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ABSTRACT The main purpose of logic optimization lies in architecting integrated switching circuits.
It is thus a topic well covered in electrical engineering. Some subfields of the social sciences have also
employed algorithms for logic optimization since the mid-1980s to infer about cause-effect relations.
Most notably, political scientists and sociologists have developed Qualitative Comparative Analysis (QCA),
a configurational comparative method (CCM) that relies on the well-known Quine-McCluskey algorithm.
However, while electrical engineering has progressed considerably since the advent of logic optimization
in the 1950s, these advancements have not been monitored by social scientists. Nor have social scientists
sought to establish interdisciplinary collaboration. The objective of our article is twofold. First, and more
generally, we seek to build a bridge between electrical engineering and configurational causal inference.
Secondly, and more specifically, we present Combinational Regularity Analysis (CORA), a new CCM
that has been inspired by electrical engineering. In particular, we introduce one of CORA’s algorithms for
optimizing highly unspecified multi-value logic functions with multiple outputs. The availability of such
algorithms in CORA pushes the boundaries of configurational causal inference and attests to the extent to
which configurational comparative methodology could benefit from more interdisciplinary collaboration
with electrical engineering.

INDEX TERMS Algorithms, causal inference, configurational comparative methods, CORA, interdisci-
plinarity, logic optimization, multi-value logic.

I. INTRODUCTION
Finding an optimal solution to a scientific problem with
societal implications often requires collaboration between the
natural, technical and social sciences. At the same time, inter-
disciplinary collaboration is fraught with challenges [1]. One
obstacle is the increasing level of specialization in modern
science, which creates growing divisions among researchers
even within the same discipline. Nowadays, only few scien-
tists have an understanding of work being conducted outside
their specialty, even if that work may be pertinent to their
own [2]. In addition, cultural hierarchies that privilege the
technical and natural sciences over the social sciences as
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well as perceptions of interdisciplinarity as an impediment
to career advancement act as crucial barriers [3].

When engineering and social science are discussed in an
interdisciplinary context, the focus usually is on the value
the latter can bring to the former. Good engineering ideas
have sometimes foundered on simple failures to appropriately
understand and engage with those within society meant to
utilize the technology [4]. Such failures could have been
avoided if engineers and social scientists had collaborated at
an early stage. Yet, a disconnected mode of research can also
be disadvantageous for social scientists when, for example,
they import procedures that have originally been developed in
engineering without a full understanding of these procedures’
technicalities.

Most notably, in the mid-1980s, US sociologist Charles
C. Ragin swiftly imported the Quine-McCluskey algorithm
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(QMC; [5], [7]) from electrical engineering because he
believed that QMC could not only be used for optimizing
logic functions, but also for discovering certain cause-effect
relations in social-scientific data [8]. In that context, Ragin
called his new method Qualitative Comparative Analysis
(QCA; [9]). More specifically, Ragin intended QCA to
become a method in which ‘‘causes are viewed as INUS con-
ditions: insufficient but necessary components of unnecessary
but sufficient combinations of conditions’’ [10], pp. 431-432.
By employing an algorithm that was originally developed
for a very different purpose in electrical engineering, QCA
was thus meant to uncover a specific form of causal rela-
tions that analytical philosophers have subsumed under the
INUS Theory of Causation [11], [12], [13], [14].1 QCA has
since joined the larger class of Configurational Comparative
Methods (CCMs) and has made major inroads into many
social-scientific fields of research, including sociology, polit-
ical science, management, business, international relations,
environmental studies and public health [15]. It would cer-
tainly not be exaggerated to say that QCA has become a
revolution in social research methodology [16].

At the same time, the connection between the QCA
research community and electrical engineering has always
been unidirectional. While QCA has imported its core algo-
rithmic procedure from electrical engineering and its theory
of causation from analytical philosophy, none of these two
fields has ever been involved in QCA’s development over the
last 35 years. It may, therefore, come as no surprise that,
over the last ten years, researchers have revealed numerous
methodological problems in QCA which an early involve-
ment of electrical engineers—and analytical philosophers
versed in theories of causation, for that matter—could have
helped to prevent.

Three problems are emblematic of QCA’s disconnected
mode of development. First, it has been discovered that
various of its associated software packages do not gener-
ate all solutions that are compatible with an understanding
of cause-effect relations in terms of INUS structures [17],
[18], [19], [20]. The simple reason is that the criterion of
row dominance, which is used in engineering applications of
QMC to directly generate only the minimal sum instead of all
irredundant sums, has also been imported by Ragin. However,
no QCA methodologist had ever evaluated whether compli-
ance with the INUS Theory would require the generation of
all irredundant sums or only the minimal sum.

A second, major point of criticism against QCA relates to
the manipulation of don’t care-terms, simply called d-terms
hereafter. When Ragin imported QMC in the mid-1980s,
he immediately took issue with QMC’s use of d-terms, that is,
terms in the function to be optimized whose output value was
undetermined. For optimization proper, QMC requires unre-
stricted access to 1-terms and d-terms in its operations [5].
Yet, Ragin believed that whenever QMC incorporated a d-

1An introduction to the INUS Theory of Causation is beyond the scope
of our article. The best introduction remains the original work of John
Mackie [13].

term, the algorithm would risk having to make an assumption
that social scientists may find implausible, namely that this
d-term was associated with the presence of the analyzed
outcome, on a par with a regular 1-term. Such d-terms he
thus called ‘‘difficult counterfactuals’’, which, he argued,
should be redefined as a 0-term, that is, a term for which
the function to be optimized was negative, and which QMC
therefore could not use [21], p.162. Later generations of
QCA methodologists devised further procedures that built
on Ragin’s concerns about d-terms (e.g., [22]). Instead of
avoiding implausible assumptions, however, the manual relo-
cation of d-terms to the set of 0-terms alters the original
function completely, such that QCA would output causal
inferences that were not only unsupported by the empirical
data to be analyzed, but that, in consequence, would also
lead to (extremely) high rates of false positives [23], [24].
The exposure of this algorithmic tweak in QCA has led to
a bewildering array of new proposals for QCA’s search target
that often completely break with Ragin’s original goal of
identifying INUS structures (e.g., [25], [26], [27], [28], [29]).
Again, the involvement of electrical engineers early on in
QCA’s development would have helped social scientists to
fully understand the effect of manipulations of d-terms on
QMC’s output, and thus avoid the utter state of confusion that
now prevails some 40 years after the method’s introduction.

Third, the analytical capabilities of QCA have largely stag-
nated since the mid-1980s. Until today, for instance, QCA
remains restricted to the analysis of one effect only. Although
some tentative attempts at removing this restriction have been
made [30], the possibility that data may contain evidence for
the existence of more than one effect has never been put on
QCA’s methodological agenda. This omission cannot be due
to the fact that social-scientific data do not feature more than
one possible effect. Many QCA studies published as early as
in the mid-1990s have listed several distinct effects as part
of the same set of data, but were eventually forced to analyze
each one of them in isolation (e.g., [31], [32], [33], [34], [35]).
In contrast, extensions of QMC for multi-output optimization
have been known in electrical engineering at least since the
early 1960s (e.g., [36], [37]), yet without any attempt of inter-
disciplinary collaboration or at least an attempt to monitor
basic developments in electrical engineering, the possibility
to analyze multiple effects in QCA has never been realized.

Against the background of a missing connection between
electrical engineering and configurational causal inference,
we pursue two related objectives with this articles—a gen-
eral one and a more specific one. First, and more generally,
we seek to build an explicit bridge between electrical engi-
neering and configurational causal inference. Secondly, and
more specifically in this regard, we present Combinational
Regularity Analysis (CORA; [38]), a new CCM that incor-
porates multi-value logic and algorithms for multi-output
optimization. CORA is combinational because its techni-
cal core procedures have originally been developed in the
area of combinational switching circuit design, a subfield of
electrical engineering. In parallel, CORA contains the term
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regularity because the INUS Theory of Causation, which
also provides the epistemological basis of CORA, belongs
to the larger group of regularity theories of causation [14].
In particular, we introduce one of CORA’s algorithms for
optimizing highly unspecified multi-value logic functions
with multiple outputs. The availability of such algorithms
in CORA pushes the boundaries of configurational causal
inference and attests to the high potential of interdisciplinary
collaboration between social research methodology and elec-
trical engineering.

Our article is structured as follows. Section II revisits
some of the advances that have already been made in the
QCA literature towards the handling of multi-value prob-
lems. Section III presents a short history of multi-value
logic (MVL). Section IV provides all necessary definitions.
In Section V, we introduce one of CORA’s optimization
algorithms for handling multi-value multi-output functions.
In Section VI, we provide two examples from applied
research to show how this algorithm can improve configura-
tional research. Our conclusions are presented in Section VII.

II. MULTI-VALUE LOGIC OPTIMIZATION IN
CONFIGURATIONAL COMPARATIVE METHODOLOGY
At its introduction in the mid-1980s, QCA could process only
binary factors, as in classical two-valued logic. Following
criticism that it could not handle continuous variables, Ragin
himself proposed the first extension of QCA in [39] by intro-
ducing a variant that built on fuzzy-set theory. In [21], he pre-
sented a modified version of that variant. To distinguish the
original variant of QCA from its later extensions, the former
has since been called crisp-set QCA (csQCA) and the latter
fuzzy-set QCA (fsQCA). A third variant that could process
multi-value data—called multi-value QCA [40]—joined the
QCA family in the mid-2000s. A fourth variant, referred to as
generalized-set QCA (gsQCA; [41]), which united all three
other QCA variants as special cases, was developed in theory
but has never been implemented in software. Thus, multi-
value logic has, in fact, already been present in QCA for about
20 years.

Against this backdrop, it is striking that the distribution
of applications of csQCA, fsQCA and mvQCA in empiri-
cal research has been heavily skewed towards csQCA and
fsQCA. A comprehensive dataset of empirical QCA stud-
ies identifies only 19 applications of mvQCA among a
total of 915 QCA applications that have been published in
decent peer-reviewed scientific journals between 1984 and
2017 [15]. This mismatch is surprising because mvQCA is
appreciably more powerful than its two cousins. Although
fsQCA allows researchers to incorporate continuous vari-
ables, this advantage is lost again at the stage of constructing
QCA’s truth table. Both csQCA and fsQCA can only output
solutions that allow inferences about binary factors. In con-
trast, mvQCA permits more fine-grained inferences about
multi-value factors. Methodological reviews have explained
mvQCA’s niche existence by the absence of promotion
by Ragin as QCA’s most prominent representative and the

outright rejection of mvQCA by many other QCA method-
ologists [42], [43], [44].

Against a pronounced trend of rejecting mvQCA in the
mainstream QCA literature, it is also interesting that the
authors of several empirical mvQCA studies not only con-
sidered the use of multi-value logic beneficial for advancing
their research, but that they also already included several
endogenous factors in their data [31], [33], [45]. Given that
QCA has not been able to analyze more than one output,
these mvQCA studies were still forced to process each output
separately and independently of the others.

In summary, neither multi-value logic nor algorithms for
multi-output optimization have been items on QCA’s devel-
opmental agenda. In the next section, we briefly trace the
appearance of multi-value logic in electrical engineering.

III. A BRIEF HISTORY OF MULTI-VALUE LOGIC
The roots of the development MVL can be traced back
to the first two decades of the twentieth century. In 1920,
Łukasiewicz argued that every concept has a truth value,
as opposed to a classical binary view that every proposition
is either true or false. Łukasiewicz thus extended classical
binary logic to a trivalent framework, where prepositions have
an intermediate truth value reflecting uncertainty. Already a
year later, Emil Post developed a many-valued propositional
calculus [46].2

The 1930s saw the flourishing of ternary logics, mainly
by Bochvar, Gödel, De Finetti and Kleene. These frame-
works gave different interpretations to the third value in
Łukasiewicz’s system. For example, while Łukasiewicz
referred to the third value as undetermined, Bochvar named
it undecidable, and Kleene unknown. The difference in the
notion of this value led to different definitions of logical
connectives, and in turn to important differences in their
implications. For example, Bochvar connectives are more
conservative and every compound proposition containing at
least one undecidable is undecidable, while the rules for true
and false components are exactly the same as in binary logic.

Over the next two decades, the focus of research even-
tually shifted towards the extension of ternary logics to
MVL proper. Researchers were increasingly working at the
intersection of logic, computer science and neural science
(see [48] for a detailed review). While early contributions
to MVL primarily came from mathematical logic and ana-
lytical philosophy (Łukasiewicz, Bochvar, Kleene), start-
ing from the late 1960s, advancements have mostly been
driven by computer science and electrical engineering, with
a focus on developing algorithms for optimizing multi-value
logic functions that could improve computational technology
(cf. [49], [50]).

2 [47] notes that a decade before Łukasiewicz and Post published their
respective works, Peirce already established the main concepts in his unpub-
lished work on what he called triadic logic. Thus [47] credits the origins of
ternary logic to Peirce without discrediting the works of Łukasiewicz and
Post as they both were unaware of Peirce’s earlier results.
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FIGURE 1. Optimization of a system of two functions as (a) two separate
systems and (b) as one system.

In sum, researchers have emphasized two main advantages
of MVL over binary logic [49]. First, MVL leads to a deeper
understanding of certain logic problems, and second, it can
help to implement binary logic in a more efficient way. For
more comprehensive introductions to the theory, definitions
and properties of MVL, we refer readers to [49], [51], [52],
or [53]. In the next section, we introduce the additional notion
of multi-output optimization and connect it to MVL.

IV. FUSING MULTI-VALUE LOGIC WITH MULTI-OUTPUT
OPTIMIZATION
Not only the development of MVL has lead to quantum
leaps in logic design and optimization. In many large digital
systems, it is also frequently necessary to implement several
switching functions that share the same inputs. Consequently,
the optimization of multi-output logic functions has become
an important area of research as well. Fig. 1 shows two
possible approaches to the optimization of multiple logic
functions: (a) a system of two functions f1 and f2 that share the
same inputs could be optimized via the separate optimization
of each component function, or (b) f1 and f2 could be opti-
mized jointly.

If x1, x2 or x3 is a multi-value variable, then we speak
of multi-value multi-output optimization. Below, we define
those concepts that are essential for the remainder of our
article.
Definition 1: An n-variable m-valued logic function is a

mapping Mn
→ M over a finite set of values M =

0, 1, 2, . . . ,m− 1.
Definition 2: An incompletely specified logic function f

with at least one multi-value input and a single binary-value
output is a mapping f (x1, x2, . . . , xn) : P1×P2× . . .×Pn →

Q, where xi is a multi-value variable, Pi = {0, 1, . . . , pi − 1}
is a set of values that this variable may take on, and where
pi ≥ 1 and Q = {0, 1, −}, with ‘‘−’’ denoting the value
undetermined.

The or-operator ‘‘+’’ and the and-operator ‘‘ · ’’ directly
carry over to multi-value functions. However, the unary not-
operator needs to be redefined such that it can distinguish
between m values of a multi-value variable [49].

Definition 3: A literal of amulti-value variable x is a unary
operation defined by

x {S} =

{
1, if x ∈ S
0, otherwise,

where S ⊆ P. When m = 2, then the notation of the binary
literals becomes x{1}

= x and x{0}
= x ′ as in classical

binary logic. A literal is a characteristic function of type
P → {0, 1}, which implies that for multi-value functions
with a binary-value single output, operations on literals are
Boolean operations of type {0, 1}n → {0, 1}. Therefore, any
such function can be represented in terms of and , or and
multi-value literals.
Definition 4: Let Si ⊆ Pi, with i = 1, 2, . . . , n; then, xS11 ·

xS22 · · · xSnn is called a product term.
Definition 5: The result of an (inclusive) or-operation on

product terms
∑

S1,S2,...,Sn x
S1
1 · xS22 · · · xSnn is called a sum of

product (SOP).
Any multi-value function with a binary-value single output

can be represented by an SOP, and theremay exist many SOPs
representing the same function.

A multi-value function is uniquely defined by its truth
table, which contains mn rows if each of the n inputs has
the same m-base. However, inputs need not all have the
same base. For example, some variables can be binary, others
ternary. More generally, the size of the truth table is deter-
mined by the product of the base values of all inputs. For
example, if data contains 4 binary and 2 ternary inputs, the
truth table will have 24 ∗ 32 = 144 rows.
Definition 6: An incompletely specified n-input logic

function f with at least one multi-value input and k binary-
value outputs is a mapping Pn → Qk , where Q = {0, 1, −}.
The main computational distinction between the optimiza-

tion of single-output and multi-output functions lies in the
search process for the prime implicants (PIs). For multi-
output functions, it is not sufficient to consider only the PIs
of each output function in isolation, as sketched in panel (a)
of Figure 1. A more economical expression will result when
each function as well as each product of functions is con-
sidered jointly, as in panel (b) of Figure 1. In optimizing a
system of multiple outputs, it is thus necessary to generate
the PIs of each individual function in addition to the PIs of all
possible products of functions. The resulting PIs are called
multi-output PIs (MOPIs).
Definition 7: Amulti-output prime implicant (MOPI) of a

system of switching functions F = {f1 (x) , f2 (x) , . . . , fk (x)}
of a set of multi-value inputs x = {x1, x2, . . . , xn} is a product
of literals x{·}

1;ix
{·}

2;i · · · x
{·}

h;i with h ≤ n and 1 ≤ ij ≤ n, which is
either a PI of some fj ∈ F with j = 1, 2, . . . , k or a PI of one
of the product functions f1 (x) f2 (x) · · · fk (x).

The notion of usefulness and uselessness of a PI can be
directly applied to MOPIs as well. A MOPI that is a compo-
nent of an irredundant sum is called useful, one that is no
component of any irredundant sum is called useless. A PI
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TABLE 1. Data on public-private partnership contracts for toll roads from [33].

that is a necessary component of an irredundant sum is called
essential, one that is no necessary component inessential.

For configurational causal inference, the objective function
of optimization algorithms must be set to sum irredundancy
instead of sum minimality. with single-output data the opti-
mization target is the set of all irredundant SOPs that are
equivalent to the original function. With multi-output func-
tions, the concept of irredundancy needs to be generalized to
a system level. The optimization target becomes the set of
irredundant systems [54].
Definition 8: An F-equivalent system of switching func-

tions SF is called an irredundant system S∗

F if it is impossible
to cancel any literal in the writing of itsMOPIs and anyMOPI
in the writing of its switching functions fj and still be able to
ensure F-equivalence.
In the literature on CCMs, the existence of multiple models

has been referred to as model ambiguity [17], [18], [20].
As CORA works on the higher level of systems of func-
tions, this concept is generalized to system ambiguity. System
ambiguity implies that there may exist many systems that
can potentially explain the causal structure behind a set of
data. Each system comprises as many functions as there are
outputs, but these functions are not alternatives to each other,
whereas different systems are.

In the next section, we present one of CORA’s optimization
algorithms for generating the set of all irredundant systems
from a system of multi-value logic functions.

V. CORA: A NEW CONFIGURATIONAL METHOD FOR
MULTI-VALUE MULTI-OUTPUT LOGIC OPTIMIZATION
To derive the set of irredundant systems for multi-valuemulti-
output functions, CORA draws on but extends McCluskey’s
algorithm for highly unspecified functions [6]. For the sake of
brevity, in the remainder of our article, we refer to the original
version of this algorithm as MC and to our extended version
as MC′. The choice of MC is based on the considerations

that it has been developed for optimization problems with
relatively large d-sets, which represent the rule rather than
the exception for multi-value functions. We first discuss our
generalization to multi-value single-output functions, subse-
quently to systems of multi-value functions.

The flowcharts in Fig. 2 and Fig. 3 visualize the procedural
protocol for MC′ for deriving essential and inessential PIs for
single functions. The flowchart in Fig. 4 shows the procedu-
ral protocol for deriving MOPIs. We illustrate each step in
these charts in the next section with two empirical examples.
Essentially, there are three main differences between MC and
MC′.

1) To derive the essential PIs in MC, the rows of the
on-set (the set of 1-terms)—called C-matrix or just
C , for short—and the rows of the off-set (the set of
0-terms)—called N -matrix or just N , for short—are
grouped according to the number of 1s. InMC′, the data
are grouped by the number of non-zero entries (Step 2
in the flowchart in Fig. 2).

2) To derive the essential PIs in MC, each row in C is
combined with each row in N belonging to one higher
or one lower weight group and having a difference on
one input only. In MC′, however, because the same
weight groups in C and N can also have rows with a
difference on only one input (because of multi-value
entries), in addition to one more and one less weights,
each row in C is combined also with a row in N of
the same weight and having a difference on one input
(Step 3 in the flowchart in Fig. 2).

3) In MC, to derive the PIs for systems of functions, every
matrix derived from combining a rowC with all rows of
N is first reduced and then multiplied out. This reduc-
tion process involves two components: (1) when two or
more rows are identical, the identical rows are removed,
and (2) if one row is dominated by another row, it is
removed from thematrix. InMC′, the reduction process
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FIGURE 2. Procedural protocol to derive essential PIs from multi-value
single-output truth table.

includes only the first component because of CORA’s
objective function of sum irredundancy.

VI. APPLYING CORA TO MULTI-VALUE DATA
In this section, we reanalyze empirical data on 18 public-
private partnership projects for toll roads in order to demon-
strate the usage of MC′ in CORA. These data were originally
analyzed with mvQCA in [33] and are shown in Table 1.
Each case represents a project on which the following data
on input factors hypothesized to influence the public pricing
objectives of the projects are available:

• pric: toll rate approach (0: average cost pricing;
1: marginal social-cost pricing; 2: revenue-maximizing
pricing)

FIGURE 3. Procedural protocol to derive PIs from multi-value,
single-output reduced truth table.

• leng: concession length (0: variable; 1: short; 2: long)
• upsi: upside revenue sharing (0: absent; 1: present)
• dosi: downside risk sharing (0: absent; 1: present)
• risk: traffic-demand risk (0: low; 1: high)

From the three output factors in the original study, we use
only the following two (as our primary aim is a methodolog-
ical demonstration rather than a substantive reanalysis):

• frfl: managing congestion or maximizing throughput
(0: low; 1: high)

• tort: achieving an affordable / specific toll rate (0: low,
1: high)

Section VI-A starts with one output, following which
Section VI-B extends the example to a simultaneous analysis
of both outputs.
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FIGURE 4. Procedural protocol for deriving multi-output prime implicants
from multi-output truth table.

A. MULTI-VALUE LOGIC OPTIMIZATION WITH CORA:
SINGLE OUTPUTS
To demonstrate how CORA implements MC′ along the
flowcharts in Fig. 2 and Fig. 3, we first analyze the output
frfl, and more specifically, frfl1 as an outcome. Given the
number of levels for each input, 32 · 23 = 72 configurations
are theoretically possible, out of which 56 are undetermined
and 16 are empirically observed.

MC′ generates the essential PIs first, which comes with
two advantages. First, the number of iterations is reduced
because the input of the optimization algorithm is not the
initial truth table but the reduced truth table, where all 1-terms

TABLE 2. Data representation of Table 1 for deriving the essential PIs.

TABLE 3. Combination of all Cw with Nw−1, Nw−1 and Nw+1 of Table 2
with a difference on one position for at least one 0-term.

contained in the essential PIs have been removed. Second,
a subset of useless PIs are not generated, thereby increasing
computational efficiency in generating the irredundant sums.

To derive the essential PIs with MC′, we follow the
flowchart in Fig. 2. The truth table is divided into two
sub-tables according to the number of non-zero values in C
and N , respectively. For convenience, each set of rows in C
is labelled as Cw and each set of rows in N as Nw, where w is
the number of non-zero entries as shown in Table 2.
In the next step, each row in C is compared with each row

in N having the same, one lower, or one higher weight group
and differing on only one position to check whether they can
be combined. If they can be combined, the new row takes the
value of the position of the 1-term if the two rows differ in
their values, but assigns a dash, ‘‘-’’, if the values are identical.

Table 3 shows all possible combinations of Cw with
{Nw−1,Nw,Nw+1} for the data in Table 2. The 1 sub-
matrices contain only one row. Therefore, the operations in
Step 4 and 5 of Fig. 2 are not applicable.
In Table 3, all product terms are identical. Thus, there

is only one candidate for an essential PI. To decide if that
candidate PI is really essential, it is compared with each row
in N in Table 2 to check if both terms have at least one
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TABLE 4. Multi-output representation of Table 1 with 1-terms and
0-terms.

conflicting coordinate. As no 0-term in Table 2 shows a 1 on
input pric, pic{1} is an essential PI.

To derive the non-essential PIs, we follow the steps of the
flowchart in Fig. 3. As an input, MC′ now takes the reduced
truth table, where all the rows in C containing the essential
PI have been removed. As each row in C contains pric{1},
all rows are eliminated and the process aborted. CORA’s
solution for frfl contains only one path, which is the essential
PI pric{1}.

B. MULTI-VALUE LOGIC OPTIMIZATION WITH CORA:
MULTIPLE OUTPUTS
In this section, we demonstrate how CORA implements
MC′ with multi-value systems of functions. To generate all
MOPIs, we follow the procedural protocol in Fig. 4.
As a first step, the table in Table 1 is again rearranged into

two sub-tables, one containing the 1-terms and the other the
0-terms. If a row in a truth table is associated with positive
outputs only, it is marked in the first sub-table. If both outputs
are negative, the row is assigned to the second sub-table and
if the outputs are mixed, the row appears in both sub-tables
with corresponding tags in the outputs. For example, the

TABLE 5. Combination of rows from Table 4.

TABLE 6. Multiplying out of each sub-matrix containing output frfl in
Table 5.

case SH121 is assigned to the 1-terms sub-table only, the case
ROUTE460 appears in the second sub-table only, and the case
I595 is written in both sub-tables tagged for output frfl in the
1-terms sub-table and for output tort in the 0-terms sub-table.

10478 VOLUME 11, 2023



L. Mkrtchyan et al.: Re-Establishing a Lost Connection: Multi-Value Logic in Causal Data Analysis

TABLE 7. Multiplying out of each sub-matrix containing output tort in
Table 5.

TABLE 8. Multiplying out of each sub-matrix containing outputs frfl and
tort in Table 5.

TABLE 9. The final list of MOPIs for the data in Table 1.

TABLE 10. The list of PIs for the data in Table 1 under separate
optimization.

The second step is the same as in the previous section,
with one additional rule for the output tags. In Table 5, each
row in the 1-terms sub-table in Table 4 is combined with all
rows of the 0-terms sub-table. The new row takes the value
of the 1-term if the corresponding row in the 0-terms sub-
table has a different value, and is cancelled out if both rows
have identical values. The output tag is assigned only if both
composing rows in the 1-terms and 0-terms sub-tables have
tags in that output, otherwise no tag is given to the new row
for the output. As can be seen from Table 5, some rows are

TABLE 11. The list of PIs for the data in Table 1 under separate
minimization, including useless PIs.

TABLE 12. The irredundant sums generated through separate
optimization.

associatedwith the first or second output only, and some other
rows have tags in both outputs.

The next step involves the multiplication for all
sub-matrices in Table 5. Note that for single-output optimiza-
tion, before this step, each sub-matrix is reduced considering
the dominance relation of the rows in the sub-matrix. For
multi-output problems, this step is omitted, as we do not
define dominance relations for multi-output data. Thus, each
row is multiplied out even if the sub-matrix has only one
row. Table 6 and Table 7 show the results of multiplication
for outputs frfl and tort , respectively, while Table 8 lists the
results for the product of both outputs. If a PI is present in an
individual output matrix and in the matrix for the product of
the outputs, it is assigned to the product of the outputs in the
final list of MOPIs. For example, both Table 6 and Table 8
contain the PIs upsi{1} · dosi{1} and leng{2}

· dosi{1}. However,
in the final list of PIs, they belong to the list of MOPIs only.

The final list of MOPIs per output and product of outputs
is listed in Table 9. To compare the approach of separate
optimization with that of multi-output optimization, we list
the PIs generated by separate optimization in Table 10. As can
be seen from Table 9 and Table 10, the two outputs do not
share any PIs under separate optimization, whereas three
sharedMOPIs result under themore comprehensive approach
of multi-output optimization.

With MC′, useless PIs are eliminated in the process of
generating the essential PIs and reducing the truth table to
generate the inessential PIs. Table 11 shows that for both
outputs, separate optimization under QMC, as so far practiced
in QCA research, generates many useless PIs. For example,
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TABLE 13. CORA’s solution, consisting of seven irredundant systems.

for the output frfl, QMC generates four inessential PIs and all
these PIs are useless and not part of the final solution space.

The difference in the PIs generated with separate and
multi-output optimization directly influences the final results
for both outputs. Table 12 shows the irredundant sums per
output generated with separate optimization, and Table 13
shows the irredundant systems of the two outputs when opti-
mized jointly. With separate optimization, one solution per
output is generated, whereas under joint optimization, seven
systems are generated, six of which contain shared paths, and
one system is identical to the one generated under separate
optimization.

Note again that CORA’s notion of system irredundancy is
not the same as sum irredundancy in QCA. For example, if we
take the system S2 and take each function separately, the first
function contains a redundancy because pric{1} · dosi{1} +

pric{1} = pric{1} · (dosi{1} + 1) = pric{1} · 1 = pric{1}.
However, when considering the whole system, the product
term pric{1} · dosi{1} cannot be eliminated because if it is
removed from the first function, it must also be removed from
the second, which will result in a non-equivalent solution
for tort .

Comparing the results generated with separate optimiza-
tion in Table 12 and multi-output optimization in Table 13,
it becomes evident that, with multi-output optimization, the
whole spectrum of causal paths shared between the two
outputs is discovered. In fact, under separate optimization,
no shared path is discovered, whereas six systems in Table 13
contain a common MOPI.

From a policy perspective, the results of CORA’s MC′ give
more insights into the potential causal structures operating
behind different pricing objectives. First, the two outputs
contain essential prime implicants. In all seven systems, the
toll rate approach is part of each output being in average cost

FIGURE 5. Logigram of System 1 in Table 13.

pricing for outcome tort and in marginal social-cost pricing
for outcome frfl. Second, decision-makers have a possibility
to understand the combinations of conditions which may lead
to the simultaneous presence of both outcomes, not only the
presence of each outcome alone.

For communication purposes, CORA’s solutions can be
visualized as standardized logic diagrams, called logigrams
in CORA. For example, Fig. 5 shows the system S1 (using
upper-case letters instead of lower-case letters).

VII. CONCLUSION
Logic optimization is a topic well covered in electrical engi-
neering since at least the 1950s. Some subfields of the social
sciences have also employed logic optimization algorithms
since the mid-1980s for purposes of causal inference. Most
prominently, the well-knownQuine-McCluskey optimization
algorithm has been imported by sociologists and political
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scientists to uncover complex causal relations by means of
a method called Qualitative Comparative Analysis (QCA).
However, while electrical engineering has progressed consid-
erably since the advent of logic optimization, these advance-
ments have not been monitored by social scientists. Nor
have social scientists attempted to establish any interdisci-
plinary collaboration. Several methodological publications
have recently revealed several serious problems in the use of
QMC that social scientists have not been able to detect earlier
due to their swift import of QMC without any consultation
with electrical engineers (or analytical philosophers).

Against this background, the objective of our article has
been twofold. First, and more generally, we have sought
to reinvigorate the lost connection between electrical engi-
neering and configurational causal inference. Secondly, and
more specifically, we have presented Combinational Regu-
larity Analysis (CORA), a new configurational method that
incorporates multi-value logic andmulti-output optimization.
In particular, we have introduced one of CORA’s algorithms
for optimizing highly unspecified multi-value functions with
multiple outputs. The availability of such algorithms in
CORA will push the boundaries of configurational causal
inference.

Future research directions in CORA will seek to further
connect the advances electrical engineering has made on
algorithmic procedures to questions of causal inference. For
example, one promising territory of electrical engineering
that has not yet been charted by analytical philosophers or
social research methodologists is that of sequential circuit
design. Other possible avenues include heuristic algorithms
for the analysis of very large data sets. Irrespective of where
configurational methodology and electrical engineering may
meet in the coming years, CORA should have clearly demon-
strated that there is a lot to gain for causal theorists and
applied researchers from more, not less interdisciplinarity.
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