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ABSTRACT Unlike traditional user-item recommendation tasks (e.g., movie or consumer-product recom-
mendation), reciprocal recommender systems (RRSs) (e.g., online dating services and job-recruitment sites)
must consider the interests of both two users. Pair matching prediction can improve the efficiency with
which RRSs match potential partners. Graph Neural Networks (GNNs) are powerful models for learning
representations of attributed graphs and information circulation between nodes. GNNs greatly facilitate link
prediction in the area of user-item recommender systems but have not been extensively applied to RRS.
In this study, we present a novel method for pair matching prediction that learns the reciprocal information
circulation between users: not only side information about them but also structural information about their
behavior histories. In contrast to earlier RRSs, which focus on response prediction, ours predicts both send
and reply signals. Moreover, we introduce negative sample mining to explore the effect of different types
of multiple samples on recommendation accuracy in real applications. Testing our method on data provided
by an online dating service, we achieved an AUC of 73.15% (an absolute improvement of over 3.20% point
above baseline) and an AP of 26.01% (an absolute improvement of over 2.79%) on send prediction; an AUC
of 68.95% (an absolute improvement of over 1.74%) and an AP of 23.02% (an absolute improvement of
over 0.70%) on reply prediction; an AUC of 71.26% (over 4.35% point absolute improvement) and an AP
of 23.95% (over 0.30% point absolute improvement) on fusion reciprocal prediction.

INDEX TERMS Reciprocal recommender systems, online dating, graph neural networks, social media.

I. INTRODUCTION

Reciprocal Recommender Systems (RRSs) [1] recommends
people or people-like items (e.g., corporations in the case of
an employment site) to other people; a successful recommen-
dation only occurs when the needs of both persons in the
pair are met. Figure 1 illustrates the difference in data con-
struction between user-item recommendation and reciprocal
recommendation. In user-item recommendation, inputs are
features of users and items; labels indicate whether the users
clicked on the items. In reciprocal recommendation, inputs
are features of two users; labels indicate whether the users
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made match. The difference in labels causes the difference in
the recommendation policy. In typical recommendation tasks,
users are potentially interested in items, but not vice versa: a
recommendation can be made once it is established that the
item meets the user’s needs. The process is unidirectional and
the recommendation list is for the user only. However, in RRS
tasks, success is determined by both parties and detailed
profiles of both are required.

An RRS also needs to consider additional factors that are
not present in conventional user-item recommender systems.
Difficult situations may result from recommending a popular
user to an unpopular one, or one passive user to another [2].
Therefore, RRSs are inherently more complicated to design
and build than conventional recommenders. Although RRSs
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FIGURE 1. Comparison of traditional user-item recommendation and
reciprocal recommendation.

have been developed for job recruitment [3], [4] and social
networks [5], the most common application has been to online
dating services.

In this work, we design reciprocal recommendation meth-
ods for online dating. Figure 2 shows the formulation of
the pair matching prediction. A number of collaborative
filtering-based RRSs for online dating services [6], [7] have
been proposed in the literature; there are also categorical
content-based RRSs such as RECON [8]. In contrast, Zhang
et al. [9] treated pair matching prediction as click-through
rate (CTR) prediction. Feature interaction based methods
in [9] are content-based methods that employ Factorization
Machines (FMs) [10] and their variants combined with deep
neural networks (DNNs).

Embedding, which is also called representation learning,
is a proven and widely used machine learning technique [11].
Because of its massive success in other domains such as com-
puter vision (CV) and natural language processing (NLP),
it has been an active research topic in the information retrieval
community and recommender system industry as the next
generation technology [12] as well. Embedding (sometimes
called semantic embedding in that it can often learn seman-
tics.) represents the sparse vector corresponding to a cat-
egorical feature as a dense feature vector. In particular, in
recommender systems, categorical features are the main com-
ponents of the dataset in use. Therefore, a proven business-
specific embedding method is essential.

Collaborative filtering-based methods are widely and suc-
cessfully employed for embedding in recommender systems;
the structure information in a user’s behavior history network
is highly likely to enhance the rate of predictive success.
There have recently been great advances in the applica-
tion of graph neural networks (GNNs) to recommendation
tasks [13], [14], [15]; GNNs offer as a message passing
method which learns both the rich side information included
in the user profile and the structural information in the user’s
historical interactions.

Previous RRSs performed like response prediction simply
by predicting the final status label. In real applications, how-
ever, both directions of user preference should be considered,
which means the initial interaction should also be predicted.
Therefore, we decompose the final status labels (considered
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FIGURE 2. Formulation of pair matching prediction in reciprocal
recommenders. The inputs are users’ profile such as age, residence,
hobby, income, living habits (smoke or not/drink or not etc.) and so forth.
The outputs are the prediction results of two users’ matching.

as reciprocal signals) into several kinds of links/edges in the
graph formulation. The reciprocal recommendation task is
also transferred into both send prediction and reply predic-
tion simultaneously. We evaluate the performance of models
based on this formulation on a real dataset, using two types
of metrics.

Negative sample mining (also called training data min-
ing in Embedding-based Retrieval (EBR)) is gaining more
attention in information retrieval [16]. In this approach, the
failure of a user to click is not the only way in which a
sample can be classified as negative. They propose the idea
of easy negative/hard negative sample grading: easy negative
samples refer to those not impressed items/products; hard
negative ones refer to those impressed but not clicked ones.
The same perspective on negative sample diversity is used
in the Airbnb recommendation [17] and Mobious [18]. It is
vital to keep the offline training data distribution consistent
with the data distribution of the actual online application by
introducing the easy/hard negative sample grading to enhance
the negative sample diversity. Otherwise, the real recommen-
dation results will exhibit disorderliness because the trained
model has not seen huge amounts of random samples in real
business.

In this paper,
contributions:

we make the following technical

o We reformulate the pair matching prediction task in
RRSs into simultaneous send prediction and reply pre-
diction (rather than predicting reciprocal signals only).

« We propose employing GNNs to capture high-order
message passing flows between users in a reciprocal
recommendation: this enables learning both the side
information from user profiles and structural informa-
tion about historical interactions.

« We apply negative sample mining (or named training
data mining) to keep the offline training data distribution
consistent with that of the actual online application, thus
enhancing the diversity of samples and the reliability of
the model in real business.

o The experimental results on the real-world dataset
provided by a collaborating corporation demonstrate
that our model outperforms baseline models based on
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feature interaction. For send prediction, the absolute
improvements in terms of AUC and AP are over 3.20%
point absolute improvement and over 2.79% point abso-
lute improvement, respectively; for reply prediction,
over 1.74% point absolute improvement and over 0.70%
point absolute improvement; for fusion (i.e. reciprocal
prediction) by over 4.35% point absolute improvement
and by over 0.30% point absolute improvement.

The remainder of this paper is organized as follows.
Section II introduces some prior studies that are related to
our work. Then, in Section III, we start with dataset refor-
mulation to present our proposal. Section IV introduces the
experiments for evaluating the effectiveness of the proposed
framework and summarizes the experimental results. Finally,
Section V presents our conclusions.

Il. RELATED WORKS

In this section, we review existing works on feature interac-
tion based recommendation, graph based recommendation,
and negative sample mining.

A. FEATURE INTERACTION BASED METHODS

With its powerful expressive ability and flexible network
structure, deep learning has made major breakthroughs in
many fields such as NLP, image, and voice processing [19].
In the field of recommendation, however, the feature space
is too large and sparse to be modeled only by DNNs or
Multilayer Perceptrons (MLPs). Therefore, recent research
on DNN-based recommendation has revolved around pro-
jecting the high-dimensional categorical vector of DNNs
onto a low-dimensional dense input through the embedding
layer. Wide & Deep [20] is an example of a network that
has established the mainstream framework. The network
consists of two components, a wide (shallow) part and a
deep part (stack layer). The following works mainly make
improvements based on it. The wide part of Wide & Deep
is logistic regression and deep part is embedding plus MLP.
Wide & Deep is an end-to-end model but the wide part do not
share the embedding result. There have numerous attempts to
improve Wide & Deep. DeepFM [21] is an end-to-end model
that performs automatic feature interaction. DeepFM applies
FM as a wide part to capture low-order feature information;
the deep part shares the embedding output with the FM part.
Neural factorization machine (NFM) [22] seeks to improve
the embedding output or the input of the DNN part; there
is a bi-interaction layer between the embedding layer and
the DNN as a pooling function. For comparison, DeepFM
does not have bi-interaction layer so it concatenates all the
output of embedding layer so the dimension of DNN input
is f * k (f is the number of field and k is the dimension of
embedding size). The advantage of NFM is that the network
parameters are directly compressed from n to k (which is
less than the f * k of DeepFM), which reduces the network
complexity and accelerates the training of the network to
obtain the model. However, at the same time, this method
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may also cause larger information loss. The FM-based deep
model mentioned above allows different feature vectors to
directly make feature intersections. The assumption is that
the contribution of each feature interaction to the predic-
tion result is the same, which is actually unreasonable. The
idea is somehow the same as FFM. Attentional Factorization
Machines (AFM) [23] apply the attention mechanism that
has been successful in the fields of NLP, image, and voice in
recent years to solve this problem. Several other deep learning
models for CTR recommendation are proposed based on
FMs. FNN [24] is a proposal which applies a pre-trained
FM before the embedding layer to gain good performance so
it is not an end-to-end model and cannot capture low-order
features very well. PNN [25] provides an idea of product layer
to identify feature interactions with inner product or outer
product.

Besides the mentioned methods, many other models have
good performance in CTR recommendation tasks, such as
tensor-based model [26], support vector machine based
model [27], and Bayesian based model [28]. There are several
tasks other than CTR prediction and pair matching prediction.
Sedhain et al. [29] and Wang et al. [30] propose to enhance
collaborative filtering via deep learning. Chen et al. [31]
develop a deep network in multimedia area which use both
image features and user features in display advertising. Cov-
ington et al. [32] applied a deep network for YouTube video
recommendation.

B. GRAPH BASED RECOMMENDATION METHODS
Recently, there is increasing interest in graph convolutional
networks (GCNs) [33] because of the generality and effec-
tiveness on graph data. Due to the marvelous performance
of GCNs in graph data analysis, GCNs are adopted into
many fields with graph-structured data to learn the correlation
between target objects, such as hyperspectral image classi-
fication in CV [34], [35], [36], [37], [38], natural language
sentences matching [39] and question answer matching [40]
in NLP.

Recommendation is a perfect field for GCNs in partic-
ular. Early efforts such as ItemRank [41], [42] exploit the
user-item interaction graph to explore high-order proximity.
HOP-Rec [43] combines graph-based and embedding-based
methods, using random walk method to improve the recom-
mendation results. NGCF [44] follows the same idea with
HOP-Rec of taking advantage of graph embedding for user-
item recommendation. GC-MC [45] employs GCN [33] on
the user-item bipartite graph first but only one convolutional
kernel is exploited; therefore high-order message passing
flows are not embedded into representation learning. Pin-
sage [46] is one of the first industrial solution to employ
graph convolutional operators on item-item graphs for Pin-
terest recommendation. It combines efficient random walks
with graph convolution but the collaborative filtering (CF)
signals are captured only for item relations, not user histor-
ical behaviors. SpectralCF [47] proposes a spectral graph
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FIGURE 3. The dataset illustration (left) and its reformulation in graph conceptual view (right). As we introduce above, the dataset consist of users
interactions based on source (src) side and destination (dst) side. The label is binary which we called reciprocal signal to represent the interaction
status of sending like or not to each other. When both sides send “like”, the reciprocal signal would be set to 1; and when only src side initials the
interaction (i.e send “like” to dst side) but gets no reply, it would be 0. Therefore, according to such formulation in the service, we can split the
binary reciprocal signal into four user behaviors shown in the right and treat the problem as a bipartite graph link prediction.

convolution operator to excavate all possible link between
nodes in spectral domain. However, the eigen-decomposition
causes high computational complexity. Therefore, the method
is quite time-consuming and not able to support applications
on real-world large scale datasets.

C. NEGATIVE SAMPLE MINING

Negative sampling is a well-known technique in the
word2vec method in the NLP community [48], [49].
Word2vec can also be seen as a recall problem, where the con-
text word is recalled from the center word throughout the lex-
icon. Embedding-based Retrieval (EBR) [16] formulates the
search retrieval task as a recall optimization problem. They
claim that you cannot (only) take non-clicked impressions
(those impressed but not clicked results) as negative samples.
They propose the idea of easy negative/hard negative sample
grading and they also propose to enhance the idea of hard
negative. Airbnb recommendation [17] and Mobious [18]
share the same perspective on negative sample diversity with
EBR. The difference is that Airbnb recommendation selects
hard negative samples according to their business logic. They
employ rooms ‘in the same city with the positive samples but
not accepted’ as negative samples to enhance the similarity
between positive and negative samples in terms of geography
and apply rooms ‘rejected by the owner’ as negative samples
to enhance the similarity of positive and negative samples
in terms of users’ interest matching, which increases the
learning difficulty of the model. On the other hand, when
it comes to the situation that the business logic is not so
obviously signaled, it is up to the model to excavate proper
negative samples. Both EBR and Mobious use the previous
version of the recall model to filter out the less similar pairs
as additional negative samples to train the next version of the
model.
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lll. METHODOLOGY
In this section, we present our graph fusion reciprocal recom-
mender (GFRR) prediction models.

A. DATASET AND GRAPH CONSTRUCTION

The dataset we used for our experimental evaluation con-
tained only interactions between senders and receivers. This
is consistent with previous works on RRS [6], [7], [8], [9].

However, previous studies generally only focus on
response prediction, predicting only the final status label.
In real applications, both user preference directions must
be considered, which means the send behavior should be
predicted as well. If the send like behavior is also predicted
as positive, the whole reciprocal signal can be treated as
positive. Therefore, we decompose the final status labels
which are considered as reciprocal signals into several kinds
of link/edge in graph formulation. The reciprocal recommen-
dation task is also transferred into both send prediction and
reply prediction simultaneously.

The dataset illustration is visualised in Figure 3. As we
propose a graph neural network based method, we also
reformulate the data in a bipartite graph conceptual view.
As mentioned previously, we distinguish the send and reply
interaction as different types of edges in the bipartite graph;
both send and reply edges can be further classified as pos-
itive or negative. We formulate the link prediction task on
the bipartite graph as the reciprocal recommendation. In our
online dating case, the bipartite graph consist of two domains
with male nodes and female nodes because the service our
collaborating corporation provides does not consider the sit-
uation of homosexual and bisexual persons. In other cases,
the graph structure is optional without doubt. Even in our
data construction, the interactions between the same gender
nodes can be used to train the model (though there is no such
interaction).
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FIGURE 4. The procedure of our reciprocal recommender by conducting send/reply prediction simultaneously and finally fusion
operation. The send graph and reply graph are sampled from the original bipartite graph according to the edge type. Both them
contain all user nodes same with original one. The user node embeddings gain from our graph model represent different semantic
information (send or reply behavior). We apply cosine similarity to get the final prediction results. Here, we conduct the fusion
operation by setting the product of the send and reply prediction results with additional exponential parameters as the reciprocal

result. More details are provided in Section IV.

TABLE 1. Graph construction notation.

Notation ~ Description

G A bipartite pair matching network
\Y% The set of user nodes

EsT¢ The set of send links

Edst The set of reply links

Emon The set of unconnected links

Table 1 shows the notation used in the graph construction.
Consider a social network G = (V, E'°, Ed”), where V is the
set of users with their own attributes such as age, height, and
income, and E¥¢, E%" are the sets of edges of send edges and
reply edges, respectively. Consider a pair of user nodes such
that both parties show interest in each other, i.e., for which the
elements of both £7¢ and E%' joining the nodes are positive:
such a pair is consider to be positive linked. Unconnected
node pairs are defined as null relationships, denoted as E™°".
Note that, although we use dotted line to represent negative
reply links, such links are treated as null relationships, the
same with unconnected node pairs, in model training. The
pair matching prediction problem to be addressed is predict-
ing whether the node pairs in E"°" will be connected by a
positive edge.

B. SEND/REPLY GRAPH AND FUSION OPERATION

To distinguish the two parts of reciprocal recommendation
(send and reply), two graphs are constructed: one containing
only send edges and the other only reply edges. We divide
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the original reciprocal signals that represent the final status
of pair matching into two graphs, each containing all user
nodes in the dataset. Because of the data sparsity in the real
application, both graphs contain numerous null relationship
node pairs; this problem is more critical in the reply graph.

Figure 4 shows the procedure of our reciprocal recom-
mender. Send and reply results are predicted simultaneously;
then, the fusion operation is used to predict the reciprocal
result as well.

C. GRAPH CONVOLUTION

In this work, we employ the graph convolution to learn both
side information of user nodes and the message passing flow
of user historical behaviors. Figure 5 shows the flowchart of
the graph convolution in our reciprocal recommender. Take
the send graph as example, we first treat the bipartite graph
in a normal conceptual view of graph. GCNs are demon-
strated as successful methods to learn the first-order and
high-order propagation between nodes in the graph. Consid-
ering the computational inefficiency of spectral GCN models
[33], [47], we employ the graph convolutional kennel pro-
posed in [14], which can be expressed as:

=D
NG

W —o (w3
ueN,

+ BehkD ) (1)

where hgk) denotes the node embedding of v after the
k-layer graph convolution, o denotes non-linearity activation
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FIGURE 5. The flowchart of graph convolution in our proposed method.

function, Wy denotes the parameter matrix of neural network,
. k=D .
the middle partof >_, N, TN denotes the aggregation func-

tion to learn the representation of target node v’s neighbor
nodes, and the part of By hsk_l) can be considered as a tradi-
tional multilayer perceptron.

D. OPTIMIZATION

Training a link prediction model involves comparing the
scores between nodes connected by an edge against the scores
between an arbitrary pair of nodes, which is known as nega-
tive sampling in embedding methods. For example, given an
edge connecting u and v, we encourage the score between the
nodes u and v to be higher than the score between node u
and a sampled node v from an arbitrary noise distribution
P, (v). Such negative sampling is used in our work. When
training the graph convolutional based models, we employ
the noise-contrastive estimation loss which can be expressed
as:

L =—log (0 (Zgzv)) — O, .0 (log (U (—Zzzw))) ’

@

where the first term in Equation (2) is to maximize the prob-
ability of target node u and sampled positive node v, while
the second term tries to iterate over negative sampled nodes
v and minimize their probability with target node u from an
arbitrary noise distribution. The Q here is a hyper-parameter
to decide the sampling size, i.e., how many negative sampled
nodes in one subgraph sampling. The discussion of influence
of this parameter is in Section IV-D.

IV. EXPERIMENTS

A. EVALUATION PROTOCOLS

The dataset we use is introduced in Section III-A. We selected
the interaction behavior data including like sending and the
reply towards them occurred in 2020. As our dataset have
the problem of label imbalance, the mean matching rate
(label = 1) is lower than 10%. We employed two com-
monly used evaluation metrics in prediction task: area under
ROC (AUC) and average precision (AP). The higher the
scores are, the better they are.
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with embedded node representation

B. HYPER-PARAMETER SETTINGS

Similar with many graph-based recommendation models
such as NGCF [44] and LightGCN [50], the the embedding
size is fixed to 64 for our GFRR model. The number of
hidden layer is test in the range of 1 to 3 and the satisfactory
performance can be achieved when the number equals to 1.
We optimize the model with Adam [51] and use the default
learning rate of 0.001. Typically, 300 epochs are sufficient for
the models to converge from our experimental results.

C. COMPARISON TO PRIOR METHODS
We compared our proposed GFRR with the following previ-
ous works:

e FM [10]: The method is a traditional feature interaction
based method that apply latent vector for every feature
to compute the interaction weights easily.

o NFM [22]: The method is one of the FM based neural
network method that can learn both low and high-order
feature interactions via a wide part (logistic regression)
and a deep part (FM embedding based MLP).

o DeepFM [21]: The method is another FM based neural
network method. It can also learn low and high-order
feature interactions. The difference is that the wide part
of DeepFM results and stack layer in the deep part.

o« NIFM [9]: Our previous work. The variant of NFM
with a novel design of stack method before feeding
embedding into MLP.

o LFRR [7]: The method is a latent factor based method
for reciprocal recommender systems.

Table 2 shows the best performance results in terms of
AUC and AP. We further plot the training curves of testing
AUC and AP in Figure 6 and Figure 7 respectively to reveal
the advantages of GFRR and to be clear of the training
process. It can be observed that our proposed method, GFRR,
outperforms the other models by over 3.20% point absolute
improvement in term of AUC and over 2.79% point absolute
improvement in term of AP on send prediction; by over
1.74% point absolute improvement in term of AUC and over
0.70% point absolute improvement in term of AP on reply
prediction; by over 4.35% point absolute improvement in
term of AUC and by over 0.30% point absolute improvement
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TABLE 2. Comparison of proposed GFRR with various methods based on feature interaction and latent factor.

Send Prediction Reply Prediction | Reciprocal Prediction
AUC 7T AP 1 AUC 1 AP 1 AUC 1 AP 1
FM [10] 0.6722  0.2094 | 0.6548 0.1904 | 0.6608 0.1965
NFM [22] 0.6834  0.2305 | 0.6701  0.2181 | 0.6691 0.2221
DeepFM [21] | 0.6602  0.2194 | 0.6553  0.2165 | 0.6601 0.2159
NIFM [9] 0.6995  0.2322 | 0.6721  0.2232 | 0.6698 0.2365
LFRR [7] 0.6058  0.1356 | 0.5437 0.0989 | 0.5569 0.1068
GFRR 0.7315  0.2601 | 0.6895 0.2302 | 0.7126 0.2425

TABLE 3. Comparison of models’ performance on different negative sample mining guidelines. Only easy negative means randomly sample negative
training data from all unlinked node pairs (no interaction user pairs). Easy + Hard means training data contain hard negative. As in our formulation of
reciprocal recommendation, hard negative samples do not exist in reply prediction. Therefore there is no comparison experiment results on it.

Send Prediction Reply Prediction Reciprocal Prediction
AUC 1 AP T AUCT APT AUC 1 AP T
Only Easy Easy + Hard Only Easy Easy + Hard Only Easy Only Easy Easy + Hard Only easy Easy + Hard
FM [10] 0.6689 0.6722 0.2021 0.2094 0.6548 0.1904 | 0.6591 0.6608 0.1928 0.1965
NFM [22] 0.6791 0.6834 0.2269 0.2305 0.6701 0.2181 0.6614 0.6691 0.2213 0.2221
DeepFM [21] | 0.6671 0.6498 0.2194 0.2182 0.6553 0.2165 | 0.6601 0.6593 0.2199 0.2175
NIFM [9] 0.6889 0.6995 0.2301 0.2322 0.6721 0.2232 | 0.6689 0.6698 0.2291 0.2365
GFRR 0.7103 0.7315 0.2568 0.2601 0.6895 0.2302 | 0.7094 0.7126 0.2329 0.2425
Send Prediction Send Prediction
0.26 4
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FIGURE 6. Training curves of GFRR and comparison models on send
prediction, which are evaluated by testing AUC per 10 epochs.

in term of AP on fusion, i.e., reciprocal prediction. Therefore,
the learning of structural information of user historical inter-
actions contains rich implicit feedback on their preference
towards others. The graph convolution based method is not
only able to learn users’ profile feature but also the implicit
feedback from their historical interactions. LFRR [7] does not
perform well in this task. A possible reason is that in their
work they made several limitations on the data they selected
for their experiments: they only selected active users to avoid
a cold start problem. However, the data we use are randomly
sampled from corporation’s database and consistent with the
data distribution of the actual business. Therefore, LFRR is
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Epoch

FIGURE 7. Training curves of GFRR and comparison models on send
prediction, which are evaluated by testing AP per 10 epochs.

not involved in the next discussion about the negative sample
mining.

The computation complexity of mentioned FM-based
models depends on the number of dimensions of original
input per node (user). They need to train second-order interac-
tion vectors; therefore larger the user’s feature dimensions is,
higher computation cost is. In our used dataset, the number of
user’s personal feature dimensions (after one-hot encoding)
is over 500. Empirically, under the same experimental setting
of negative sample mining (as explained in Section IV-D),
GFRR and NFM (the most efficient FM-based DNN method)
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cost around 15s and 25s per epoch on the used data for
training.

D. NEGATIVE SAMPLE MINING

Negative sample mining shows huge potential on information
and search retrieval [16], [17], [18]. We are interested in
how such negative sample mining works in our reciprocal
recommendation task. The easy/hard negative grading in a
typical item recommendation task is that: easy negative sam-
ples refer to those unseen items/products for a single user and
hard negative samples refer to those items/products which
had been recommended by service (seen by the user) but the
user did not click/purchase. They are all treated as negative
samples but have different semantic information. Therefore,
itis meaningful to let the model learn how to distinguish them
from each other.

In our reciprocal recommendation formulation, easy nega-
tive samples do not show significant difference and mean two
users have not interacted yet. Hard negative samples mean
one user (source side) have seen the other (destination side)
user’s profile but do not send “like.” Definitely, we do have
our reciprocal signals, i.e. those user pairs that src side user
send “‘like’” but dst user do not reply. They are strong negative
signals but do not contain semantic information for send
prediction. On the other hand, hard negative samples do not
exist in reply prediction. Therefore, there is no comparison
experiment results on it here.

Table 3 shows that the introducing hard negative mining
enhances the send prediction results. The final reciprocal
prediction performance is also improved with it.

E. NEGATIVE SAMPLING SIZE

We believe that negative sample diversity is important to
our task. We are also interested in how much the negative
sampling size has an impact to the prediction results. It is
not realistic that we train a graph model directly on the
industrial level data. As we introduced in Section III-D,
we construct a subgraph for one node pair, i.e. one target node
with one positive node and several negative nodes as a sub-
graph. It should be mentioned that FM-based methods do not
train as a graph but pairwise feature interaction based ones.
Therefore, the negative sampling comparison experiments
here are conducted by adjusting the proportion of positive and
negative in their whole training samples.

Table 4 and Figure 8 shows the results of changing negative
sample size Q. We initialize this parameter as 10 because the
origin proportion of the positive pair samples and the negative
ones is about 1:10. It is shown that O = 4 is slightly better
than the other conditions. From the results, the sample size is
set to 4 in our other tuning.

Twe actually conducted such experiments. Although there is no meaning
of hard negative samples in reply task, it can be established in practice
because send graph and reply graph share the same graph structure, i.e., same
user nodes but different edges. However there is no obvious enhancement.
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FIGURE 8. Results of GFRR and comparison models at different negative
sample size Q. Most of the models share the same trend that satisfactory
performance can be achieved when Q equals to 4.

TABLE 4. Influence of negative sampling size Q. The experiment is for
send prediction and operated with only easy negative samples.

Q=3 Q=4 Q=5 Q=10

FM [10] 0.6656  0.6689  0.6642 0.6591
NFM [22] 0.6725 0.6791 0.6754 0.6694
DeepFM [21] | 0.6615  0.6633  0.6628 0.6601
NIFM [9] 0.6825  0.6889  0.6791 0.6698
GFRR 0.7059  0.7103  0.7035 0.7001

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a graph convolutional network
based method to achieve reciprocal prediction. We reformu-
lated the prediction the task as predicting send and reply
signals simultaneously rather than reciprocal signals only.
We enhanced the sample diversity and the realism and reli-
ability of the model through negative sample mining to keep
the offline training data and actual online distributions con-
sistent. Our proposed method outperformed earlier models
because it captured both side information from user profiles
and structural information from the user historical network.
The negative sample mining also showed its effectiveness for
reciprocal recommendation.

One possible direction of future development is exploit-
ing knowledge graphs to enrich the user embedding results
with more information: rather than just the user’s profile
and historical behavior, additional data about interest fea-
tures and social networks can be included. Work on echo
chamber effects [52], [53], [54] should also be conducted
to improve the users’ experience by avoiding tedious similar
recommendation.
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