, . . . ,M − 1

(16)

In general, define,

gJ (x, y) := f (x, y) after the first (J − 1) columns of f

×have been zeroed out, J = 2, . . .N.

(17)

with

g∨
J (p, ϕ) = f ∨ (p, ϕ) −

∑M

i=1

∑J−1

j=1
Fij.B∨

ij (p, ϕ),

J = 2, . . .N

(18)

Thus, to recover the J th column, J = 2, . . .N, perform a
recursive use of

1
sinα

∑I

i=0
FM−i,J =g∨

J
(
pM−I ,J , ϕ0

)
, I=0, . . . ,M−1

(19)

This completes the proof.

B. DEMONSTRATION
To illustrate the idea, as shown in Fig 3; assume that
M = N = 4, and

f (x, y) :=

∑4

i=1

∑4

j=1
Fij.Bij(x, y) (20)

Assuming one angle of projection,

ϕ0 =
π

2
− α; with α = tan−1(4), (21)

and the family of 16 lines:

pi,j := (j− 1) cosϕ0 + (M − i+ 1)sinϕ0,

i = 1, 2 . . . , 4, j = 1, 2, . . . , 4

(22)

The first four lines, p1,1, p2,1,p3,1, and p4,1, are shown in
Fig 3a. These four lines pass through the first column of f .
To recover the first column of f , apply (13) to build the
following system:

1
sinα

F
41

= f ∨
(
p4,1, ϕ0

)
1

sinα
F
31

+
1

sinα
F
41

= f ∨
(
p3,1, ϕ0

)
1

sinα
F
21

+
1

sinα
F
31

+
1

sinα
F
41

= f ∨
(
p2,1, ϕ0

)
1

sinα
F
11

+
1

sinα
F
21

+
1

sinα
F
31

+
1

sinα
F
41

= f ∨
(
p1,1, ϕ0

)
(23)

In this way, coulmn one is now determined. Fig 3b illus-
trates g2 (x, y) from (14) and the four lines p1,2, p2,2,p3,2, and
p4,2 that are involved in (16).
A summary of the above arguments is as follows:
1. The image in question is assumed to be of the form

f (x, y) :=
∑M

i=1
∑N

j=1 Fij.Bij(x, y) defined in (7)
2. Only one angle of projections is needed, namely,

ϕ0 =
π
2 − tan−1(M )

3. Recovering the J th column of f requires M lines,
namely,

pi,J := (J − 1) cosϕ0 + (M − i+ 1)sinϕ0,

i = 1, 2 . . . ,M

4. Thus, a total of MN Radon projections are needed:
f ∨

(
pi,j, ϕ0

)
, i = 1, . . .M , and j = 1, . . . ,N

IV. RESULTS: NUMERICAL EVALUATION
A. AN EXAMPLE OF ANALYTIC SIMULATION
Let f (x, y) be anM × N image such that

Fij = i+ j (24)

For instance, Fig 4 shows a 4 × 4 image of this class.
Consider g∨

J from (19). For (24), we can write,

g∨
J

(
pI ,J , ϕ0

)
=

1
sinα

[∑M

i=I
i+ [M − I + 1] J

]
(25)
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FIGURE 3. (a). f
(
x, y

)
with the first set of four lines p1,1, p2,1, p3,1,

and p4,1 out of 16 lines correspond to one angle of projection ϕ0.
(b). g2

(
x, y

)
from

(
14

)
with the second set of four lines p1,2, p2,2, p3,2,

and p4,2 that are involved in (16).

FIGURE 4. A 4 × 4 image with Fij = i + j .

On the other hand, consider (19) and (25):

1
sinα

∑I

i=0
FM−i,J = g∨

J
(
pM−I ,J , ϕ0

)
, I=0, . . . ,M − 1

If I = 0, then,

FM ,J = sinα.
[
g∨
J

(
pM ,J , ϕ0

)]
= sinα[

1
sinα

(M + J)] = M + J (26)

For I = 1, . . . ,M − 1; we use (19) to write

1
sinα

∑I

i=0
FM−i,J −

1
sinα

∑I−1

i=0
FM−i,J

= g∨
J

(
pM−I ,J , ϕ0

)
− g∨

J
(
pM−I+1,J , ϕ0

)
.

(27)

Simplify the left side of (27), and apply (25) on the right side,
we obtain,

FM−I ,J = g∨
J

(
pM−I ,J , ϕ0

)
− g∨

J
(
pM−I+1,J , ϕ0

)
= {

∑M

i=M−I
i+ [M − (M − I ) + 1] J}

− {

∑M

i=M−I+1
i+ [M − (M − I + 1) + 1] J}

= {

∑M

i=M−I
i+ [I + 1] J} − {

∑M

i=M−I+1
i+ IJ}

= M − I + J . (28)

From (26) and (28) we have, FM−I ,J = M − I + J , I =

0, . . . ,M − 1, as expected.

B. DISCUSSION
Let us write (19) in the matrix form:

1
sinα


1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 0 . . . 0
: : : : : :

1 1 1 . . . 1 1





FM ,J
FM−1,J
FM−2,J

...

...

F2,J
F1J



=



g∨
J

(
pM ,J , ϕ0

)
g∨
J

(
pM−1,J , ϕ0

)
g∨
J

(
pM−2,J , ϕ0

)
.

.

.

g∨
J

(
p1,J , ϕ0

)


(29)

In this way, the J th column of the desired image, (flipped
upside down), is recovered by solving (29).

To verify the overall effectiveness of the proposed method,
experiments were performed on different images. For the first
example, consider the 128 ×128 brain image in Fig 5a. the
required view angle of projection ϕ0 as well as the required
lines of projections pi,j are defined by (12). Specifically,
ϕ0 =

π
2 − α; with α = tan−1 (128), and the family of

128 ×128 = 16384 lines:

pi,j := (j− 1) cosϕ0 + (M − i+ 1) sinϕ0,

i = 1, 2 . . . , 128, j = 1, 2, . . . , 128.

Figure 5b shows the profile f ∨
(
pi,j, ϕ0

)
, which is the raw

data that assumed to be available. This graph consists of
16384 points.
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FIGURE 5. (a) Original image. (b) The required projections f ∨
(

pi,j , ϕ0
)

at
the one angle ϕ0 and the lines pi,j from

(
12

)
. (c-d) Two profiles

g∨

2

(
pi,2, ϕ0

)
and g∨

20

(
pi,20, ϕ0

)
. (e) g∨

J

(
pi,J , ϕ0

)
for all J . (f) The

reconstructed image from (29) using the projections g∨

J

(
pi,J , ϕ0

)
.

Now, observe that g∨
J

(
pi,J , ϕ0

)
in (29) is extracted from

f ∨
(
pi,j, ϕ0

)
as given in (18). Observe also that g∨

J is
calculated only for the lines pi,J , i = 1, 2 . . . ,M . For
instance, Fig. 5(c-d) show the projections g∨

2

(
pi,2, ϕ0

)
and

g∨

20

(
pi,20, ϕ0

)
, i. = 1, 2 . . . ,M . Figure 5e shows g∨

J

(
pi,J , ϕ0

)
for all J and Fig. 5f displays the reconstructed image that
was recovered column by column from left to right by solv-
ing (29),M times.
In addition to the visual comparisons between the original

and reconstructed images; we use two quantitative measures:
The normalized average absolute distance,

D1 =

∑ ∑
|Fij − F∗

ij |∑ ∑
Fij

(30)

And the root-mean-square error,

D2 =

√∑ ∑
[Fij − F∗

ij ]
2

MN
(31)

where Fij and F∗
ij represent the pixel values corresponding to

the original image and the reconstructed image, respectively.
The values (30-31) for Fig. 5f are: D1 = 3.8 × 0−14 and

D2 = 9.5 × 10−13. As observed, the reconstruction in Fig. 5f
is exact. This is because of two factors: equation (8) that cal-
culates the transform exactly, and equation (19) implemented
in (29) that returns the image column by column precisely.

FIGURE 6. (a) The distorted h∨

J

(
pi,J , ϕ0

)
for all J . (b) The reconstructed

image from (29) using the projections h∨

J

(
pi,J , ϕ0

)
. (c-j) h∨

J

(
pi,J , ϕ0

)
-

blue- versus g∨

J

(
pi,J , ϕ0

)
-red- for J = 2, 25, 50, 75, 90, 100, 110, and 115.

We now test the sensitivity of the proposed method under
some perturbation of the Radon projections. Consider (29),
assume that each of the original projections f ∨

(
pi,j, ϕ0

)
is

distorted, and is given by,

f ∨

1
(
pi,j, ϕ0

)
= (1 + r)f ∨

(
pi,j, ϕ0

)
(32)

for some small random number r in the range −E ≤ r ≤ E
with a choice of E .

For clarity of notation, we reserve g∨
J from (18) when no

noise is applied to f ∨
(
pi,j, ϕ0

)
, andwe replace g∨

J by h∨
J when

f ∨
(
pi,j, ϕ0

)
is distorted by some r . So we have,

g∨
J (p, ϕ) = f ∨ (p, ϕ) −

∑M

i=1

∑J−1

j=1
Fij.B∨

ij (p, ϕ),

J = 2, . . .N

and,

h∨
J (p, ϕ) = f ∨

1 (p, ϕ) −

∑M

i=1

∑J−1

j=1
Fij.B∨

ij (p, ϕ),

J = 2, . . .N

(33)

Consider the above experiment on the brain image of Fig. 5a.
Apply the distortion (32) on f ∨

(
pi,j, ϕ0

)
with E = 0.1%.

The distorted h∨
(
pi,J , ϕ0

)
for all J is shown in Fig. 6a

and the reconstructed image is shown in Fig 6b.The values
(30-31) for Fig 6b are: D1 = .73 and D2 = 0.15.
Let us zoom in Fig 5e and Fig 6a. Fig 6 c-j show the plots

h∨
(
pi,J , ϕ0

)
; the blue graphs, against g∨

(
pi,J , ϕ0

)
, the red

graphs for the values J = 2, 25, 50, 75, 90, 100, 110, and 115.
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FIGURE 7. (a) Original image, (b-f) Reconstructed images correspond to
perturbations of the Radon projections with a noise level of 0.1%, 0.2%,
0.3%, 0.4%, and 0.5%, respectively.

FIGURE 8. D1 and D2 errors plot for several levels of noise on projections
for Shepp-Logan image.

For further testing, let us use 128 × 128 Shepp-Logan
image with values of E range from 0.1% to 0.5%. Fig. 7
shows the visual results and table 1 displays the measures D1
and D2. In fact, Fig. 7b-6f are the reconstructed images after
the perturbation of the Radon projections f ∨

(
pi,j, ϕ0

)
with a

noise level 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, respectively.
From these experiments we observe the following:
First, with the absence of noise in f ∨

(
pi,j, ϕ0

)
the

reconstruction is exact as in Fig 5f. As said, this accuracy

TABLE 1. Perturbation of data and error- D1 and D2.

of reconstruction is due to equation (8) that calculates the
transform exactly, and equation (19) implemented in (29) that
returns the image column by column precisely.

Second, from Fig. 6b and Fig. 7b-f, the noise on any of
these reconstructed images increases horizontally from left
to right. That is due to the recursive nature of this method.
We recover the image column by column, from left to right,
and the error caused by the added noise accumulated. This
observation can also be seen in the plots of Fig 6 c-j where a
larger J means a larger deviation of the distorted projections
h∨

(
pi,J , ϕ0

)
from the exact projections g∨

(
pi,J , ϕ0

)
.

Third, from table 1, we see that the errors D1 and D2
increase linearly against the level of the added noise, this is
suggested by Fig 8.

V. CONCLUSION
In this paper, we obtained two results; one is practical and
the other is theoretical. Our practical result is described
in equations (7) and (8) where it possible to compute the
Radon transform of a given image precisely. For the second
result, we have seen that a function of the form (7) can be
reconstructed from its Radon transform using only one view
angle with lines of projection described in equation (12). The
approach can be categorized as an algebraic reconstruction,
but it is merely a theoretical contribution for the field of
limited data tomography.
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