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ABSTRACT Cloud storage is an essential method for data storage. Verifying the integrity of data in the
cloud is critical for the client. Traditional cloud storage approaches rely on third-party auditors (TPAs) to
accomplish auditing tasks. However, third-party auditors are often not trusted. To eliminate over-reliance on
third-party auditors, this paper designs a blockchain-based auditing scheme that uses blockchain instead of
third-party auditors to ensure the reliability of data auditing. Meanwhile, our scheme is based on the audit
method of the quad Merkle hash tree, using the root of the quad Merkle hash tree to verify the integrity
of data, which significantly improves computing and storage efficiency. Automated verification of auditing
activities by deploying smart contracts on the blockchain allows us to have a more up-to-date picture of
data integrity. The performance of the scheme is evaluated through security analysis and experiments, which
prove that the proposed scheme is secure and effective.

INDEX TERMS Integrity auditing, blockchain, Merkle tree, smart contract.

I. INTRODUCTION
An increasing number of people are storing their data in
the cloud. Clients can enjoy many benefits by outsourcing
data, such as alleviating heavy storage management, unlim-
ited access anytime, anywhere, reduced hardware/software
expenses, and staff maintenance. However, storing data in
the cloud can cause a client to lose control over the data
management, leading to security risks. Data loss or corruption
in cloud servers is usually due to malicious attacks, hardware
failures, internal attacks, or human errors [1], [2], [3]. These
reasons lead to the need for cloud users to frequently use
efficient ways to perform data integrity audits on outsourced
data. Therefore, data integrity issues are a concern for many
researchers.

To determine whether data is being handled and stored
securely. Users usually adopt some strategies to ensure
the integrity and availability of the outsourced data.
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Initially, researchers proposed provable data possession
(PDP) [4], [5], [6] for checking whether the remote cloud
servers are storing the data files correctly. In further research
on integrity auditing, researchers have proposed proof of
retrievability (POR) [7], [8], [9], which checks whether a
remote server has the user’s data. Later, to reduce the audit
burden of client verification integrity and improve the fairness
of data checking, some researchers have resorted to third-
party auditors (TPAs) to implement data integrity check-
ing [10], [11], [12]. Scheme [13] proposes an efficient and
dynamic public auditing scheme audited by a third-party
auditor. Scheme [14] proposes amulti-copy data integrity ver-
ification scheme based on temporal chaos, and Scheme [15]
proposes a data label replacement algorithm for data integrity
verification in cloud storage. Next, to remove the public crit-
ical management burden, some public auditing schemes for
identity-based cryptosystems are proposed [16], [17], [18].
Scheme [19] proposes an identity-based remote data integrity
verification scheme for cloud storage with privacy-preserving
properties; scheme [20] proposes an effective identity-based
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public integrity audit of shared data stored in the cloud
while protecting user privacy; scheme [21] proposes an
identity-based efficient signature scheme; scheme [22] pro-
poses a multi-copy data integrity verification scheme based
on identity signatures. The above studies are all based on data
integrity verification schemes by a third-party auditor. Nowa-
days, researchers believe that TPA cannot be trusted abso-
lutely and may become a bottleneck of the system [23], [24].
Blockchain technology has been investigated to improve
the situation. Blockchain is a decentralized new distributed
computing paradigm. Applying blockchain technology to
cloud computing [25], [26], [27], using the security mech-
anism of blockchain to improve the secure storage and com-
puting performance of the cloud is a good research topic.
Hao et al. [28] proposed a blockchain-based outsourced data
integrity verification scheme in a non-trust environment.
Ren et al. [29] proposed an identity-based proxy aggrega-
tion signature (IBPAS) scheme to improve the efficiency of
signature verification, thus compressing the storage space
and reducing the communication bandwidth. Ren et al. [30]
introduced an innovative approach DCOMB method to
build a blockchain-based query model for IoT data, which
improves data interoperability and generality of IoT database
systems by mining hash computation to achieve queries.
Zhao et al. [35] propose a blockchain-based remote data
integrity verification scheme for the privacy protection of
IoT information systems. Zhu et al. [31] developed a
blockchain-based document management system that specif-
ically addresses the problem of easy tampering with project
documents. In the field of cloud data integrity verification.
Wang et al. [32] deeply combined blockchain with the PDP
scheme to create the first efficient and secure blockchain-
based PDP model. Wei et al. [33] proposed an integration
model using blockchain technology. They used mobile agent
technology to deploy a distributed VM agent model in the
cloud to ensure reliable data storage, monitoring, and ver-
ification. The above studies are all blockchain-based data
integrity verification schemes.

As we know, Merkle Hash Tree is one of the critical tech-
nologies of blockchain. It does not require downloading all
transaction data to verify data integrity. Although the Merkle
tree structure has outstanding advantages, its linear structure
and a large number of hash operations make the processing
speed not very satisfactory, and the value of each node in the
binary tree structure also needs to be stored, which generates
a large amount of storage overhead. Therefore, this paper
proposes a data integrity auditing scheme based on a quad
Merkle hash tree and blockchain, aiming to achieve efficient
and secure data storage.

The contributions of this paper can be summarized as
follows.

1) In this paper, we design a blockchain-based auditing
scheme that uses blockchain instead of a third-party
auditor to ensure the reliability of data auditing. It also
makes the data stored in the cloud more secure and

private and prevents data from being tampered with by
people with ulterior motives.

2) Our scheme is based on the quad Merkle hash tree
scheme. The quad Merkle hash tree is more efficient
than the general binary Merkle hash tree, using the root
of the quad Merkle hash tree to verify the integrity of
the data, which greatly improves computing and storage
efficiency.

3) In this paper, several smart contracts are deployed,
and automatic verification of auditing activities is
achieved using the deployment of smart contracts on the
blockchain, allowing us to grasp the integrity of the data
more easily.

4) Safety analysis and performance evaluation of the pro-
posed scheme proved its feasibility of the scheme.

The rest of the paper is organized as follows. Section II
introduces the relevant knowledge required for scheme con-
struction. Section III presents the scheme we have designed,
including the system model and threat model, and design
goals. Section IV presents the specific implementation details
of our scheme. In Section V and Section VI, the security anal-
ysis and performance evaluation are described, respectively.
In the last section, the paper is summarized.

II. PRELIMINARIES
A. BLOCKCHAIN TECHNOLOGY
A blockchain is a chain of one block after another. Each block
holds a certain amount of information, and they are connected
in a chain in the order of the time they were created. This
chain is kept in all the servers, and the whole blockchain is
secure if there is one server working in the whole system.
These servers are called nodes in the blockchain system, and
they provide storage space and arithmetic support for the
whole blockchain system. To modify the information in the
blockchain, one must obtain the consent of more than half
of the nodes and modify the information in all the nodes,
which are usually in the hands of different subjects, making
it extremely difficult to tamper with the information in the
blockchain. Compared with traditional networks, blockchain
has two core features: data is difficult to be tampered with
and decentralized. Based on these two features, the infor-
mation recorded by blockchain is more authentic and reli-
able, which can help solve the problem of people’s mutual
distrust.

B. MERKLE TREE
Merkle hash trees are a class of hash-based binary or multi-
nomial trees where the value on the leaf node is usually the
hash of the data block, while the value on the non-leaf node
is the hash of the combined result of all the children of that
node.

Figure 1 below shows a Merkle hash tree, where the value
of node A must be obtained by computing the values on
nodes C and D. The leaf nodes C and D store the hashes of the
data blocks L1 and L2, respectively, while the non-leaf node
A stores the hash of the combination of its children C and D.
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FIGURE 1. The structure of Merkle hash tree.

The hash of such non-leaf nodes is called the path hash,
while the hash of the leaf nodes is the hash of the actual
data.

When data is transmitted fromA to B, to check the integrity
of the data, it is only necessary to verify whether the root
nodes of the Merkle trees constructed on A and B are the
same. If it is consistent, the data has not been changed during
the transmission. If it is not, it means that the data was modi-
fied during transmission. Furthermore, locating the tampered
node through the Merkle tree is straightforward.

C. MERKLE HASH TREE ON THE BLOCKCHAIN
Merkle trees on the blockchain are binary trees that are used
to store transaction information. Figure 2 shows the structure
of a Merkle hash tree on the blockchain. Each transaction
in the figure is paired two by two to form the leaf nodes of
the Merkle tree, which in turn generates the entire Merkle
tree. The Merkle tree allows a client to verify whether the
transaction is included in a block by using the Merkle tree
root obtained from the block header and a list of intermediate
hashes provided by other clients. The client providing the
intermediate hashes does not need to be trustworthy since

FIGURE 2. The structure of the Merkle hash tree on the blockchain.

forging the block header is expensive, and forging the inter-
mediate hashes would cause the verification to fail.

III. SYSTEM FRAMEWORK
A. SYSTEM MODEL
As shown in Figure 3, the system model of a blockchain-
based cloud storage auditing scheme involves three entities,
which are client, cloud, and blockchain (BC).

1) Client: The client refers to the data owner, which can
be an individual or an organization. The client has a
large amount of data and needs to use the cloud server to
store the data and reduce its own storage and computing
burden.

2) Cloud: The cloud server is managed and maintained by
the cloud service provider with massive storage space
and computing resources, which lays the foundation
for storing large amounts of data from the client and
verifying the integrity of the stored data.

3) Blockchain (BC): The blockchain stores the root of the
Merkle hash tree constructed from the client’s data and
is used to verify the integrity of the data.

After encrypting the data, the client generates a quad
Merkle hash tree using the data block signatures, sends
the root Root to the blockchain for storage, and sends the
encrypted data along with the Merkle hash tree to the cloud
for storage but loses control of the data. Therefore, a query
message is sent to the cloud and the blockchain, and the cloud
returns the verification information related to the query to
the blockchain. The blockchain uses the information sent by
the cloud to calculate the new Merkle hash tree root Root´,
compare it with the original root Root, verify its integrity, and
send the result to the client.

FIGURE 3. System model.

B. THREAT MODEL
To analyze the security of data stored in the cloud, we con-
sider two types of threats, i.e., semi-trusted or untrusted cloud
servers and malicious clients. Cloud service providers are
curious about the stored client data and may sell the data to
other organizations for profit; they may intentionally choose
to overwrite some data errors to maintain their reputation;
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FIGURE 4. Quad Merkle hash tree.

and to save storage space, cloud service providers may delete
some data that is not used for a long time. Also, the client
may intentionally store wrong data in the cloud to claim
compensation from the cloud service provider.

Therefore, cloud servers and clients may launch the fol-
lowing attacks:
1) Forgery attack: Cloud forges data information with the

intention of deceiving the blockchain and the client to
pass verification.

2) Replacement attack: The cloud server replaces the chal-
lenged data block with an older version of the previously
validated data block or an uncorrupted data block to pass
validation.

3) Fraud attack: The client uploads corrupt data blocks to
the cloud or uploads incorrect Merkle tree root to the
blockchain and then claims that the data is intact to trick
the cloud into getting compensation.

C. DESIGN GOAL
To ensure the privacy and security of data stored in the cloud,
we aim to achieve the following goals:
1) Audit reasonableness: If the complete data stored by

the client is not stored in the cloud, then it does not
pass the verification of the blockchain. This means
that any misconduct (such as modification or forgery)
can be identified. DO can detect misbehavior when an
untrusted cloud intentionally returns incorrect or false
search results.

2) Data privacy: specific information in the data file is
invisible to the cloud.

3) Low cost of blockchain storage: The storage cost of data
stored on BC should be as low as possible.

IV. SYSTEM DESIGN AND IMPLEMENTATION
A. QUAD MERKLE TREE
The traditional Merkle tree is a binary tree structure that
stores many hash values. Although the traditional Merkle
tree structure has outstanding advantages, its linear structure
and a large number of hash operations make the processing
speed not very satisfactory. Moreover, a binary tree can only

reduce the amount of data by at most half at a time, and
the value of each node in each level of the structure also
needs to be stored, resulting in a large amount of data storage.
Therefore, we thought of using multinomial trees to improve
the computational efficiency of data and save storage space.
However, as the number of forks in a hash tree increases, its
search complexity also increases. The search complexity of
anm-fork tree ism logmN (m is the number of branches in the
hash tree). Therefore, we choose a moderate quadMerkle tree
instead of the traditional Merkle tree structure to implement
our scheme.
The quad Merkle tree can reduce the number of interme-

diate nodes and layers stored in the Merkle tree. Also, it can
reduce the number of hash calculations when generating the
root node. To explain the structure in detail, we provide
the proposed structure with 16 input data in Figure 4 as an
example. As shown in Figure 4, we choose SHA256 as the
hash function to encrypt the data blocks in the quad Merkle
tree.
Suppose the data block Li (i = 1, 2, . . . , 16) is the 16 data

blocks we want to encrypt. The steps to construct a quad
Merkle hash tree for the data blocks are as follows.
1) Do a hash operation on the data block Li(i = 1,

2, . . . , 16) respectively, e.g., E = hash (L1).
2) Four adjacent hash blocks are concatenated in series and

then do the hash operation, e.g., A = hash(E, F, G, H) =

(hash(L1) + hash(L2) + hash(L3) + hash(L4)).
3) Four adjacent hash blocks are concatenated in series and

then do the hash operation, e.g., Root = hash (A, B, C,
D) = (hash (E, F, G, H) + hash (I, J, K, L) + hash (M,
N, O, P) + hash (Q, R, S, T)).

4) Generate the root Root of the Merkle hash tree.
A quadMerkle tree handles 16 input data and only contains

4 layers, 21 hash operations, and 37 nodes to achieve stor-
age. However, the traditional binomial Merkle tree structure
requires 6 layers, 31 hash operations, and 47 nodes. There-
fore, the storage space and computation of a quad Merkle
tree structure are lower than that of a traditional Merkle tree
structure, i.e., the latency of generating a quad Merkle tree is
always less than that of generating a binaryMerkle tree. Since
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FIGURE 5. Auxiliary information.

the computational cost is positively correlated with the com-
putational latency, it follows that the quadtree outperforms
the binary tree in terms of computational overhead.

For auxiliary paths, each additional element of the aux-
iliary path is a hash string that adds very little storage
space. The time delay for generating auxiliary paths does not
increase significantly with the number of branches. There-
fore, the additional communication and computational costs
of auxiliary paths caused by the multi-branch tree structure
are negligible.

However, as the number of forks of a hash tree increases,
its search complexity also increases. The search complexity
of an m-fork tree is mlogmN (m is the number of branches
of the hash tree). Therefore, we choose a quad Merkle tree
instead of the traditional Merkle tree structure to implement
our scheme, whose search complexity increases somewhat,
but our computational overhead is greatly improved, and the
search space also decreases by a constant multiple due to
the reduction in the number of nodes and layers. Therefore,
overall, the quadtree performs better than the binary tree.

B. AUXILIARY INFORMATION
In our scheme, the cloud wants to send information about the
verification of the blockchain, including auxiliary informa-
tion. Here, we explain the auxiliary information for the quad
Merkle tree used in this scheme. We assume that the data
file sent by the client is divided into 16 data blocks. Then
we construct a quad Merkle hash tree, as shown in Figure 5.
In this Merkle hash tree, each data block tag Tagi is assigned
a random query number vi, where Si = vi + Tagi, where
i ∈ {1, 2, . . . , 16}. Suppose we need to verify the integrity of
data block 1, find the corresponding questioned random num-
ber and the corresponding data block signature, i.e., verify the
integrity of node Tag1 (the red node in the figure). To verify
its integrity, we need to see if the Merkle tree root Root has
changed. We also need B, C, D, F, G, and F to get the value
of Root. Therefore, B, C, D, F, G, and F in Figure 5 (green
node in the figure) is the auxiliary information to verify the
data block tag Tag1.

C. SCHEME IMPLEMENTATION
Our scheme consists of two phases: the initialization phase
and the verification phase.

1) INITIALIZATION PHASE
First, the client generates a random value sk∈ Zp as its private
key and computes the public key pk, and sends the relevant
key information for verifying the signature to the blockchain.

Second, the client first encrypts the data file and then
splits the encrypted data file F into n blocks, i.e., F = {m1,
m2, . . . ,mn}.
Third, the data tag Tagi of each block mi is computed with

the private key, and the signature method we use here is the
ZSS short signature method. The set of tags of data file F is
T = {Tag1, Tag2, . . . ,Tagi}.
Fourth, the client generates a quad Merkle hash tree with

data tags and sends the root Root of the tree to the blockchain
for storage.
Finally, the client outsources the encrypted data file F and

the quad Merkle hash tree to the cloud, and the client deletes
the local data file and tags. The cloud will check the integrity
of the data block before accepting the outsourced data to
prevent malicious clients. The checking process is like the
verification phase described below.
The process of the initialization phase is shown in Figure 6.

2) VERIFICATION PHASE
First, the client, as a verifier, randomly selects b elements to
form the query index set I = {v1, v2, · · · vb} , b ∈ [1, n], and
forms the audit query chal, and sends it to the cloud.
Second, the cloud receives the query message chal and

sends the corresponding series of encrypted data blocks mi,
data block signatures Tagi, and random queries vi and auxil-
iary information σ to the blockchain.
Third, the blockchain verifies the correctness of the signa-

tures using the key information sent by the client, and after
successful verification, Root’ is calculated using the smart
contract deployed on the blockchain based on the signatures
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FIGURE 6. The process of initialization phase.

Tagi and the random queries vi and the auxiliary informa-
tion σ , where v1 ≤ i ≤ vb.
Finally, the blockchain compares Root and Root’ by the

verifyContract. if Root = Root’, the data is complete, other-
wise, the stored data is corrupted, and the verification result
is returned to the client.

The process of the verification phase is shown in Figure 7.

FIGURE 7. The process of verification phase.

In this process, the client places the root of the Merkle
tree on the blockchain before uploading the data. Due to the
tamper-evident nature of the blockchain, no client or cloud
node can modify the root stored on the blockchain, which
makes the integrity verification more credible. Also, due to
the distributed nature of the blockchain, we assume that the
data on the blockchain will not be corrupted. Therefore, data
integrity verification is more reliable.

D. SMART CONTRACT
A smart contract is a computer protocol designed to dis-
seminate, validate or enforce contracts in an informational
manner. Smart contracts allow trusted transactions to bemade
without a third party, and these transactions are traceable
and irreversible. A smart contract can be defined simply as

computer code running on top of a blockchain. It contains
a set of rules that determine how the parties involved interact
with each other. As long as the pre-defined rules are satisfied,
the protocol is automatically executed.

In our scheme, three types of smart contracts are designed
to be deployed on the blockchain, and the specific smart
contract algorithms are described as follows.

1) STORAGECONTRACT
In the initialization phase of our scheme, the client needs to
store the root Root of the quad Merkle hash tree generated by
the data file shards on the blockchain. Therefore, we design
and deploy the storage contract on the blockchain for storing
the tree root Root. We denote the storage contract as stor-
ageContract. The blockchain stores the Root by executing the
storeData() function. The pseudocode of storeData() is shown
in Algorithm 1 in Table 1.

TABLE 1. Algorithm 1.

2) COMPUTERCONTRACT
After the blockchain receives the verification-related infor-
mation sent by the cloud, it needs to use this information to
calculate the root Root’ of the quad Merkle tree. We denote
the smart contract that computes the root as computeRCon-
tract. Unlike computing Root in the initialization phase, this
smart contract computes Root’ based on the slice information
and its corresponding auxiliary information. The blockchain
computes Root’ by executing the compute root function com-
puteRoot The pseudocode of computeRoot() is shown in
Algorithm 2 in Table 2.

TABLE 2. Algorithm 2.
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3) VERIFYCONTRACT
In our designed scheme, the blockchain needs to compare
Root and Root’, the roots of two quad Merkle hash trees,
to complete the verification work. Therefore, we design and
deploy the verification contract on the blockchain. We denote
the verification contract as verifyContract. Blockchain veri-
fies the integrity of data by executing the integrity verification
function integrityVerify() The pseudocode of integrityVer-
ify() is shown in Algorithm 3 in Table 3.

TABLE 3. Algorithm 3.

V. SECURITY ANALYSIS
The blockchain is a decentralized distributed shared ledger
system that combines blocks of data in chronological order
to form a specific data structure. From a data perspective, the
blockchain is a distributed database on which the data held
is tamper-proof and unforgeable. Only nodes with more than
51% of the jointly initiated attacks can change the data on the
blockchain. Therefore, blockchain enables secure storage of
data. On the other hand, since the blockchain runs automat-
ically, it is no problem to be an auditor, and it is impossible
to collude with the cloud. Therefore, when a dispute occurs
between the client and the cloud, the record on the blockchain
can be used as valid evidence. At the same time, through
blockchain instead of TPA, the information to be stored by
the client can only be accessed by itself, thus avoiding access
to the client’s private information during the TPA verification
process and safeguarding the client’s privacy.

In summary, using blockchain as a third-party authentica-
tion platform ensures usability, security, efficiency, and client
privacy. The specific analysis is as follows.

A. AUDIT REASONABLENESS
If the complete data stored by the client is not stored in the
cloud, then it cannot pass the verification of the blockchain.

This means that any misconduct (such as modification or
forgery) can be identified. The blockchain can detect miscon-
duct when an untrusted cloud intentionally sends incorrect or
false data information to the blockchain.
1) Anti-forgery attack: Cloud forges data information with

the intention of deceiving the blockchain and the client to
pass verification.
In the data verification phase, the cloud receives the

audit query chal from the client and sends the verification
information related to the chal (e.g., data blocks, auxiliary
information, etc.) to the blockchain for verification. If it
happens that the data block subject to verification is cor-
rupted, the cloud forges the data block information and sends
it to the blockchain to pass the verification. Since the data
block signature information is stored through the Merkle
hash tree, if the cloud sends forged data block informa-
tion to the blockchain, it causes a change in the root of
the Merkle tree generated by its signatures. On the other
hand, the original hash tree root value Root stored on the
blockchain will not change. Therefore, even if the cloud
wants to forge a data message, it is impossible to pass the
verification.
2) Anti-replacement attack: The cloud server replaces the

challenged data block with an older version of the pre-
viously validated data block or an uncorrupted data block
to pass validation. This is not possible to happen in our
scheme.
In the data verification phase, the cloud receives the audit

query chal from the client and sends a series of verification
information of the data block associated with the chal to the
blockchain to pass the verification. If the verified data block
stored in the cloud is corrupted, but the cloud server wants
to pass the verification, it sends the verification information
to the blockchain using the previously verified data block
or the uncorrupted data block in the cloud to pass the veri-
fication. However, in the verification phase of our scheme,
when the client sends an audit query chal to the cloud, it also
sends a copy to the blockchain. Therefore, when the cloud
sends the verification of the data block 10 related to the chal
to the blockchain, the blockchain compares the verification
information with the query chal sent by the client. If the
verification information is consistent with the queried data
block in the chal, the verification continues. Otherwise, it
directly returns a verification error to the client. Therefore,
it is impossible for the cloud server to pass the verification if
it wants to replace the challenged data blockwith an older ver-
sion of the previously verified data block or an uncorrupted
data block.
3) Anti-fraud attack: The client uploads corrupt data blocks

to the cloud or uploads incorrect Merkle tree root to the
blockchain and then claims that the data is intact to trick
the cloud into getting compensation. This is not likely to
happen in our scheme.
According to our scheme, the root Root of the Merkle

hash tree stored on the blockchain cannot be tampered with.
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If the verification fails, it means that the data in the cloud is
corrupted. Therefore, the cloud should pay compensation to
the customer without denying it. Therefore, the cloud can also
detect the correctness of the uploaded data when a dishonest
customer uploads incorrect data to cheat the cloud for com-
pensation. In our scheme, the cloud performs a verification
before storing the client’s data, i.e., verifies the integrity of
the data to the blockchain. If the verification is successful
before storing, it indicates that the client is in good faith.
On the one hand, the data sent to the cloud is complete
and not corrupted; on the other hand, it indicates that the
Merkle root Root from the client stored in the blockchain
is correct. Otherwise, this client is malicious. Thus,
the scheme prevents malicious clients from spoofing the
cloud.

B. DATA PRIVACY
The specific information in the data file is not visible to the
cloud.

Proof: Privacy protection is a very important aspect
in the field of data integrity audit research. It requires that
the client’s data file information is not compromised. The
cloud is an untrusted party that may maliciously sell the
stored data block information in the process of storing data
to seek greater profit. In our scheme, what the cloud has is
the encrypted data file and its signature. The signature set
hides the data information well using hash functions, system
parameters, client public keys, etc. The specific information
of these data blocks is not visible to the cloud, even during
public auditing. Therefore, our proposed scheme protects the
client’s data information very well.

C. DETECTABILITY
Data stored in the cloud, if corrupted, can be detected with a
probability of no less than 1 − ( n−xn )y.

Proof: The files stored in the cloud are divided into n
data blocks saved in the cloud, and assuming that x data
blocks are corrupted (e.g., deleted, modified, etc.), we will
extract the detected data blocks as m blocks, then the proba-
bility that TPA can detect the corrupted data is Pz, where z =

(x ∩ m). So, it can be derived that

Pz = P {z ≥ 1} = 1 − P {z = 0} = 1 −
n− x
n

×
n− 1 − x
n− 1

×
n− 2 − x
n− 2

× · · · ×
n− m+ 1 − x
n− m+ 1

.

Because of

(
n− m+ 1 − x
n− m+ 1

)m ≤
n− x
n

×
n− 1 − x
n− 1

× · · · ×
n− m+1−x
n− m+ 1

≤ (
n− x
n

)m,

so

Pz ≥ 1 − (
n− x
n

)m.

This probability is equivalent to that in 1,000,000 data
blocks, if 1% of the data blocks are damaged, the verifier only
selects 300 data blocks, and the detection rate reaches 95%.
If 460 data blocks are selected, the detection rate is as high
as 99%.

Our method is mainly used for relatively large files, i.e., the
number of selected blocks m is much smaller than n. In one
challenge, the confidence level CL = Pz, and similarly, after
k challenges,CL’= 1- (1 -CL)k . TheCL is only related to the
anomaly ratio p = x/n and the number of challenged blocks
m, not to the file size. Figure 8 shows the CL for different
damage rates p. From Figure 8, higher confidence levels can
be obtained by challenging fewer blocks when p = 1% and
10%. Even for a low CL, i.e., p= 0.1%, a single challenge of
550 blocks only yields a CL = 0.423. However, considering
that our challenge is a repeatable process, i.e., nine times, the
confidence level can be increased to CL′

= 1- (1 - 0. 423)9 =

0.993, which satisfies our confidence requirement.

FIGURE 8. Confidence level.

VI. EXPERIMENT
In this section, we evaluate the performance of our scheme by
making a comparison with other schemes. Scheme [14] is a
multi-copy data integrity verification scheme based on tem-
poral chaos, and scheme [22] is a multi-copy data integrity
verification scheme based on identity signature. Scheme [34]
is a blockchain cloud storage integrity auditing scheme based
on the T-Merkle hash tree. The three schemes are compared in
terms of blockchain storage cost, signature generation time,
and audit verification time to verify the performance of the
schemes in this paper.

A. BLOCKCHAIN STORAGE COST
There are many blockchain-based data integrity auditing
schemes, but most of them store data or labels of data
blocks on the blockchain (e.g., scheme [28], scheme [32],
scheme [34], and scheme [35], etc.), resulting in a large
memory overhead of the blockchain. Our scheme, however,
stores only the root of the quad Merkel tree on the blockchain
and thus has minimal storage overhead. Our scheme is mainly
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related to smart contracts, which include the deployment and
invocation of smart contracts.

In Ethereum, each transaction consumes a certain amount
of gas. We conducted a series of tests where we tested the gas
consumption of smart contracts with a different number of
files (from 16 to 1024), and the results are shown in Figure 9.
The experimental results show that the gas consumption of
the contract is independent of the number of files stored. This
is also consistent with our theoretical analysis that we only
store the Merkel tree root on the blockchain, and the size
of the root is independent of the number of files. Therefore,
the blockchain storage overhead of our scheme is extremely
small. The cost of a smart contract in Ether is equal to the
number of consumed gas multiplied by the unit price of gas,
which is the same as Ether, so we use the consumption of gas
to represent the cost of a smart contract.

FIGURE 9. Smart contract gas consumption.

B. EXPERIMENTAL RESULTS
Our experiment was implemented on a PC (8-core Intel i7
processor, 16G RAM) based on a 64-bit Ubuntu system (ver-
sion 20.04.2), the chosen blockchain platform was Ethereum,
and the smart contracts were implemented by Solidity pro-
gramming language. The linear pairing algorithm based on
the pairing-based cryptography (PBC) library with a.param
(PBC-0.5.14) and the GNUmulti-precision arithmetic library
(GMP-6.2.1) was used in the experiments, where the base
field size was set to 512 bits. We experimented with text
files, reading them in binary and dividing them into blocks.
The size of the data block is constant at 2KB, so the file
size changes depending on the number of data blocks. All
simulation results are the average of 100 tests.

In the experiment, signatures are performed using data
blocks from 0 to 1000 with an interval of 100. Since
scheme [14] and scheme [22], a data block is divided
into multiple sectors, but this scheme is divided by data
blocks, and no sector division is done, so the sectors of the
scheme [14] and scheme [22] are 1, and the number of copies
is 1, thus ensuring the fairness of the experiment. Comparing
this scheme with scheme [14], scheme [22] and scheme [34]

in terms of computational overhead, it is verified that the data
block signature generation time increases roughly linearly
with the increase of data blocks. The experimental results are
shown in Figure 10. In Figure 10, it is also clear that this
scheme does have a shorter signature generation time than
the other two schemes.

Our scheme also compares the integrity audit overhead of
the audit verification phase for 100 to 1000 challenged data
blocks with other schemes. Figure 11 shows the computa-
tional overhead of the audit verification phase. It can be seen
from the figure that there is a linear relationship between the
time of the audit verification phase and the number of chal-
lenged data blocks for our scheme, scheme [22], scheme [14],
and scheme [34], but our scheme is more efficient
overall.

FIGURE 10. Relationship between tag generation time and the number of
data blocks.

FIGURE 11. Relationship between audit verification phase time and
number of challenged data blocks.
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VII. CONCLUSION
In this paper, we propose a data integrity auditing scheme
based on a quad Merkle hash tree and blockchain. Using
blockchain instead of a third-party auditor ensures the reli-
ability of data auditing; the audit based on the quad Merkle
hash tree improves the efficiency of computing and stor-
age. At the same time, deploying smart contracts on the
blockchain enables automatic verification of auditing activi-
ties, allowing us to have a timelier picture of data integrity.
The feasibility of our scheme is proved theoretically, and
the comparative experiments with other schemes confirm
that the scheme outperforms other schemes in terms of
blockchain storage cost and computational overhead. The
experimental analysis shows that our scheme achieves the
expected security and efficiency goals. In futurework, wewill
continue to explore closer integration of blockchain and
integrity verification schemes, such as how to avoid huge
storage overhead by storing data blocks or data labels in the
blockchain.
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