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ABSTRACT The advent of Industry 4.0 has resulted in the widespread usage of novel paradigms and digital
technologies within industrial production and manufacturing systems. The objective of making industrial
operations monitoring easier also implied the usage of more effective data-driven predictive maintenance
approaches, including those based on machine learning. Although those approaches are becoming increas-
ingly popular, most of the traditional machine learning and deep learning algorithms experience the following
three major challenges: 1) lack of training data (especially faulty data), 2) incompatible computation power,
and 3) discrepancy in data distribution. A new data-driven technique, such as transfer learning, can be
developed to overcome the issues related to traditional machine learning and deep learning for predictive
maintenance. Motivated by the recent big interest towards transfer learning within computer science and
artificial intelligence, in this paper we provide a systematic literature review addressing related research
with a focus on predictive maintenance. The review aims to define transfer learning in the context of
predictive maintenance by introducing a specific taxonomy based on relevant perspectives. We also discuss
current advances, challenges, open-source datasets, and future directions of transfer learning applications in
predictive maintenance from both theoretical and practical viewpoints.

INDEX TERMS Transfer learning, domain adaptation, fault diagnosis, fault detection, fault prognosis,
predictive maintenance.

I. INTRODUCTION
The Industry 4.0 era saw the introduction of new paradigms
and technologies based on connectivity, data analytics, and
novel devices, allowing for inventory reduction, customiza-
tion, and controlled production [1]. In many manufacturing
industries, profitability and effectiveness are reliant on devel-
oping high-quality products based on reliable systems. In fact,
any unanticipated downtime of machinery or deterioration
of equipment can lead to significant penalties and severe
reputational losses for companies. Therefore, maintenance
represents a critical activity with significant implications for
the companies’ capacity to compete on cost, quality, and
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performance. The transition of maintenance strategies from
reactive and preventive to predictive can be a concrete result
within Industry 4.0. In this context, special attention must be
paid to Artificial Intelligence (AI) approaches, due to their
capability to manage high-dimensional and multivariate data
as well as extract hidden correlations within data; as such,
AI is especially suitable for enhancing the performance of
Predictive Maintenance (PdM) [2].

Within the AI field, Machine Learning (ML) and, more
recently, Deep Learning (DL), have emerged as effective
techniques for developing PdMmodels due to their capability
of performing failure prediction tasks such as estimating the
remaining useful life of a machine [2]. However, despite their
benefits, traditional ML and DL techniques suffer several
limitations. To begin with, these methods are usually based
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on the assumption that both the training and testing datasets
are drawn from the same distribution. When dealing with
real-world applications, this assumption may not necessarily
apply. Second, traditional ML and DL algorithms require a
significant amount of historical fault data to learn the fault
characteristics of machines, whereas in real-world applica-
tions it is not always feasible to run the equipment in failure
mode for both safety and economic reasons. Finally, the cost
of model training in terms of time is high. It takes a lot of time
to adjust the weights and parameters of DL algorithms when
training from scratch for a new operating condition.

To tackle the mentioned problems, Transfer Learning (TL)
has recently emerged as a powerful AI technique [3]. More
specifically, TL has proven to support target domain adap-
tation by leveraging knowledge acquired from the source
domain, in order to cope with the lack of training data, espe-
cially faulty data, in the target domain. Furthermore, unlike
traditional ML and DL methods, TL can be successfully
applied even if the data distribution of the source and target
domains differ. In addition, the amount of computing power
and computation time required to train a model can be dras-
tically decreased by leveraging pre-learned knowledge from
various source domains [4]. Since TL methods can be effec-
tively exploited for overcoming issues related to traditional
ML and DL approaches, in this work we bridge the gap in
the technical literature by providing the reference taxonomy,
the state-of-the-art (SOTA), and the challenges arising from
applying TL to PdM. In order to achieve those objectives,
we leverage amethod known as Systematic Literature Review
(SLR). Themain objectives and contributions of the paper can
be summarized as follows:

• To clearly motivate the need for TL on the base of a
structured PdM categorization.

• To provide a novel TL taxonomy in PdM from three
perspectives: problem, solution, and application.

• To provide a SOTA with up-to-date references focused
on the use of TL techniques for PdM tasks.

• To highlight the key challenges that must be tackled to
successfully apply TL to PdM.

• To discuss recent advancements, the availability of
open-source data sets, and the possible future direc-
tions of TL in PdM, from both scientific and industrial
perspectives.

The remainder of the paper is organized as follows:
Section II sets this study in the context of related works. The
reference context, PdM categorization, and transfer learning
definition are discussed in Section III. The motivation for
the application of TL in the PdM context is discussed in
Section IV. Section V described the systematic literature
review approach, including the definition of research ques-
tions, the search process, and the selection and filtering of
relevant publications. Section VI provides the responses to
the research questions set in Section V, including the specific
TL taxonomy and a discussion of methodological and indus-
trial challenges. Finally, Section VII draws conclusions.

II. RELATED WORK
Several survey papers exist addressing different aspects of
fault detection, diagnosis, and prognosis within PdM. For
example, Carlvalho et al. [2], conducted a systematic liter-
ature review of traditional ML methods used for PdM and
discussed the efficiency of the current state-of-the-art tradi-
tional ML techniques. Furthermore, Jovani et al. [5] investi-
gated the benefits that traditional ML algorithms may offer
in PdM, and have also conducted an SLR to identify the
implementation obstacles. Zhao et al. [6] conducted a sys-
tematic review of machine health monitoring systems based
on deep learning algorithms, including Deep Belief Networks
(DBN), Deep Auto-Encoders (DAE), Convolutional Neural
Networks (CNN), and Recurrent Neural Networks (RNN).
Olga et al. [7] presented a comprehensive assessment of cur-
rent advancements, trends, challenges, and future direction of
DL in the context of PHM. Lei et al. [8] introduced a study
and a roadmap to comprehensively address the evolution
of Intelligent Fault Diagnosis (IFD) as a result of devel-
opments in ML, as well as future perspectives. Zonta et al.
[1] discussed current challenges and limitations in PdM and
suggested a new taxonomy to categorize this study field
in light of Industry 4.0 requirements. Juan et al. [9] con-
ducted an SLR to summarize the current diagnostic and
prognostic trends, as well as outline current challenges and
research opportunities, with a specific focus on multi-model
approaches. Keleko et al. conducted a bibliometric study to
investigate and quantify the most important concepts, areas
of application, methodologies, and significant trends of AI
used in real-time predictive maintenance in Industry 4.0 [10].

Other survey papers are devoted to analyzing a specific
component or equipment for fault diagnosis and prognosis,
e.g., bearing [11], milling cutting tools [12] and rotating
machinery [13]. Among them, Liu et al. [13] reviewed the
main AI methods for fault diagnosis of rotating machines
in industrial applications. In addition, a number of sur-
vey articles on fault prognosis are also available. For
instance, Lei et al. [14] provided an evaluation of machinery
prognostics based on four prognostic processes, including
data acquisition, Health Indicator (HI) construction, Health
Stage (HS) division, and remaining useful life (RUL) predic-
tion. Although all those papers provide interesting reviews
within fault diagnosis and prognosis, they focus on traditional
ML and DL techniques, while none of them addresses TL as
we do in this paper.

Only a few survey papers address the application of TL to
maintenance (see, e.g, [15], [16]); however, they only focus
on specific tasks for diagnosing machinery faults, while this
work is more comprehensive. In addition, existing papers
reviewed works published till 2019, while we found more
than 120 related publications released after 2019. Indeed,
only very recently TL has demonstrated its power within
PdM and hence showed a rapid expansion. Also, in this
study, we provided a novel TL taxonomy in PdM from three
perspectives: problem, solution, and application.
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III. PRELIMINARY
A. BACKGROUND ON PREDICTIVE MAINTENANCE
The profit and competitiveness of the industrial sectors rely
on designing and producing high-quality products and reli-
able systems. However, developing such sophisticated sys-
tems brings new challenges, includingmaintenance expenses.
The main concern of the industry is reducing maintenance
costs and minimizing business risks while improving asset
reliability and safety. Three labels commonly used in the tech-
nical literature to indicate the main maintenance paradigms
and related actions [17]:

• Reactive Maintenance (RM). This approach is also
known as corrective maintenance or run-to-failure (R2F)
since the repair is conducted following the occurrence of
a fault. In this paradigm, a machinery component oper-
ates from installation until its failure occurs, at which
point the whole machine is shut down for maintenance.
However, because of the additional maintenance costs
(due to the impact of the failure on others machinery
parts) and unanticipated downtime, the cost and effi-
ciency of this methodology are often unacceptable for
industry sectors.

• Preventive Maintenance (PM). To prevent process or
equipment breakdowns, this kind of maintenance is per-
formed on a predetermined schedule in time or process
iterations, so it is often called time-based or planned
maintenance. Despite its effectiveness, in some cases,
the PM may increase operational expenses due to the
possibility of over-maintenance.

• Predictive Maintenance (PdM). PdM makes use of
predictive technologies to determine when maintenance
is required. It is built on the continuous monitoring of a
machine’s or process’s integrity, thus allowing mainte-
nance to be done only when required.

PdM stands out among the others in the industry 4.0 era
owing to its capacity to optimize asset use and manage-
ment [17]. PdM’s main purposes are to avoid unexpected
downtime, increase overall system reliability, and lower oper-
ational costs. The three main principles of predictive main-
tenance are fault detection, diagnosis, and prognosis. In other
words, predictive maintenance involves detecting a develop-
ing defect (fault detection), in the case of faulty systems,
isolating and identifying the specific type of fault (fault
diagnostics), and forecasting the RUL or end life of the
system (prognostics). PdM can be implemented online or
offline. In an online implementation, information is collected,
preprocessed, and analyzed in a real-time manner to raise
alarm signals or adjust actions while the system is running.
Offline implementation collects all operational data so that
the maintenance team can analyze it afterward. Moreover, the
interaction of predictive maintenance with manufacturing is
based on the cyber system and service innovation. As a result,
there is interaction with products and industrial processes
of the system. It should be highlighted that Prognostics and
HealthManagement (PHM) is an example of the possible pre-
dictive maintenance extensions often found in the literature.

Indeed, this term is frequently used even to replace predictive
maintenance, and there is no consistency in the use of these
keywords or their interaction in the maintenance area. In an
attempt to clarify the keywords, Jimenez et al. [9], clearly
define PHM as an extension of PdM aiming to increase asset
predictability and life cycle management. According to [9],
the predictive maintenance approaches, could be classified
into two major groups: single-model approaches and multi-
model approaches. Single-model methods can be further cat-
egorized as knowledge-based methods, data-driven methods,
and physics-based methods, while the various multi-model
approaches, sometimes referred to as hybrid models, arise
from the different possible single-model method combina-
tions. Data-driven machine health monitoring methods have
grown increasingly appealing as sensors, and computer sys-
tems have advanced significantly. In this area, traditionalML,
DL, and TL have emerged as effective techniques for devel-
oping intelligent prediction systems, especially in complex
or large-scale and dynamic contexts. However, the success of
these applications is contingent on the proper choice of the
most suitable machine-learning technique according to the
specific problem [5]. Finally, summarizing the main charac-
teristics and features, the predictive maintenance overview,
is depicted in Fig. 1 by using class diagrams.

B. TRANSFER LEARNING: MAIN CONCEPTS AND
NOMENCLATURE
Transfer Learning (TL) aims to develop an effective model
for a target domain with limited training data by leveraging
and exploiting knowledge from different but related source
domains. For the sake of completeness, the definitions com-
monly used in this field, and related notation, are introduced
in the following.
Definition 1 (Domain [18]): A domain D = {X ,P(X )}

includes two parts, namely a feature space, say X , and a
marginal distribution, sayP(X ), where the symbolX specifies
an instance set as X = {x|xi ∈ X , i = 1, . . . ,N } that contains
N instances.
Definition 2 (Task [18]): Given a domainD = {X ,P(X )},

a task T = {Y, f } consists of a label space Y and a prediction
function f (.), being the sample data composed of pairs {xi, yi}
where xi ∈ X and yi ∈ Y . The prediction function f is
designed to learn from sample data and predict the label
of the future instance; it can be expressed as the following
conditional distribution of instances: f (xj) = P(Y |X ) =

{P(yk |xj)|yk ∈ Y, k = 1, . . . , |Y|}.
The above definitions can be specified for source and target
domains. Accordingly, let DS = {XS ,PS (XS )} and DT =

{XT ,PT (XT )} be the source and the target domain, where
XS and XT represent the source and target domains’ feature
spaces, respectively, while PS (XS ) and PT (XT ) represent the
source and target domains’marginal probability distributions,
respectively.
Correspondingly, a source task and a target task can be
defined as TS = {YS ,PS (YS |XS )} and TT = {YT ,
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FIGURE 1. Overview of predictive maintenance using class diagrams.

PT (YT |XT )}, beingYS andYT the source and target task label
spaces, respectively, PS (YS |XS ) and PT (YT |XT ) the source
and target domains’ conditional probability distributions,
respectively.
Given the above concepts, a unified definition of TL can be
provided as follows.
Definition 3 (Transfer Learning [18]): Consider the sou-

rce domain DS = {XS ,PS (XS )}, with relating source
task TS = {YS ,PS (YS |XS )}, and target domain DT =

{XT ,PT (XT )}, with respective target task TT = {YT ,

PT (YT |XT )}. Transfer Learning tries to exploit the related
knowledge embedded in DS and TS to improve the perfor-
mance of the target prediction function fT (.) in the target
domain DT with target task TT , being DS ̸= DT or TS ̸= TT .
A crucial concept related to TL is the idea of domain adap-
tation, which has been developed to deal with cross-domain
learning challenges under specific conditions. The aim is to
adapt one or more source domains to exploit knowledge and
improve the target learner’s performance.
Definition 4 (Domain Adaptation) [16]): Domain adapta-

tion is a type of transfer learning problem in which the source
and target tasks are assumed to be the same, i.e. TS = TT .
The definitions provided so far refer to single-source
TL, which is the most common type of TL in current
research. Since recent studies demonstrate that using sev-
eral source domains and tasks improves the prediction func-
tion fT , the following multi-source TL definition must be
given.
Definition 5 (Multiple-source Transfer Learning [19]):

Given some observations corresponding to mS ∈ N+ source
domains and tasks (i.e., {(DSi ,TSi )|i = 1, . . . ,mS}), and
observation about target domain and task (DT ,TT ), transfer

learning enhances the performance of the learned prediction
function fT in the target domain by leveraging the knowledge
implied in the multiple source domains.

IV. MOTIVATIONS FOR APPLYING TL TO PdM
In recent years, many traditional ML and DL methods have
made significant progress as a result of their superior repre-
sentation learning and pattern recognition capabilities, and
they have also been successfully used for the predictive
maintenance of industrial systems [7], [20], [21]. However,
intelligent PdM systems based on traditional ML and DL
have to satisfy specific conditions for achieving outstanding
performance. First, the feature extraction process of tradi-
tional ML methods can be inefficient and passive. As a
result, manual feature extractor design not only necessitates
the expertise of signal processing experts, but it is also a
time-consuming process, as each handcrafted feature is only
acceptable for specific working conditions, necessitating the
operator’s judgment in many situations [8]. Second, the net-
work of DL andML algorithms has to be trained with enough
labeled data to discover representative features and be able
to generalize adequately. Therefore, training such networks
requires a sufficient amount of labeled data; however, in the
real world, it is usually possible to collect only a significant
amount of data under the normal operation of the system.
Indeed, fault injection and run-to-failure experiments are
constrained in real industrial applications for safety, security,
and cost concerns. As a result, if PdM models are trained
on limited or unbalanced datasets, they can easily overfit,
making generalization to the test data difficult [4]. Finally,
typically traditional ML and DL algorithms have acceptable
performance under the condition that test data comes from the
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same distribution as training data. However, real-world appli-
cation complicates this issue because the working operation
and environments ofmechanical equipment (e.g., speed, load,
and noise) might change over time. As a result, performance
degrades due to the distribution discrepancy between the
training dataset in a source domain and the test dataset in a
target domain. In such cases, traditional ML and DL models
are frequently reconstructed from scratch for a new working
operation/environment, resulting in a waste of computational
resources and training time. It follows that these issues make
it challenging, in the case of traditional ML and DL, to gen-
eralize or adapt PdM for a new domain where there is a
discrepancy in data distribution as well as a lack of data in
the target domain.

In the real application world, maintenance technicians
typically monitor the condition of one machine by using
experience gained from different same-type machines instead
of relying exclusively on insights gained from the target
machine. So, in a real-world PdM application, training data
can be collected from a variety of sources, such as different
operation conditions, different same-type machines, failure
simulationmachines in the laboratory, or digital models. They
will, however, have a different distribution than the data being
examined in the target machine. However, owing to the same
operating principle and failure mechanism, the data from the
target machine and the data from the source machines should
share the same fault characteristic information. [4]. These
facts suggest that it may be useful to transfer knowledge
across multiple related machines. In this context, TL has
recently gained attention as a powerful technique to address
all of these challenges.
The various advantages of adopting TL with respect to tra-
ditional ML and DL methods can be finally summarized as
follows:

• TraditionalML andDL techniques rely on target domain
data to train the model, while TL uses source domain
data as a starting point, so requiring less target domain
training data [19].

• Transfer learning-trained models can be easily adapted
to other domains. Indeed, TL models are trained to rec-
ognize features, relations, instances, or parameters that
may be applied to different domains [3].

• TL has the potential to make traditional machine learn-
ing and deep learning techniques more accessible.
Indeed, TL algorithms can transfer to a new domain
the maintenance knowledge coming from a model that
has already been trained by traditional ML or DL
algorithms [22].

• Unlike other learning methods, TL usually provides an
optimal initial starting point, higher learning accuracy,
and faster training for new domains [22].

V. RESEARCH METHODOLOGY
The systematic literature review technique provided by
Kitchenham et al. is considered throughout this paper [23].

Themethodology has been applied according to the following
main steps.

A. RESEARCH QUESTIONS
The definition of proper research questions is a crucial part
of a SLR [23]. Herein, the research questions aim to enable
readers to better comprehend how TL can be effective in the
PdM context. In so doing, we conducted preliminary research
analyzing the publications useful for developing the research
questions. At first, we have defined the Main Question (MQ)
able to drive the search of open research challenges. Subse-
quently, based on the main question, we focused on Specific
Questions (SQ) to highlight the existing approaches and to
reveal gaps and opportunities for future studies. The main
question and the specific questions are reported in Table. 1.

TABLE 1. Research questions.

B. SEARCH PROCESS
The search process leverages two phases. The first is devoted
to creating a search string, while the second aims to choose a
source. The search string’s construction necessitates a pre-
liminary reading of handpicked publications related to the
topic of interest. The considered search string is shown in
Fig.2. Note that, on our first attempt to create the string we
included keywords such as industry 4.0, cyber-physical sys-
tems, cloud computing, edge computing, internet of things,
and so on. However, in this way, just a few papers have
been obtained at the end of the process. So, we decided to
remove these keywords from the search string in order to
conduct a more comprehensive literature review in the field.
Scopus has been chosen as the primary search database, due
to its multi-publisher indexing (including Elsevier, Springer,
IEEE, ACM, etc.), reliable metadata, powerful search engine,
ease of use, extensive coverage, and quality filtering of
sources [24].

C. SELECTION OF RELEVANT STUDIES
The string presented in Fig. 2 has been applied to the Scopus
database by the searching string in the title, keywords, and
abs of papers. Following that, all research that is not related
to the study’s objectives has been removed. To this aim, the
Exclusion Criteria (EC) in Table.2 have been applied.
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FIGURE 2. Main search string.

TABLE 2. Exclusion criteria.

Subsequently, for further refinement, a manual filtering
process has been performed, which is composed of the fol-
lowing steps.

1) Analysis of the title and abstract. It consists of reading
the title and the abstract of the paper and determining
whether or not it is adequate for our study. Papers,
classified as surveys or reviews, are also excluded.

2) Entire text analysis. It consists of comprehensive read-
ing. It is obviously essential when the title and abstract
do not provide enough information about the suggested
solution, while the proposed ideas appear to be viable
for the objectives of the literature review.

In addition, we have further skimpy evaluated all papers
at first removed on the base of the exclusion criteria, so to
ensure that all relevant papers are considered in this study.

D. SEARCH RESULTS
This subsection illustrates the results of the search and selec-
tion process. An overview of the results is shown in Fig. 3.
In detail, 685 publications have been selected during the

initial search step, and they have been then reduced to
224 exploiting the exclusion criteria listed in Table.2. In the
last refinement phase, the selected publications underwent a
text analysis based on the criteria listed in the section. V-C
during the manual filtering phase. During this last phase,
72 studies were eliminated, leaving 152 papers resulting as
the most relevant for this SLR. In addition, researchers added
another 16 papers to the selected papers following a short
assessment of the removed papers based on exclusion criteria.

The 168 papers obtained via the screening are categorized
by year in Fig. 4, where the x-axis indicates the period of
time included in this review, i.e., from 2017 to 2021-22. Note
that this area of research received little attention in 2017 and
2018, while in 2019 it grew to 20 papers. Furthermore, the
publications show considerable growth in 2020, indicating
that this will be the trend in the coming years.

VI. RESULTS AND DISCUSSION
The contributions of selected papers are discussed in this
section. More specifically, each research question listed in

FIGURE 3. Screening of research.

FIGURE 4. Distribution and tendency of publications by year.

Table.1 is addressed, taking into account the contributions of
the publications found in the literature.

A. TAXONOMY OF TL IN THE FIELD OF PdM (SQ1)
Transfer learning can be classified according to a variety
of factors. Different viewpoints and characteristics influence
categorization. In this study, we classify the TL taxonomy by
considering the problem, solution, and application criteria.
According to the accessibility of labeled data in the source
and target domains, the transfer learning problem could be
split into three groups as follow [18]:

• Transductive Learning. The task is the same for the
source and target domains, but domains may differ. The
labeled data are only accessible in the source domain
with this setting.

• Inductive Learning. Inductive learning differs from
transductive learning in that regardless of whether the
domains of the source and target are the same or not,
the tasks are different. Despite whether labeled data is
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available or not in the source domain, labeled data is
generally accessible in the target domain in this setting.

• Unsupervised Learning. It’s comparable to inductive
TL except it’s focused on the setting in which neither
the source nor the target domains have a labeled dataset.

Table. 3 can be used as an index to assist researchers in
identifying settings that are relevant to their interests.

TABLE 3. Relationship between TL, and traditional ML and DL.

An alternative problem-based categorization can be based
on feature and label space consistency among the source and
target. On the basis of the discrepancy between the feature
and label space of domains, the following types of TL can be
defined: [19]:

• Homogeneous Learning. This concept has been devel-
oped and presented to deal with circumstances when the
domains have identical labels and feature spaces. The
closed-set transfer learning problem is another name for
this circumstance. ( XS = XT , YS = YT )

• Heterogeneous Learning. It indicates the process of
transferring knowledge between domains that have dif-
ferent features or/and label spaces. It is more challeng-
ing than homogeneous learning since it requires feature
or/and label space adaptation in addition to distribution
adaptation. (XS ̸= XT or/and YS ̸= YT )

Furthermore, three forms of heterogeneous TL arise from
the relation between the source and target label spaces:

• Partial Transfer Learning. It means that the label space
of the target domain is a subset of the source domain
label space. ( YT ⊂ YS )

• Open-set Transfer Learning. The concept refers to the
possibility of a new fault mode arising in the target
domain which isn’t included in the fault mode set of the
source domain. As a result, the label space of the source
domain is a subset of the target domain’s label space.
(YS ⊂ YT )

• Universal Transfer Learning. It deals with the case
when there is no prior knowledge about the label space
of the source and target domain. Herein, due to the lack
of label space information, the universal TL problem
provides a challenging and quite practical setting for
general TL. (YS ̸= YT )

Due to the high economic and labor expenses in real-world
industries, it is generally difficult for a single source to collect
enough high-quality data to build an efficient data-driven pre-
dictive maintenance model in the target domain. Therefore,
depending on the number of source domains used for TL,
we can have two sorts of transfers:

• Single Source Domain. This technique relies on knowl-
edge from a single source.

• Multiple Source Domain. The multiple source domain
transfer learning techniques transfer the knowledge from
different multiple, but relevant sources.

Based on network structure, solutions to TL problems
could be categorized into shallow and deep transfer learning
approaches. The deep neural network-based TLmethodology
aims to learn more transferable representations by including
TLmethods in the deep learning pipeline. Based on the aspect
of ‘‘what to transfer’’, transfer learning approaches are here
split into the following five groups:

• Instance-based. This methodology attempts to reduce
the conditional or/and marginal distribution difference
across domains through re-weighting or applying impor-
tance sampling strategies.

• Feature-based. It intends to reduce the conditional
or/and marginal distribution difference across domains
based on two scenarios: asymmetric and symmetric. The
source features are transformed to match the target char-
acteristics in asymmetric methods. On the other hand,
symmetric methods seek to find a shared latent feature
space before transforming both source and target domain
features into another distinct feature representation.

• Parameter-based. It aims to transfer knowledge at the
level of the model or parameter.

• Relational-based. It is primarily concerned with prob-
lems in relational domains and transfers the source
domain’s functional relationships or rules to the target
domain.

• Hybrid-based. It attempts to integrate two or more
approaches to fulfill a single functional block of the TL
model, and the integrated approaches work together to
achieve desirable results.

Concerning applications, TL techniques could be exploited
for accomplishing the main PdM tasks, i.e., fault detection,
diagnosis, and prognosis. More specifically, TL can be lever-
aged for detecting a developing defect (fault detection) or in
the case of faulty systems, isolating and identifying the the
specific type of fault (fault diagnostics), furthermore it can
also be used for forecasting the RUL or the end life of a
system (prognostics). Regarding application objects, predic-
tive maintenance systems based on TL techniques could be
used to provide safe and reliable operations of assets within
critical systems, e.g., oil and gas, mining, aviation, industrial
manufacturing components, and power plants.

The feasible transfer scenarios in this context can be
divided into the following scenarios [4] (see also Table. 4):

• Transfer in the Identical Machine (TIM). In this
transfer scenario, the source, and target domain data
are collected on the same machine but under different
operational conditions or working environments.

• Transfer across Different related Machines (TDM).
The data for the source and target domains in this
transfer scenario is collected from different but related
machines. Compared to the TIM scenario, these data are
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more complex because of differences in machine specs,
structures, and so on. Hence, there is a significant data
distribution discrepancy between the source and target
domains. The intuitive motivation for these scenarios
is that the probability of all failure modes happening
during the previous operation of the target machine is
low; hence gathering historical fault data from different
related machines is a good option.

• Transfer fromLaboratory to RealMachine (TLRM).
Within this scenario, the source domain data is obtained
from the laboratory machine to enable the identification
of real-world machine fault modes in the target domain.
This scenario is intuitively inspired by the fact that
modeling failure modes in the lab are simpler, safer,
and cheaper than gathering faulty data from a real-world
machine.

• Transfer from Virtual to Real Machine (TVRM).
Within this transfer scenario, the source domain data
is collected from a machine’s virtual model to pro-
vide transferable maintenance information for the tar-
get machine. The primary reason for this scenario is
that, in real-world applications, the historical faulty data
offered by physical machines can be limited. However,
digital models, which could reflect the fundamental
behaviors and principles of physical machines, can gen-
erate a significant amount of labeled data under different
health and operating conditions.

TABLE 4. Categorization of transfer scenarios in PdM.

B. STATE-OF-THE-ART OF TRANSFER LEARNING IN THE
FIELD OF PREDICTIVE MAINTENANCE (SQ2)
In this subsection, the most relevant methodologies and appli-
cations of TL are briefly discussed on the basis of the charac-
teristics and taxonomy depicted in Fig. 5.

1) APPROACH CATEGORIZATION
Table. 5 summarizes the surveyed papers based on the five
primary TL approaches. The distribution of the reference

based on the approach categorization is summarized in Fig. 6.
As expected, due to its capacity for projecting data into
a shared feature space, where cross-domain inconsistencies
may be minimized, feature-based TL is currently the most
popular approach when referring to cross-domain predictive
maintenance applications. In the following, we better detail
and correlate the different TL approaches to the different PdM
applications.

• Feature-based. This approach was introduced to tackle
the mentioned problems by finding a common fea-
ture between domains in the latent space or decreas-
ing the discrepancy between domain distributions by
transferring features from the source to the target
domain. Feature-based methods are frequently explored
in the TDM scenario of TL because of their capacity
to rectify significant across-domain discrepancies. For
feature-based TL, there are two mainstreams. To reduce
distribution shift, the first methodology, known as
moment matching-based, measured statistic discrepancy
by applying methods such as maximum mean dis-
crepancy (MMD) and correlation alignment (CORAL).
The second methodology is referred to as adversarial
learning-based, where two parties compete to align dis-
tribution. Adversarial-based TL approaches, inspired by
the adversarial learning process, have received much
attention as a growing trend. Adversarial-based tech-
niques can be split into two groups according to vari-
ous strategies. The first is a generative-based technique
[191], in which the primary idea is to use source data to
build synthetic target data with ground-truth annotations
and then use synthesized target data to enable cross-
domain tasks. The second technique is the adversarial
adaptation-based strategy [192], which uses a domain
discriminator to adapt the representation distributions of
the source and target domains.
In this framework, Tong et al. [29], for instance, devel-
oped a feature-based transfer learning method to deal
with the fault diagnostic performance deterioration chal-
lenge under variable operating conditions of the bear-
ings. A deep feature-based transfer network based
on Linear Discriminant Analysis (LDA) and weighted
MMD, is suggested by Wang et al. [64] for fault diag-
nosis of chemical processes. Different from existing
research, for rolling bearing fault diagnosis, Li et al. [37]
provided a new feature-based transfer network based
on multi-Layer and multi-kernel MMD to reduce the
domain shift problem. Wu et al. [91] proposed a deep
transfer maximum classifier discrepancy approach to
align the distributions of auxiliary samples produced
by Batch-Normalized Long-Term Memory (BNLSTM)
with unlabeled target domain data.

• Parameter-based.
This is also known as pre-train model-based transfer and
involves fixing and transferring partial parameters of a
trained network in the source domain while fine-tuning
the remaining parameters in the target domain using
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FIGURE 5. Structured taxonomy of transfer learning in predictive maintenance using class diagrams.

TABLE 5. Classification of references based on approach.

target data. In general, parameter-based approaches
assume that common parameters exist across models
from the source and target domains. In reality, it is not
easy to ensure that the source and target domains share
common parameters. As a result, these techniques are
ineffective in cases where the domain shift is significant.
In recent years, several researchers havemostly used this
approach to accomplish transfer predictive maintenance
of machines. Wen et al. [165], for instance, employed
negative correlation learning to fine-tune the fully-
connected and softmax classifier layers of a pre-trained
ResNet-50model by transforming raw time-domain data
to RGB images. Liu et al. [155], based on LeNet-5,
developed a CNN model to capture fault features from
images, then used a fine-tuning technique to adopt
the CNN model for the target domain, which is an

effective method of parameter-based TL. By fine-tuning
the parameters of the transferred CNN model, which
was trained with a significant amount of data, Han et al.
[157] developed a parameter-based TL network for fault
diagnosis of the target machine with new tasks. Even
though this transfer technique is simple to comprehend
and implement, the need for labeled data in the target
domain remains a source of frustration. Hence, as a
result of the unavailability of labeled data in real-world
industrial applications, these TL approaches could face
unexpected challenges. To deal with this issue, Li et al.
[169], suggested a transfer network based on parame-
ter TL and ensemble learning methods for identifying
rolling bearing faults using target unlabeled data.

• Instance-based. This methodology aims to reduce
the marginal or conditional distribution difference
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across domains by leveraging importance sampling
or reweighting methods. When applied to the target
domain, the technique focuses on determining appropri-
ate weights for labeled data from the source domain in
order to learn the source task with the lowest possibility
of negative transfer. Furthermore, instance-based tech-
niques are founded on two fundamental assumptions:
a) Since only a certain number of training data from
the source domain are relevant to the target domain, all
source instances cannot be used to train the target model.
As a result, it’s critical to carefully choose samples that
will support the target domain task
b) The conditional distributions of the source and target
domains are identical. This assumption, however, may
not always be valid. As a result, this strategy is both
challenging and inefficient. It can be used to resolve
discrepancies in TIM scenarios, but it cannot handle sig-
nificant discrepancies in transfer scenarios, for instance,
TDM scenarios, since these techniques may lack robust
data fitting capacity.
Despite its merits, according to Table. 5, few stud-
ies focus on the application of this approach to PdM.
For example, Liu et al. [25] introduced a generic trans-
fer framework to overcome the challenge of designing
fault diagnosis with small samples. In the developed
framework, the authors utilized an instance-based TL
technique and the Adaptive Mixup (Admixup) method
to transfer the vast number of fault samples in var-
ious working conditions. Lee et al. [26], designed an
instance-based TL network that employs the Kullback-
Leibler Divergence (KLD) and MMD indicators in
combination.

• Relational-based. The goal is to find the correla-
tion among data in the source domain and then apply
that knowledge to the target domain task. Despite the
other three methods of transferring, relation-based TL
approaches do not require that the source data and the
target data be distributed independently and identically.
As a result, relation-based approaches are far more
adaptable and robust than other approaches. Further-
more, most of these approaches are built on statistical
learning techniques.
However, according to Table 5, relational-based TL is
rarely exploited in the PdM field. Zhu et al. [182], for
example, presented a flexible TL framework for trans-
ferring information from both a qualitative and quan-
titative perspective for monitoring the batch process.
To begin, a statistical pattern clustering technique is
designed for evaluating and distinguishing similar con-
ditions. In addition, a multiphase bayesian network is
built with nominal representations enabling qualitative
knowledge transfer and statistical modeling.

• Hybrid-based. The hybrid techniques refer to the case
when at least two approaches are integrated to per-
form one single functional block of a transfer and the
combined models cooperate to achieve their outputs.

Nonetheless, integrating multiple TL methods into
a hybrid approach provides an effective means of
using historical information, but it also introduces new
challenges.
Again, despite its benefits, the majority of surveyed
studies (as summarized in Fig. 6) focus on one sort of TL
approaches, such as feature-based and parameter-based
TL, and only a few studies exploit hybrid-based trans-
fer learning approaches. For instance, Hybrid Trans-
fer Learning (HTL) has been recently proposed by
Ma et al. [184] for predicting the behavior of Proton
Exchange Membrane Fuel Cells (PEMFCs) based on
intercell differences. Two types of TL, instance-based
and parameter-based, are used to extract as much infor-
mation as possible from past data and prior mod-
els to increase the similarity of the generated curve.
Sun et al. [183] presented a deep hybrid-based TL net-
work based on Sparse Autoencoder (SAE) and three
transfer techniques, including weight transfer, feature
TL, and weight updating, to transfer prognostic knowl-
edge from a trained SAE to a new domain. These
methods enable the prediction of a new domain with-
out the need for labeled target data. For sparse target
data, Han et al. [185], a proposed framework based on
a hybrid approach. The proposed framework’s overall
goal is divided into two portions: multiple adversarial
domain adaption and supervised fine-tuning. In order
to overcome the open-set TL challenge in machinery
fault diagnosis, Zhang et al. [186], employed a hybrid
model based on adversarial learning and instance-level
weighted techniques to capture generalized features and
represent the similarities of testing samples with known
health conditions. Li et al. [189] exploit both strategies
of feature-based and parameter-based TL in their pro-
posed Knowledge Mapping-based Adversarial Domain
Adaptation (KMADA) structure, so as to achieve fast
convergence and satisfying outcomes.

FIGURE 6. Distribution of references based on approach categorization.

2) PROBLEM CATEGORIZATION
In the following, the surveyed papers have been also classi-
fied and discussed based on different problem-setting in the
source and target domains.
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• Label-setting Categorization. The categorization of
the selected papers on the basis of label-setting catego-
rization is summarized in Table 6. The results in Fig. 7,
clearly show that inductive and transductive TL has a
significant body of contributions, and this can be clearly
motivated by the fact that inductive and transductive TL
are natural extensions of the very popular supervised
learning approaches.
However, ML tasks can be often unsupervised in indus-
trial applications, especially when monitoring complex
industrial processes, since, the number of possible faults
is uncountable due to the enormous number of parts
and interacting components [193]. In addition, because
industrial systems are designed to be reliable, obtain-
ing a labeled dataset with sufficient samples of each
potential fault, as the source or target domain, is often
impossible in practice. It follows that often transductive
and inductive algorithms cannot be exploited in practice,
since they are not proper for handling conditions in
which the source or/and target domains are unlabeled.
Unsupervised TL, on the other hand, can deal with the
absence of labeled data in both the source and target
domains. So, it could be very useful for dealing with
unique and special tasks for which there isn’t enough
labeled data from both the source and target domains.
Despite its great benefits, unsupervised TL is still not
popular in the PdM field, since learning good repre-
sentations from a significant set of unlabeled data is
a particularly challenging task that makes difficult its
application to real-world tasks [194].
Among the few works focusing on Unsupervised Trans-
fer Learning (UTL), it is worth noting the novel frame-
work proposed by Mao et al. [102] for online early fault
detection via UTL. The approach is aimed to improve
the resilience of the detection model, resulting in a much
lower false alarm rate, by combining robust state evalu-
ation and coupled adversarial training of deep domain
adaptable neural networks. Gabriel et al. [104], pro-
posed a new framework for solving one-class classifica-
tion issues. The approach is intended to detect anomalies
in fleets of machines from the same manufacturer that
are monitored by comparable sensors but are experienc-
ing domain shifts due to differences in system setup,
operation, or environment. However, the main drawback
to this configuration is related to the difficulties arising
from training the domain discriminator in an imbalanced
configuration.

• Source-setting Categorization.
Table. 7 summarizes the selected papers based on
source-setting categorization, while their distribution in
Fig. 8 discloses that most of the publications (namely,
88%) are focused on single source TL. Mainly for the
sake of simplicity, current transfer learning-based fault
diagnostic approaches mostly rely on transferring main-
tenance knowledge from one source domain to the tar-
get domain. Moreover, the accessibility of significant

FIGURE 7. Distribution of references based on label-setting
categorization.

amounts of labeled training data from a single source
allows for achieving excellent performance and testing
accuracy.
Nevertheless, it is sometimes impossible for a single
source to provide adequate labeled data for developing
an efficient data-driven predictive maintenance model
in real industries. On the contrary, it sometimes could
be easier to collect labeled data from many different
sources with comparable operating machines in order to
expand the training dataset at a lower cost. Moreover,
further advantages arise. First, by leveraging all the inde-
pendent data collected from several source domains, the
model will be able to transfer more comprehensive and
general diagnostic and prognostic knowledge. Secondly,
the possibility of over-fitting can be alleviated with more
training samples, which could provide favorable perfor-
mance in the target domain [105]. When shifting among
multiple domains, even though greater data exploration
could theoretically lead to higher model performance,
in practice, it results to be hard aligning the distributions
between all source domains and target domains. More
specifically, as illustrated intuitively in Fig. 9, it is very
challenging to completely remove the shift between a
single source and target domain. So when attempting
to align multiple sources and target domains, a con-
siderable degree of mismatch commonly arises, which
could adversely affect model performance. This further
motivates the distribution in Fig. 8.

FIGURE 8. Distribution of references based on source-setting
categorization.

As shown in Table. 7, a few studies have recently
exploited multiple source domain transfers to PdM.
For instance, with respect to prediction accuracy,
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TABLE 6. Classification of references based on label-setting.

TABLE 7. Classification of references based on source-setting.

Wen et al. [36] conducted analytical experiments to
prove that the third dataset XTD might influence the
DTL’s final prediction accuracy. More specifically, they
disclose that the prediction accuracy improves when
the third dataset is more similar to the target dataset
than the source dataset. Note that, transferring from
multiple operating conditions to a single operating con-
dition might also have a negative impact as shown
in Zhang et al. [149]. Herein, the authors attempted to
explain this negative effect by comparing sensor mon-
itoring data values. More notably, they try to disclose
what factors influence the impact of TL under various
operating conditions and two factors have been identi-
fied so far. First, sensor data gathered under multiple
operating conditions are more complex than data col-
lected under single conditions. Second, the sensor value
distribution differs from the sensor monitoring data with
a single operating condition.
As discussed in [68], domain-invariant representa-
tions are difficult to understand when single-source
domain adaptation is employed to explain the distri-
bution of obtained data under various working condi-
tions. To tackle this issue, Wen et al. [68] applied a
technique based on multi-feature spatial domain adap-
tation. To achieve more accurate homogeneous trans-
fer knowledge in the TIM scenario, Tian et al. [142]
developed a multi-source subdomain adaptation transfer
learning approach by employing a multi-branch network
structure and local MMD method. The multiple source
domain adaptation for machinery fault diagnosis has
been very recently also addressed via Weighted Domain

Adaptation Neural Network (WDAN) inWei et al. [110]
by leveraging some criteria to find whether to conduct
domain adaptation before starting the training or tra-
ditional supervised learning in order to prevent neg-
ative transfer. However, they are mostly focused on
feature transferability and neglect the impact of sam-
ple transferability on domain adaptation. To this pur-
pose, Shi et al. [116] introduced a unique unsupervised
MDA-based TL scheme called Multisource Domain
Factorization Network (MDFN), which learns generic
diagnostic information from numerous sources and then
applies it to diagnosing the target task. The proposed
framework employs transferability-based entropy penal-
ties and shared-space component analysis methods to
deal with negative transfer from the perspectives of
instance transferability and feature representation.
However, the theoretical frameworks proposed in the
above studies are mainly designed under the main
restrictive assumption that both source and target
domains have identical features and label spaces. This
is often unfeasible since the health condition sets in
source and target domains are usually different in a real
industrial environment. To deal with this issue, Li et al.
[90] have instead developed a novel deep learning-based
heterogeneous TL technique for diagnostics, in which
diagnostic information, obtained from adequate labeled
data of multiple rotating machines, is transferred to the
target machine. However, the real-world application of
the approach is limited since the required labeled tar-
get training samples are usually unavailable in prac-
tice. Finally, in order to address the issue of data
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imbalances across health states in multi-source TL sce-
narios, Yang et al. [117] introduced a network that com-
bines several partial distribution adaption sub-networks
and a multi-source diagnostic knowledge fusion module
to collect and leverage diagnostic knowledge from mul-
tiple source machines.

FIGURE 9. Demonstration of single-source and multi-source TL.
(a) Single-source TL. (b) Multi-source TL.

• Space-setting Categorization. In Table. 8, the surveyed
publications are classified based on the space-setting
categorization. Currently, due to ease of application,
most transfer learning methods operate under the
assumption the feature spaces of the data in the
source and target domains are represented by the same
attributes [197]. This also reflects in the PdM literature
as highlighted by results in Fig. 10, where (75%) of the
TL studies leverage homogeneous transfer learning.
Nevertheless, regardless of the progress and achieve-
ment of homogeneous TL methods for PdM, there is
still a challenge that cannot be neglected. Indeed, a chal-
lenging assumption is still required for homogenous
approaches, i.e., they require a source dataset and tar-
get dataset sharing the same label space, that is, the
health conditions sets in the two domains are identical.
In real-world industrial applications, this assumption
may not always be fulfilled, where collecting data under
all the possible machine health conditions is very dif-
ficult. As shown in Fig. 11(a), since the homogeneous
or closed-set TL assigns equal weights to the source
and target instances, cross-domain data have an equal
contribution to the adaptation process. It follows that
most of the existing homogeneous TL techniques are
exposed to negative transfer because they attempt to
align all data, even outlier samples.
In real-world industrial applications, since maintenance
should be both effective and efficient, it is not reasonable
that equipment cannot be monitored until data of the
same category is obtained from the source domain and
adapted to the target domain. This refers to a situation
where the target label space is a subset of the source label
space and is named a partial transfer learning problem.

As a result, compared to the scenario for which the
closed-set TL is designed, this configuration is closer
to engineering practice. This kind of TL is depicted in
Fig. 11(b). With the aim of handling the partial TL prob-
lem in machinery fault diagnostics, Li et al. [95] devel-
oped a novel deep TL model based on class-weighted
adversarial networks. Liu et al. [190] developed a deep
partial adversarial domain adaptation network based on
an SAE algorithm, to weigh and recognize common
instance types from mixed source domain instances.
For achieving a broad diagnostic model in the par-
tial transfer applications, Deng et al. [109], introduced
a Double-layer Attention-based Generative Adversar-
ial Network (DA-GAN) to find target label space that
should be considered for the transfer task, and to deter-
mine which samples for each sub-domain discriminator
should be focused on. Finally, to overcome the chal-
lenges arising from the presence of unbalanced data
across every health state of the target domain and het-
erogeneity of label-space in the partial mode, Yang et al.
[78] presented an adversarial adaptation model called
Deep Partial Transfer Learning Network (DPTL-Net)
for machinery fault diagnosis.

FIGURE 10. Distribution of references based on space-setting
categorization.

Often in practice, as shown in Fig. 11(c), new fault
modes which not present in the source classes, may
appear in the testing phases. A key factor in dealing with
this situation might be finding source data with the same
class as the target data so that these data may be used for
domain adaptation and classifier training. Nevertheless,
because the target data usually is fully unlabeled and the
target label space is unknown, finding source data that
is associated with the target label space might be chal-
lenging. This challenging scenario, in which the source
domain’s label space is a subset of the target domain’s
label space, is named open-set transfer learning in the
technical literature. It is worth noting that, transfer learn-
ing approaches that rely on marginal distribution align-
ment cannot achieve class-level diagnostic knowledge
transfer within the open-set transfer learning context,
due to target outlier classes, thus often resulting inmodel
adaptation capacity degradation. Despite its relevance,
however, the open-set transfer learning problem has
received only a little attention in the technical literature.
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TABLE 8. Classification of references based on space-setting.

For example, Wang et al. [52] introduce a CNN-based
technique in conjunction with DA and prototype learn-
ing, to address the open-set case in fault diagnosis.
To investigate open-set challenges within the TIM sce-
nario, Zhu et al. [143] introduced a new adversarial
domain adaptation network with diverse supplementary
classifiers to diagnose the unknown and known fault
categories in the target domain. Zhang et al. [186] also
tackled this problem via a deep learning-based adver-
sarial training strategy for extracting domain-invariant
features from source and target domains. In detail,
an instance-level weighted technique is suggested to
identify the target outlier classes, representing the simi-
larities of the target instances with the source classes.
Both partial and open set transfer learning techniques
demand previous knowledge of label spaces across
domains, hence implying that these approaches are suit-
able for dealing with off-line cross-domain problems.
However, in a more general PdM scenario, obtain-
ing the relationship between the source and target
label spaces in advance is not feasible. Hence, a more
difficult scenario, known as universal transfer learn-
ing, needs to be tackled. It follows that no previous
knowledge about machine faults can be obtained in
advance for the target domain and this suggests that
testing machines may have both known and unknown
source-domain faults (as shown in Fig. 11(d)). Note
that this universal transfer learning scenario commonly
arises when implementing predictive machine mainte-
nance in practice. To address this challenging prob-
lem, Zhang et al. [187] exploited a deep adversarial
learning technique so to bridge domain gaps across
various operating conditions. More in detail, source
class-wise, and target instance-wise weighting methods
have been suggested for selective domain adaptation.
In addition, novel outlier identifiers and reconstruc-
tor modules have been included to discover unknown
fault modes while maintaining data information in
processing.

3) APPLICATION CATEGORIZATION
The selected papers have been classified and discussed in the
following based on different application-setting in the source
and target domains.

• Transfer Scenarios Categorization.
Depending on the application scenario, the selected
papers have been classified in Table 9. It’s important
to note that in some works, the authors validated their
proposed framework in more than one transfer scenario.
Results in Fig.12 confirm that, as expected, the majority
of the studies validated their proposed approach in the
simplest scenarios, i.e., TIM. The main weakness of
these studies is that only TL within a machine is inves-
tigated and only transferred the maintenance knowledge
from one operating condition to the next.Whereas, in the
real world, the transfer of maintenance knowledge from
the data collected from different related machines is the
most realistic scenario for the PdM [4].Moreover, within
this challenging scenario, additional reasons, including
fault machine specifications, characteristics, etc., can
impact the discrepancy of the domains’ data distribution
in addition to the working condition. Along this line,
Chen et al. [161] developed a transferable diagnostic
model based on the CNN algorithm to enhance the per-
formance of a target machine fault diagnosis model by
using information obtained through different machines
(historical data). However, in practice, when dealing
with transferrable maintenance scenarios, only normal
target domain samples are generally available, and this
could significantly influence the proposed approach’s
performance. To tackle this issue, Zheng et al. [47],
developed an innovative feature-based TL approach for
fault diagnosis of gearbox machines, named Transfer
Locality Preserving Projection-based Intelligent Fault
Identification (TLPPIFI).
However, it is sometimes difficult to obtain enough
labeled data, even from other real-world machines,
because real-world machinery is typically maintained
in good condition and failures are unusual. As a
result, obtaining real faulty data is more difficult and
time-consuming than collecting real normal data, and
whereas real normal data is typically sufficient, real
faulty data is sometimes inadequate. Furthermore, the
fault types are often unknown during the running of real-
world machines. It is impracticable to stop machines
on a regular basis and then evaluate their health con-
ditions based on the data obtained. Additionally, when
data quantities grow at a fast rate, manual data labeling
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FIGURE 11. Demonstration of the (a) Closed-Set, (b) Partial, (c) Open-Set, and (d) Universal transfer learning
problems.

TABLE 9. Classification of references based on application scenarios.

becomes an ineffective solution due to significant human
labor costs and a high dependency on knowledge [4].
In order to address this problem, introducing various
fault types into a lab-case machine and then acquiring
a huge amount of labeled faulty data might be a feasible
solution. The collected data from laboratory and real-
world machines, on the other hand, have a dramatically
different distribution, which is impacted by a number of
reasons, such as the measurement environment, work-
ing conditions, fault characteristics, damage mode, and

others. As a result, maintenance models that were exclu-
sively developed based on data collected from laboratory
machines may not perform well when applied directly
to real-world machinery. As shown in Fig. 12, only a
few studies have been devoted to a deeper understanding
of the above-mentioned TLRM scenario, and its related
issues, via TL. For instance, with the aim of identi-
fying the health conditions of wind turbine bearings,
Lv et al. [70] introduced a deep transfermodel based on a
multi-kernel dynamic distribution adaptation method to
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FIGURE 12. Distribution of references based on application scenarios
categorization.

transfer diagnosis knowledge from a laboratory bearing.
Furthermore, by using data gathered in labs from the
gearbox and motor bearings, Yang et al. [39] introduced
a feature-based transfer model based on a neural net-
work, to diagnose the health conditions of locomotive
bearings in real-world applications. Despite the remark-
able success, researchers ignore the changes in the class
weight of the target machine. Due to the controlled
experimental circumstances, most lab machine datasets
are balanced, but in real-world industrial applications,
a considerable amount of training data belongs to nor-
mal conditions. To address this problem, Cao et al. [79]
developed a pseudo-categorized MMD that takes into
account the various class weight bias in the real-case
machines dataset and exploits the category probability
vector as a penalty term in the MMD.
However, in other cases, access to historical fault data
generated by physical equipment during a machine’s
real-world application may be restricted, or the cost
of obtaining faulty data through the lab-case machine
may be too expensive. In all these cases, digital mod-
els, able to capture the underlying rules and behaviors
of real-case machines, can produce the required large
amounts of data under different operating and health
conditions. As a matter of fact, even though both the
virtual and realmodels are centered on the samemachine
health condition, there is always a distribution differ-
ence between them for a variety of factors. To begin
with, it is practically unfeasible to integrate all fea-
tures of a real-world machine into a digital model; as
a consequence, certain simplifications must be made,
and just the primary components are often included.
Besides, digital modeling cannot fully explain the pres-
ence of uncertainty, noise, and random environmental
influences. Finally, the distribution of vibration signals
in real-world machines is affected by various factors
(e.g., sensor type, calibration, installation and fixation
technique, drift, structure transmission properties, and
so on) that cannot be simulated in a digital model,
e.g., via a simplified mathematical representation such
as dynamical systems or differential equations. In a nut-
shell, addressing the distribution discrepancy challenge

between digital and real-world model data is critical for
designing a predictive maintenance model that performs
well in real-world machines. [4]. However, as shown
in Fig. 12, this TVRM scenario is currently the topic
of just a few research. For example, Xu et al. [153]
introduced a deep TL model based on the digital twin
technique to assist in fault diagnosis on the digital shop
floor. Here, the source domain data is produced by the
designed digital model, whereas the real shop floor data
is considered as the target domain dataset. Li et al. [93]
developed a deep TL approach to conduct cross-domain
knowledge transfer from simulated data in order to iden-
tify anomalies in physical processes. Experiments on
simulated Continuously Stirred Tank Reactors (CSTRs)
and plant-wide pulp mill processes have shown that
integrating computer simulation with TL for fault diag-
nosis could be effective. To enable simulation-to-real-
world domain adaption, Liu et al. [139], developed the
phenomenological model of bearing to generate the sim-
ulation data. Then, a domain adversarial neural network
is developed to transfer the simulated data by the digital
model to the target domain. The results of the experi-
ments reveal that the proposed approach is capable of
achieving high classification accuracy. With a specific
focus on the limited real data problem, Don et al. [173]
developed a novel intelligent diagnosis approach for the
race fault of bearings. Herein, a dynamic bearing model
is used to produce a huge amount of simulation data;
results suggest that the diagnosis knowledge obtained
from the virtual model can be effectively transferred to
real-case rotating machines.
For the sake of completeness, Table. 10 provides an
overview of application objects related to cross-domain
predictive maintenance (Note that, some authors vali-
dated their proposed framework in more than one case
study). Results related to the ongoing cross-domain PdM
research and summarized in Fig.13 clearly show that
bearing and gearbox are the two most commonly used
case studies. The main reason is the availability of pub-
lic open-source fault data of bearings and gearboxes
gathered from different machines in different working
operations, which makes cross-domain studies easier to
be executed.
Only a few cross-domain PdM preliminary studies cope
with different kinds of components or machines, such
as Tennessee–Eastman (TE) process [104], Turbofan
Engine [106], Chillers [80], Induction Motor [154], 3D
Printer [32], Power Transmission Line Inspection [160],
Fed-batch Penicillin Fermentation [182].

• Tasks Categorization. The surveyed publications have
also been classified on the base of the application tasks
in Table. 11. Herein, results in Fig. 14 confirm that
only very few studies are currently focusing on detec-
tion and prognosis tasks, since gathering time-series
data needed for prognosis purposes in predictive main-
tenance is much harder and more time-consuming
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TABLE 10. Summary of the references based on application object categorization.

FIGURE 13. Distribution of references based on application object
categorization.

with respect to gathering the data for classification
issue.

FIGURE 14. Distribution of references based on application tasks
categorization.

C. DATASETS TO APPLY TL WITHIN PdM (SQ3)
High-quality data is the foundation for the implementation
of TL approaches. Therefore, to design successful TL algo-
rithms for PdM, a good collection of datasets is necessary.
As already pointed out, collecting the dataset from real
machines, is a very time-consuming process, since natural
fault degradation is a slow process, that can take years.
To tackle this issue, in some experiments, researchers gather

data by employing components with artificially induced
faults or accelerated life cycle approaches. Nevertheless, data
collection is still difficult and costly and, hence, several
organizations have made their fault databases accessible to
engineers and researchers, so that they can be exploited by
the scientific community. These datasets can also be used as
a baseline platform for evaluating and comparing different
approaches since they are a common ground for scientists
due to their widespread use. This section provides a brief
summary of the open-source datasets in Table. 12, where the
sensor type of each dataset is shown in the second column
and the number of sensors for each dataset is disclosed in the
third column, while the remaining four columns refer to the
sampling frequency, monitoring object, fault mode, and task
of each dataset, respectively.

D. OPEN ISSUES, CHALLENGES AND OPPORTUNITIES OF
TL FOR PdM (SQ4)
The potential of transfer learning is becoming increasingly
apparent, and many researchers believe that this technique
can really improve the predictive maintenance industry [19].
However, considerable challenges must still be tackled and
solved before reaching its full potential. The following
are briefly mentioned important concerns, challenges, and
opportunities:

1) NEGATIVE TRANSFER
Transfer learning has been used to address the problem of
a lack of training data in a target domain by leveraging
knowledge from one or more source domains. Transferred
knowledge, on the other hand, may not always have a positive
impact on the target domain’s task since its effectiveness
is dependent on several assumptions [4]. For example, any
violation of the following assumptions may result in negative
transfer (NT). To begin with, the tasks in both domains should
be related or similar. Second, the distribution of data across
the domains should not be too diverse. Lastly, a proper TL
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TABLE 11. Summary of the references based on application tasks categorization.

TABLE 12. Comparison of open-source fault datasets.

technique should be used. However, despite the importance of
the issue, just a few studies have described it informally, with-
out proposing a comprehensive definition, extensive analysis,
or systematic treatment [190]. As a result, the questions of
what characterizes the formulation of NT, what attributes
contribute to NT, and how to prevent or minimize NT remain
unresolved.

2) UNSUPERVISED MULTIPLE SOURCE TRANSFER
As shown in Fig. 7, the current achievements of TL are largely
focused on inductive and transductive TL. However, collect-
ing a labeled dataset with sufficient samples of each possi-
ble fault type is quite challenging in practice. Furthermore,
in real-world applications, the unlabeled data might come
frommultiple sources, such as various heterogeneous, related
machines [117]. For these reasons, unsupervised multiple
TL, aimed at accomplishing maintenance tasks by leveraging
heterogeneous, unlabeled sources and target data, seems to
be the most promising and significant research direction in
the very near future for dealing with industrial applications in
practice. Hence, it is crucial to understand and identify which
factors influence the success of a TL model when exploiting
knowledge from multiple unlabeled heterogeneous datasets.

3) UNSEEN TARGET DOMAINS
Despite the fact that TL has demonstrated good performance
in PdM, most of the developed models are only applicable to
off-line PdM tasks due to the following assumption: It was
assumed that, during the training process, target domain data
must be readily available and adaptation models must be spe-
cially trained with target data before being executed on target
machines. As a result, this assumption can restrict the adap-
tation of existing approaches to the unseen target domains
[4]. To overcome this limitation, it is essential to focus on
the more practical scenario in which the target domain data is
inaccessible. This is compatible with real-time cross-domain
PdM and has more applicability in real-world machines. One
possible solution to the challenge is to generalize the mainte-
nance knowledge of the several source domains to an unseen
target domain based on the meta-learning technique [198].

4) DIGITAL TWINS
A Digital Twin (DT) consists of a virtual model that is con-
stantly updated to reflect the status of its physical counterpart.
This technique allows engineers to collect a huge amount of
useful component run-to-failure data [199].
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In case of the unavailability of historical fault data of
physical equipment, the combination of TL and DT is a
very promising approach worth investigating, as the target
domain can be dynamically augmented with virtual model
data [173]. Despite its potential, as shown in Fig. 12, a few
studies focused on the TVRM scenario, where there is no
consensus or consolidation on how DTmight be employed in
TL applications. Another challenge that needs to be tackled is
how engineers can adaptively update the operation conditions
of DT to the new operating conditions of the target machine.

5) CROSS-MODALITY TRANSFER LEARNING
Indeed, most of the TL approaches typically need some sort
of feature space connection across the source and target
domains, and knowledge transfer is only feasible whenever
the source and target data (such as image, audio, text, and so
on) are both in the same modality. However, within Industry
4.0, different data sources (such as operation and mainte-
nance logs, sensor measurements, design papers, etc.) can
be used, and these might also provide valuable information
for the implementation of PdM models [9]. It follows that
Cross-Modality Transfer Learning (CMTL) is a hot topic in
PdM aiming to cope with scenarios where the feature spaces
of both domains are entirely distinct, e.g., when transferring
knowledge from text to image, or from audio to text. So,
in the future, it will be critical to investigate howmaintenance
knowledge could be transferred across cross-modality spaces.

6) TRANSFER LEARNING FOR PROGNOSIS TASK
As illustrated in Fig. 14, when limiting to TL application, the
majority of the current research in the PdM field aims to fault
diagnosis. Only a few studies are focused on prognosis, and
they provide very preliminary results. As a consequence, the
use of TL technology for prediction, decision-making, and
proper scheduling of the maintenance work is still a crucial
open issue.

VII. CONCLUSION
The goal of this paper has been to explore the main concepts,
concerns, and potential of TL in the context of PdM. To that
aim, an overview of PdM has been introduced and discussed
together with the challenges arising from traditional ML
and DL algorithms in real-world PdM applications, which
motivated the need for TL. Through an SLR, we selected
168 recent journal publications that we further classified
and analyzed. The taxonomy of the TL in the PdM context
was first introduced with respect to three different problem
settings: label, space, and source. Furthermore, the selected
papers have been categorized and reviewed on the basis of the
introduced taxonomy. Moreover, the PdM real-world appli-
cations that already have profited from TL have been clearly
identified in this survey, as well as the open-source datasets
introduced to assist the researchers in validating and com-
paring their approaches for cross-domain PdM challenges.
Ultimately, open issues, challenges, and future research direc-
tions have been highlighted. We believe the SLR provided in

this paper represents a useful reference summarizing SOTA
approaches as well as hints for developing and deploying TL
for PdM in both academic research and industrial settings.
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