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ABSTRACT Electric vehicles (EVs) improve the power grid by increasing intermittent renewable energy
consumption and providing financial support to EV users via vehicle-to-grid (V2G) integration. While
estimating these advantages, a number of studies have neglected to consider the effect of driving and charging
behavior patterns on their results. This article provides a framework that systematically evaluates EV driving
and charging behaviors to improve charge management in the light of recent standards and advancements.
In addition, the collected data on driving habits are analyzed in order to provide a consistent and usable
dataset. By evaluating the individual and simultaneous charging demand characteristics, the V2G potential
is further explored. Moreover, managerial recommendations for EV charging management are offered by
improving the time step using the Bootstrap approach for more precise results than lower resolution. It is
also addressed that the simultaneous use of a limited number of EVs required minimum time. According
to the findings of this study, daily travel habits have a crucial influence in defining seasonal and individual
charging demands. In order to continue with EV charging-related assessments with a confidence interval of
more than 95%, the findings suggest that time steps of lower than ten minutes must be used. In addition,
the purpose of this study is to assist researchers from academia and business with further information as
they build initiatives linked to EV charging infrastructure and real-time charging management standards that
account environmental aspects.

INDEX TERMS Bootstrap, charging behavior, distributed network, driving data, electric vehicle.

I. INTRODUCTION
Electric vehicles (EVs) have been introduced as a prominent
solution for reducing carbon emissions and improving air
quality since transportation is one of the biggest global energy
consumers, mainly supplied by conventional energy sources.
The transportation sector is responsible for approximately
62.3% of the world’s fuel consumption [1], [2]. Tighter
sanctions have been introduced for high-emission vehicles in
line with energy deficit and climate change problems, green
growth, and sustainable development goals (European Parlia-
ment and Council, 2012) [1]. With the initiation of the Paris
Agreement in 2015 under the United Nations Framework
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Convention on Climate Change (UNFCCC), air pollution
control policies and technologies have been promoted to
improve fuel economy and vehicle emissions worldwide.
For example, California will not allow internal combustion
engine vehicles to enter its cities after 2025. Although many
developed countries are stepping to expand the EV industry
in terms of the economy by developing policies such as tax
exemption, purchase subsidies, and emission restrictions [3],
EV integration still faces many technical and economic con-
straints [4]. The challenges and barriers, such as technologi-
cal, financial, infrastructural, etc., are presented in Figure 2.
Much effort should be made to make the benefits of EV inte-
gration quantitative by designing sustainable business mod-
els for vehicle-to-grid (V2G) technologies [5]. V2G could
empower EVs to improve grid performance and profitability,
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adapt renewable energy sources, and reduce emissions and
costs. It is assumed that V2G will not increase EV adop-
tion but will have a small economic benefit. Namely, if the
EV driving and charging behaviors excludes from the V2G
impact analysis, it exaggerates the value of V2G [6]. For
example, instead of a 100MW gas turbine unit, it will require
approximately 30,000 vehicles capable of providing 6.6 kW,
assuming 50% V2G availability [7].

An interesting and potential research area for V2G is to
move toward behavioral challenges, including notions of
inconvenience, confusion, and range anxiety. The conducted
overview on V2G reveals that few studies simultaneously
investigate the V2G impact analysis at behavioral and tech-
nical aspects. The most common V2G analyses are based
on surveys, assumptions, and generalizations. The applica-
bility and technical-economic benefits of the V2G option
have been evaluated in many studies to reduce uncertain-
ties and increase highly-populated EVs’ benefits [8], [9].
Furthermore, the V2G impacts on distribution grid oper-
ations have been investigated in terms of stability, relia-
bility [10], and technical flexibility [11], [12]. For exam-
ple, distribution network management was performed using
an algorithm capable of valley filling, peak load shaving,
and priority charging in three modes [13]. Moreover, few
studies explicitly evaluate V2G potential using real driving
data explaining socially, economically, and environmentally
affected behaviors. For instance, driving data shows that EVs
with larger batteries are not regularly plugged-in daily [14].
The Electric Nation project has shown that the charging times
of users with large batteries are irregular, and the plug-in
frequency is two to three times per week [15]. The random
plug-in behavior will decrease the number of simultaneous
plugged-in EVs, and hence user participation in incentive
packages will decrease. Making V2G participation popu-
lar via increasing the number of plug-ins and predictability
should be ensured to minimize the negative effects of uncon-
trolled EV charging on the grid. Otherwise, assuming sys-
tematic plug-in behavior may overstate the benefits of smart
charging and V2G options [16]. The non-systematic charg-
ing demands will be combined with increasing instability
in the networks with large penetrations of renewable energy
source (RES), causing considerable managerial challenges.
The centralized and decentralized methodologies have been
developed to overcome these issues utilizing V2G [17]. The
system optimization aims to developmethods to address these
issues by considering the interaction of charging power, V2G
availability, and grid parameters. Therefore, there are many
unrealistic assumptions, like systematic plug-in acceptance,
disregarding free charging incentives and long-range vehicle
behavior, survey-based management methods, generalization
of regional socio-economic dynamics, and data problems
related to the development of infrastructure and management
algorithms considering local dynamics [18], [19].

Vehicle-grid integration can be unidirectional (V1G)
under uncontrolled charging, smart charging, and controlled

charging or bidirectional like V2G, which makes it possible
for many ancillary applications easy [20]. Ancillary services
are mandatory for ensuring grid reliability and balancing
supply-demand. They are priced separately, like regulation
services balance between power generation and demand,
regarding keeping the voltage and the frequency stable. Also,
customer reactive power needs should be met in real-time
to manage customer impact on system voltage, frequency,
and system losses, ensuring power quality. These services
require capacity more than demand. Peak shaving is required
during high levels of demand, especially large demands on
hot summer days or in the evening. Gas turbine-based power
plants can generate power during peak demand thanks to
the quick activation. However, it is a relatively inefficient
investment because these plants are only utilized for peak
time and are idle approximately 90% of the year. Spinning
reserve power contributes to grid stability to synchronize with
the grid frequency if another generator is suddenly break-
down or unavailable. Again, the gas turbines quickly generate
capacity for only spinning reserves, not for demand power.
Therefore, the capacity essentially required for the spinning
reserve seems like an underutilized investment. Load shifting
may significantly reduce the impact of an EVfleet on the grid.
Furthermore, peak loading caused by the increased popularity
of EVs and uncontrolled charging loadsmay prioritize system
replacement/investment costs [21], [22]. The development
of smart-charging control strategies could reduce peak load
and shift energy demand by discharging during daily peaks
and charging during low demand (overnight, off-peak hours).
Otherwise, much new energy generators would be required if
all EVs are charged in the overnight peak. A larger group of
aggregated EVs are more desirable load for the grid. When
the renewable power supply is too high, the power plants
must reduce production, or DG units must be curtailed to
maintain the balance. The V2G implementation can balance
for the intermittent RES uncertainties. EVs can be charged
with excess renewable energy and discharge the stored energy
for driving and supporting the power grid when necessary.
Thus, V2G utilize RES more flexibly for the grid. Most
ancillary services can be provided by the V2G thanks to the
bi-directional power flow, including regulation for frequency
and voltage, load leveling, peak power reduction, and spin-
ning reserves [23].

Studies focusing on EV charging and travel behaviors
are summarized in Table 1. The effects of the behaviors
were examined from environmental, financial, and technical
aspects at the same time, while some examined the results
from only one aspect. Some studies determine EV usage
pattern collecting real mobility EV data or using publicly
available EV data. Other studies generate the EV charge
and usage behavior based on survey data. Furthermore, most
studies analyze V2G impact on power grid using hour-based
data or hourly average data from minute-based recordings.

This study addresses EV driving behaviors, such as
charging location, time, level, and duration, which affect
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TABLE 1. Studies related to EV usage patterns.

the relationship between the distribution network and charg-
ing station (CS) in the scope of recent requirements of EV
and CS. In addition, comprehensive data analysis was per-
formed to empower the charging management, optimizing
the simulation time interval to maximize the consistency of
the results. The original contributions of this study are as
follows:

• Exploration of the additional advantages and poten-
tials of V2G operations for EV charging management
through the conceptualization that systematically evalu-
ates pertinent input data of EV user behaviors.

• Evaluating actual electro-mobility data, such as
charging location, duration, levels, and timings,
to develop a framework for generating a consistent
dataset for more realistic EV charging management
systems.

• The simultaneous and separated individual charging
demand are evaluated toward the expanding EV popu-
lation focusing on the exact V2G events.

• Determination of an improved time interval for more
accurate EV charging management simulations using
the Bootstrap method.

• Proposing managerial suggestions to increase the per-
formance of EV real-time charging management and
alternative paths to achieve zero-emission targets.

This paper is organized as follows. Section II explains
EV behaviors’ impacts, potentials, and limitations directly
affecting the charging management framework. The method-
ological evaluation of driving and charging is presented in
Section III. Time step verification using Bootstrap is analyzed
in Section IV. The results and discussion are included in
Section V. Section VI concludes the study.
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FIGURE 1. Challenges and barriers that EV faces.

II. THE IMPACTS, POTENTIALS, AND LIMITATIONS OF EV
BEHAVIORS ON CHARGING MANAGEMENT
EVs can be charged with cables at a home charger or public
CS, known as conductive charging. Residential or public CSs
can transfer power unidirectional or bidirectional to empower
V2G. Generally, the conductive chargers are Level 1, Level 2,
and Level 3 according to power level. Level 1 is AC charging
at low power levels, around 1.6 kW. Level 2 charges at higher
levels between 3.6–22 kW AC power. Level 3 is DC fast
charging at higher power levels of up to 50 kW. Also, devel-
opments of charging technology to increase charging level to
about 400 kW can limit the charging time to about 15 min
even for large battery EVs [39]. However, the importance of
controlled charging or V2G is inevitable if the power level of
chargers increases since higher power charging loads make
gird peaks additionally higher than normal charging loads.

Moreover, wireless charging, known as inductive charg-
ing, is a developing technology that significantly affects the
behavior of EVs [40]. Wireless power transfer can be static
or dynamic, adding wireless charging lanes to motorways.
Since static wireless charging can only remove the cable
connection, dynamic wireless charging or roadway charg-
ing has been developed to transfer electrical power at high
voltage and current levels when the EV is entirely moving
with certain speeds. Thus, the EV downtime to charge is
reduced to zero. The first demonstrated dynamic wireless
roadway charging has transferred 60 kW with an efficiency
of 72% in 2009. Then, this system was successfully installed
to charge electric buses with an 83% efficiency and trams
with a three-phase power of 250 kW. Since, the realization
of dynamic wireless charging is costly due to requirements

of land, a protection system, a vehicle alignment controller,
and electromagnetic equipment, the optimal allocation of
dynamic wireless charging can reduce the size of the EV
battery, which is a significant part of the EV total cost
and increases the driving range, and maximizes traffic flow.
Moreover, significant research on the commercialization of
dynamic wireless charging has recently shown that the range
anxiety and the total EV cost can be reduced and conse-
quently the EV adaptation increases. Dynamic wireless road-
way charging with bidirectional ability can be used widely
and commercially in future EVs and V2G [41], [42].

Accordingly, increased EV penetration and uncontrolled
charging may cause overloading of grid elements, more volt-
age deviations, and extra power losses [26], [43]. Many
charge control methods have been developed to increase eco-
nomic and technical benefits by examining the relationship
and interaction between CS and microgrid [44], [45], [46]
and optimizing the charger level, location, and charging
time [47], [48]. Additionally, energy efficiency, power system
quality, grid renewal costs, and local constraints (geographic,
regulation, etc.) are taken into account in the design and
construction of CS [49], [50], [51]. Due to regional EV
usage differences, the siting and sizing of CS are some of
the main topics of smart city control and management [52].
This coordination will contribute to green energy targets by
eliminating the main barriers to increasing renewable energy
sources (RES) penetration [53].

Charging management can be carried out with centralized
or decentralized controllers [54]. EV usage patterns are col-
lected in a virtual data center in both control methods to opti-
mize the solutions with the objective functions that support
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sustainable environment and energy targets. Although the
decentralized V2G management technique can suppress net-
work peaks, the grid side’s expected technical and economic
benefits are not maximized since deficits of long-term plans
and adequate information share [55]. Charging demands, net-
work information, and other critical parameters can be used
in centralized methods by archiving for optimal V2G tim-
ing and power detection. Therefore, decentralized programs
come to the forefront where travel behaviors are kept locally
without being shared with others [55]. However, the slower
decision-making rate in centralized systems, in which the par-
ticipants do not get involved due to privacy concerns, limits
the optimal solutions for peak shaving and power regulation.
Therefore, temporary fluctuations of load and power can be
balanced in central control methods using 5-10 minutes or
longer time-step [54].

Limited or no sharing of EV travel information with grid
operators may limit EVs’ CO2 emissions reduction potential.
The timing mismatch between RES generation and charging
demand can be resolved with grid-connected energy stor-
age system (ESS) or EV by storing energy to mitigate the
challenges associated with RES. However, trying to reach
the zero-emission targets with 100% penetration of RES for
charging demands may enlarge the ESS costs. Intelligent
charging management can achieve optimal charging man-
agement by replacing the charging power from high to low
emission times with RES. Therefore, if participation in smart
charging programs can be increased, the economic value of
flexible charging can be embodied by reducing the size of
ESS required to achieve zero-emission targets.

On the other hand, it is likely to have a negative impact on
the program participation rate as the gains due to increased
participation in smart charging programs and reduced ESS
costs will be divided into more vehicles. A survey on
willingness to participate in smart charging determined
that participation in grid-controlled charging was 49-78%,
emphasizing privacy and loss of control concerns, and V2G
program participation decreased by 7-12% for every 20%
decrease in the reliable driving range [56]. The state of
charge (SOC) at the plug-in time is important for the grid
supply-demand balance in terms of its impact on the number
of participants in the smart charging program. Namely, users
who join V2G earlier meet a more significant portion of
their energy storage needs per vehicle. On the other hand,
a higher level of V2G participation will lower the energy
storage capacity more than smart charging, thus reducing the
benefits per vehicle. V2G allows discharge from the EV to
the grid controlling the recorded or planned daytime travel
behavior and energy demand. If 50-60% of the stored energy
is discharged from the EV to the grid, the battery cycle is
approximately doubled. V2G requires more battery cycles
resulting in battery degradation and greater power losses
during AC-DC conversion. Therefore, battery degradation
worries EV owners. Also, EV owners may suffer from charge
anxiety refers to the stress of reaching destinations if partic-
ipating in V2G functions [57]. The full participation of the

EV fleet in controlled charging and V2G integration allows
for supplying the system load of 4% and 11.1% from zero-
emission sources, respectively [58].

III. METHODOLOGICAL EVALUATION OF DRIVING
CONSUMPTION AND CHARGING BEHAVIOR
The framework of the study is shown in Figure 3. This frame-
work appeared due to the need for challenges and assump-
tions of V2G studies and consists of charging and driving
analysis empowered with Bootstrap distribution giving sug-
gestions for further analysis. Furthermore, the framework has
faced challenges and barriers such as technological, finan-
cial, infrastructural, etc. The findings of the framework may
enlighten potential applications of EV charging management
optimization models. The growing popularity of EVs has led
to the need for CS in public parking lots, shopping malls,
workplaces, and university campuses [59]. However, increas-
ing EV penetrations have created many technical and eco-
nomic uncertainties regarding power generation, distribution,
and consumption. It has been emphasized inmany studies that
charging demands can vary significantly based on EV users’
preferences [60]. Travel behaviors and EV range differentiate
where, when, and how much to charge. Easy access, flexible
charging time, and charging incentives affect charging time
and location [61], [62]. Studies investigating the temporal
trend of charging behaviors show that nighttime charging at
home is the most frequent simultaneous charging [56], [63].
For example, the energy tariff is cheaper during the nighttime,
encouraging overnight charging effectively for domestic EV
users [15], [64]. However, daily driving ranges and cheaper
or free-charge opportunities nearby workplaces can change
charging time [27]. EV charging management methodologies
should evaluate possible locations for CS and the energy
pricing policies of that locations together rather than indi-
vidually. Thus, the My Electric Avenue project (MEAP) cre-
ated a dataset by monitoring EV behaviors for two years in
12 regions with 256 different users in the South Gosforth
region fed from the Northern PowerGrid feeder [65], [66].

Figure 3 shows the average daily energy consumption
in seasons within the scope of MEAP. Here, it is apparent
that the average energy consumption of EVs in the spring,
summer, and autumn are approximately the same. Also, the
winter demand is significantly lower than in other seasons.
Seasonal average consumption in Figure 3 cannot provide
the desired sensitive data to the algorithms for promising
vehicle-grid integration, especially within the scope of smart
city applications. In this respect, seasonal, daily, hourly, and
even minute-based individual consumption data is needed
for real-time system management. Furthermore, as seen in
Figure 5, EV behaviors can have very different characteristics
for the same season. For example, while the daily average
energy consumption is similar for the same season, the energy
consumption amounts vary.

Figure 4 shows the total energy consumption in the critical
hours. A day is divided into critical hours according to energy
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FIGURE 2. The framework of the study.

consumption. Accordingly, the EV energy consumption ratio
between 7 am and 6 pm is 76%, between 6 and 10 pm is
18.54%, and between 10 pm and 7 am is 5%. Therefore,
it is observed that a large proportion of energy consumption
occurs during working hours.

Figure 6 presents the energy consumption during the crit-
ical hours and the average travel distances. The travel dis-
tances and durations of EVs during critical hours are very
different. For example, the energy consumption of the EV01
was 69% during working hours, but it is not consumed as

much after 10 pm. On the other hand, an average of 36% of
EV09 daily travel distance occurred after 10 pm. In addition,
it has been observed that 70% of the relevant vehicles travel
between 24-32 km in the evening hours, which is critical
for energy management and control. These findings provide
valuable information on howmany EVs are suitable for V2G,
especially during the evening peak.

The seasonal active and passive days are displayed in
Figure 7. Namely, if an EV is active, it travels and is charged.
If EV is passive, it does not travel and is charged on that
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FIGURE 3. Seasonal energy consumption distribution.

FIGURE 4. Total energy consumption.

day. Some EV users (EV 02–06–07–09) seem to drive reg-
ularly throughout the year. However, some EVs like EV08
are passive most of the year, while EVs like EV09 are active
throughout the year.

Figure 8 reveals the total EV charging demand distribution
during the daily critical hours. The total charging demands
were 58.63%, 29.1%, and 12.28% during working hours, the
evening, and the night, respectively. According to Figure 4,
the hours of consumption and charging do not fully overlap.
Therefore, the charging demand between 6 and 10 pm is
more than twice that of after 10 pm. It has been determined
that 77% of the energy consumed during working hours is
met again in the same period. Also, in Figure 4, only 6.3%
of energy consumption occurs after 10 pm due to the short
amount of travel. Figure 9 shows that the charging demand
between 6 and 10 pm is approximately evenly distributed.
Additionally, the proportion of charging demand during the
evening peak was 82%.

Figure 10 shows EVs’ arrival times and SOC at the spec-
ified hours. For example, 35.6% of the home arrivals of
EV01 occur between 6-7 pm, with a 32.2% probability of a
SOC less than 5, a 45.2% probability of between 5-8, and a
22.6% probability of greater than 8. Most EV plug-ins were
around 6-8 pm with a ratio of 60%. However, EV10 plug-ins
with a ratio of 52%, while EV03 plug-ins only with a ratio
of 15.8% between 6-7 pm. So, this reflects the behavioral
differences of EV users. Furthermore, the SOC of EV04 EV
at plug-in during 6-8 pm was mostly less than 5, while the
SOC of the EV07 EV in the same period was greater than 8.
However, EV08 EV arrives home between 9-10 pm with a
ratio of 25.9%, and the SOC at the time of plug-in is less
than 5 with a probability of 85.7%. It has been indicated
that a small number of EVs are connected to the charging

between 9-10 pmwith a SOC of less than 5. Depending on the
user travel behaviors in Figure 6, it has been determined that
there are suitable users for V2G programs with full or partial
participation, as well as incompatible users with the proposed
algorithms for minimizing the effects of EVs on the grid.
For example, EV06 and EV07 have an average travel range
of 28.17 km and 36.22 km between 6-10 pm, respectively,
while their SOCs are greater than 8 between 6-7 pm with a
ratio of 68.6% and 54.5%, respectively. However, this is not
compatible with V2G programs, given that the SOC of the
EV04 is less than 5 with a 75.7% probability between 6-7 pm,
and it travels an average of 71 km between 6-10 pm.

Figure 11 shows the minute distribution of the total charg-
ing demand for one day. The maximum charging demand
intensifies in the evening. It is apparent that the evenly dis-
tributed charging demand after 6 pm in Figure 9 fluctuates
for the minute-based periods of the relevant hours. For exam-
ple, although there is a maximum charging demand between
13-32 minutes during the 8 pm period, the charging demand
decreases by approximately 85% after the 45th minute of
that hour. It is observed that charging demand increases at
working hours, before noon, and at the end of the working
hours.

According to MEAP, four of the ten EVs made a
minute-based simultaneous charge request 446 times on
14 different days throughout the year. It is evident in Figure 12
that EVs (07-10) have no plug-in for the selected day. EV06
has been separated from the system after a very short charge
request. EV01 and EV02 are important in terms of the V2G
option, wherein the SOCs at the plug-in are greater than 6,
and the average travel range in the evening is 22 and 38 km,
respectively. However, it is observed in Figure 12 that the
SOC of EV04 at the plug-in time is smaller than 4, and the
average travel of 60 km is not available for V2G. On the other
hand, EV03 and EV05 are considered appropriate candidates
for V2G because their SOC at the plug-in is 10 and more, and
their evening travels are only around 30 km.

IV. TIME STEP VERIFICATION USING BOOTSTRAP
The Bootstrap method is a resampling technique used to esti-
mate distributions of statistics based on independent observa-
tions by resampling the original dataset to create datasets. The
Bootstrap method has been successfully used in many engi-
neering fields, especiallymathematics, physics, and statistics.
This method can obtain the standard error estimate, confi-
dence interval, and statistic distributions [67]. The original
sample is resampled in this method by replacing it with a
Bootstrap sample. The resulting Bootstrap sample is treated
as a real population. This process is repeated many times
to generate an experimental distribution for the estimator.
Population parameters are estimated by minimizing the stan-
dard error [68]. Estimates from Bootstrap-generated samples
represent the likely range of the estimate in the population.
This method makes it easy to obtain the standard deviations
and confidence intervals (CI) of parameters with complex
distributions. Bootstrap is a systematic method of calculating
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FIGURE 5. Individual energy consumption of EV users.

FIGURE 6. Average energy consumption and distances of individual EVs.

CI. There are many different methods for estimating CI using
Bootstrap distribution. The five most used methods are nor-
mal Interval, Percentile Interval, Basic Interval, Studentized
Interval, and Bias-Corrected & Accelerated Interval. The
Percentile Interval method was used in this study since it

is the easiest method to implement and comprehend. The
literature emphasizes that increasing the number of samples
while performing Bootstrap resampling improves the esti-
mation accuracy and has a minor disadvantage in terms of
processing time [69], [70]. Figure 13 shows the Bootstrap
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FIGURE 7. Seasonal EV usage.

FIGURE 8. Total EV charging demand.

stages in creating the dataset. In our study, CI was calculated
by resampling 1,000 times Bootstrap. It showed in Figure 14
that 95% CI was obtained within the time interval of between
9.92 and 11.37 minutes. The results show that the analysis of
EVs with an average resolution of 10 minutes and below will
yield high accuracy in new study proposals investigating the
effects of EVs on the grid.

In the Bootstrap method, B Bootstrap samples
x∗

1 , x∗

2 , . . . , x∗
B are created by selecting the standard error

FIGURE 9. Distribution of charging demand over the hours of the day.

estimation θ̂ from the n-dimensional sampling dataset x =

(x1, x2, . . . , xn−1). An asterisk indicates that it was obtained
from among the actual values determined in the sampling
method. For θ , θ̂∗ is estimated by repeating B times within
the Bootstrap samples x∗

1 , x∗

2 , . . . , x∗
B. Estimates of θ̂∗1, θ̂∗2,

. . . , θ̂∗B are obtained after B iterations. θ̂∗ is the mean of θ̂∗
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FIGURE 10. The SOC distribution between 6-10 pm.

as given in Equation (1). The square root of s2
θ̂ ,boot

is defined
as the standard error of the prediction for Bootstrap samples
in Equation (2).

θ̂∗ =
1
B

B∑
b=1

θ̂∗b (1)

s2
θ̂ ,boot =

1
B− 1

B∑
b=1

(
θ̂∗b

− θ̂∗

)2
(2)

IEEE European low voltage test feeders represent a radial
distribution network suitable for simulating the dynamic
behavior of distributed power sources, voltage/reactive power

controls, and ESS with various time steps. The test network
consists of 906 buses and 55 single-phase residential loads.
The substation connects a medium voltage at 11 kV with an
800 kVA delta-wye transformer to the low voltage at 416 V
shown in Figure 15. This section examines voltage sag and
swells problems that may occur in future scenarios where the
number of EVs increases and the accuracy of the active power
flow analysis on the IEEE European low voltage test feeder.
The results of power flow analysis carried out in 1-min,
5-min, 10-min, 30-min, and 60-min intervals are shown in
Figure 16. Line loading, losses, and minimum voltage level
differ by 15%, 3%, and 3.5%, respectively, in the analyses
with 1-min and 60-min. On the other hand, it has been
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FIGURE 11. Daily total EV demand charging power.

determined that EV penetration increases maximum line
loading and energy losses by up to 15% and 24%, respec-
tively. Three-phase AC power flow analyses are carried out
according to Equations (3)-(7), including an energy storage
system (ESS).

PGi,t − PDi,t =

N∑
j=1

Vi,t · Vj,t · Yij · cos
(
θij + δj,t − δi,t

)
,

∀i, j, t (3)

QGi,t − QDi,t =

N∑
j=1

Vi,t · Vj,t · Yij · sin
(
θij + δj,t − δi,t

)
,

∀i, j, t (4)

Iij,t =
∣∣Yij∣∣ ·

[
V 2
i,t + V 2

j,t − 2 · Vi,t · Vj,t

· cos
(
δj,t − δi,t

)]1/2
, ∀i, j, t (5)

Ploss =

M∑
i=1

I2i,j · rij, ∀i, j (6)

Vmin ≤ Vi,t ≤ Vmax, ∀i, t (7)

Equation (3) determines active power flow where PGi,t and
PDi,t are generated and demand active power at bus i, at time t,
respectively. Equation (4) defines the reactive power balance
where QGi,t and QDi,t are generated and desired reactive
power generated at bus i, at time t. Equation (5) defines the
line current from bus i to bus j through lines whereVi,t and δi,t
are the magnitude and angle of the voltage of bus i at time t.
Yij and θij are the magnitude and angle of the admittance of
the bus between i and j. Equation (6) calculates the total active
power losses in all lines. Equation (7) is the voltage constraint
widely used in DN stability. Slack bus voltage and angle are
equal to Vi,t = 1, δi,t = 0◦.

To predict EV charging demands with an accuracy of
over 95%, the 10-min time interval determined by Bootstrap
analyses agree with the results of different analyses in the
study. The analysis results show that maximum line loading,
total line losses, and minimum voltage fluctuations can be
determined with an error of less than 0.5% in power flow
analysis of 5 minutes or less, compared to 1-min analysis.

The comprehensive quantitative comparison of time inter-
vals in terms of the maximum line loading, the total energy
losses, and the minimum voltage level are given in Table 2.

V. RESULTS AND DISCUSSION
Specific dynamics affecting EV charging behaviors are
increasing battery costs, expanding driving range, and short-
ening charging time due to battery-related technological
developments. For example, traveling less than 30 km/day,
having a second internal combustion engine vehicle, or the
increased range of up to 300-400 km with large batteries
causes the EV to be charged every two to three days instead
of regular daily charging. In addition, expanding CS infras-
tructures, policies related to taxation and subsidies on EVs,
and the limitations due to zero-emission targets change EV
behaviors. EV charging behavior research has some scientific
challenges since it is relatively new [2]. First, many scien-
tists find it difficult to reliably simulate the impacts of EV
charging on the power grid and society. Second, most EV
charging behavior data is provided by charging companies
or several projects since collecting the data is difficult and
needs a long time, like several years. Privacy concerns in
the charging data collection make the process slower. Thus,
behavioral studies are in the development stages. Therefore,
the need for measured EV driving data arises to represent
the EV behavioral trends accurately. Several project-based
studies have been performed to obtain driving data [71].
However, theymostly assume periodic EV plug-ins, disregard
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FIGURE 12. The SOC distribution between 5-12 pm.

free charging options and incentives, and generalize regional
socio-economic dynamics. Consequently, the impact analysis
of EVs on the distribution network may reflect some incon-
sistent results.

Moreover, the findings are valuable in terms of the effects
of EVs on the grid. For example, a considerable proportion
of charging demand between 6 and 9 pm during the evening
peak can be supplied when energy costs and grid usable
capacity are more feasible at night. In this respect, it is
possible to meet these charging demands using green energy
resources with active control and management because the
hours of consumption and charging do not fully overlap.
Thus, V2G options are promising alternative solutions here.
Many studies focus on the impact analysis of distributed
networks based on a systematic plug-in that exaggerates the
benefits of V2G [18], [19]. The minute-based analysis has

revealed that only 40% of the EVs were plugged in simulta-
neously, according to the studied projects. Around half seem
suitable for V2G, depending on SOC and travel. Therefore,
a sufficient number of EVs and the significant energy pro-
duction from RES in the future will make V2G exciting and
more helpful for the grid and EV owners [31].

Furthermore, most recent studies focusing on the grid
impact analysis of EVs conduct hour-based simulations
regardless of the validation of time steps. The technical,
economic, and environmental results of these studies differ
significantly. For example, in the 15-minute time step analy-
sis results of the distribution network with uncontrolled EV
charge loads of 10% penetration, the total system cost varies
up to 7% compared to the hourly analysis, depending on the
RES penetration. A lower time step gives a higher cost, which
creates higher ramping for the higher RES. Also, 15-minute
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FIGURE 13. General Bootstrap method.

TABLE 2. The effects of time intervals on the results.

FIGURE 14. Bootstrap distribution function with 95% confidence interval
for EV charging behavior.

analyzes cost less, as higher time resolution results in lower
peak demand for uncontrolled charging. In other words, the
hourly results aremore optimistic [72]. Thus, the time interval
for the EV simulations should be determined by an advanced
analysis framework using real driving data. The impacts of

FIGURE 15. IEEE European low voltage test feeder.

V2G on the power grid can give significantly better results
in terms of technical, economic and environmental if real EV
behavior-based time interval is used [73]. We have compared
the technical result of commonly used time intervals in V2G
impact analyses. Line loading and losses were reduced by
15% and 3% when the time interval was changed from 1-min
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FIGURE 16. Voltage fluctuation at the bus 906.

to 60-min, whereas the maximum voltage drop decreased
by 3.5

VI. CONCLUSION
Electric vehicles benefit the power grid, improving inter-
mittent renewable energy use and supporting EV owners
financially through the integration of V2G. A comprehensive
literature review confirms that numerous studies have missed
focusing on how driving behaviors may influence the real
V2G potential. Existing research captures mobility data or
use publicly accessible real data to estimate EV usage pat-
terns. In contrast, some research uses only survey data to
generate EV charging and usage behavior patterns. Further-
more, most research examines the influence of V2G on the
electrical grid utilizing hour-based or minute-based data. The
technical outcomes of commonly used time periods in V2G
impact assessments are studied in this research. Therefore,
the line loading and losses were decreased by 15% and 3%,
respectively, and the maximum voltage drop was reduced by
3.5%, when the time step was changed from 1-min to 60-min.
Thus, the outcomes in this scenario are more optimistic than
they are. In order to generate more realistic results, this
study proposes a framework that methodically processes EV
driving and charging behaviors for EV charging management
operations, given the implications of the recent requirements
and enhancements. Additionally, real driving data has been
investigated to reflect the new behavioral trends of EV users
considering recent advancements and real electro-mobility
data. EV driving and charging behaviors have been evaluated
to create a consistent dataset that includes charging location,
duration, levels, and times. Joint V2G potential analysis was
focused on the simultaneous and individual charging demand

toward the growing EV population. Moreover, a time interval
has been suggested to increase the accuracy of EV benefit
analyses using the Bootstrap method. The studied project
revealed that only 40% of the EVs were plugged in simul-
taneously. Around half seem suitable for V2G, depending on
SOC and travel habit. The results indicate that using around
10-minute time steps is significant to acquire results at a
confidence interval of over 95%. This work also examines
the benefits of the various options that have been explored
in terms of energy losses and maximum line loading. This
work can help develop projects related to infrastructure and
real-time charging management of EVs considering environ-
mental impacts. Therefore, infrastructure and management
algorithms should be developed that account for the effects of
EVs on electricity grids, local and regional consumer behav-
iors, and needs. Policymakers should develop infrastructure,
control, and protection methods considering stakeholders’
demands and process flows. Future studies may aim to inves-
tigate the impacts of EVs and V2G that employ dynamic
wireless roadway charging with bidirectional capability on
the power systems and EV user behavior.
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