
Received 12 December 2022, accepted 23 December 2022, date of publication 25 January 2023, date of current version 1 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3239817

Cooperative Threat Engagement
Using Drone Swarms
JORGE A. RICARDO JR. 1, LUIZ GIACOMOSSI JR. 2, JOÃO F. S. TRENTIN 1,3,
JOSÉ F. B. BRANCALION 3, MARCOS R. O. A. MAXIMO 2, AND DAVI A. SANTOS 1
1Mechanical Engineering Division, Mechatronics Department, Aeronautics Institute of Technology (ITA), São José dos Campos, São Paulo 12228-900, Brazil
2Autonomous Computational Systems Laboratory (LAB-SCA), Computer Science Division, Aeronautics Institute of Technology (ITA), São José dos Campos,
São Paulo 12228-900, Brazil
3EMBRAER S. A., São José dos Campos, São Paulo 12227-901, Brazil

Corresponding author: José F. B. Brancalion (jose.brancalion@embraer.com.br)

This work was supported in part by EMBRAER S. A., Coordination of Superior Level Staff Improvement (CAPES) financial code 001; in
part by the Funding Authority for Studies and Projects (FINEP) under Grant 01.22.0069.00; and in part by the São Paulo Research
Foundation (FAPESP) under Grant 2019/05334-0 and Grant 2020/12314-3. The work of Davi A. Santos was supported in part by FAPESP
under Grant 2019/05334-0 and Grant 2020/12314-3, and in part by the National Council for Scientific and Technological Development
(CNPq) under Grant 304300/2021-7.

ABSTRACT The ability of multiple manned and unmanned aircraft systems to cooperatively engage and
disable an aerial threat plays a decisive role in modern warfare scenarios. In this paper, we apply key methods
to enable the so-called cooperative threat engagement capability among multiple networked agents, e.g.,
a swarm of drones, with combat and communication capabilities. In particular, this research combines
AI-based decision-making and control techniques for a swarm of loyal wingman drones to coordinate
efficient defense actions in a cooperative and autonomous manner. We apply these concepts in a defense
scenario that is modeled to analyze the loyal wingman concept, which we consider an interesting testbed for
cooperative decision-making and low-level control techniques. The investigated methods were implemented
in a realistic 3D UAV simulator for demonstration and evaluation.

INDEX TERMS Cooperative engagement capability, loyal wingman UAV, decision making,
manned-unmanned teaming, sliding mode control.

I. INTRODUCTION
The cooperative engagement capability (CEC) is an emerging
systems-of-systems capability in which multiple systems
coordinate their actions through a network to improve their
abilities to effectively perform a given task [1]. The term
was coined in the 90s in the Johns Hopkins University
Applied Physics Laboratory in an effort to enhance the
United States Navy’s defense capability. The project aimed to
improve the situational awareness of a fleet by sharing tactical
information among data link participants and speeding up
the decision process regarding the interception, engaging,
and neutralization of a flying threat, e.g., a cruising missile
or aircraft. With the recent advances in aerial robotics, the
CEC concept can be extended to unmanned flying platforms
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to promote group behavior towards the achievement of
a common purpose via a shared communication network.
In this context, drone swarms are of particular interest since
they enable the use of several low-cost and even disposable
platforms in modern defense or surveillance applications.

Recently, the CEC concept has been studied in mod-
ern defensive scenarios using autonomous robot swarms
[2], [3], [4], [5], [6]. In particular, [2] studied the two-
dimensional decision-making problem using adversarial
UAV swarms. The mission of each swarm is to defend its
base and destroy the adversarial one. To this end, each
UAV is equipped with a weapon. Reference [3] studied
the intelligent decision-making for an UAV swarm whose
mission is to identify and attack specific targets. Simi-
larly, [5] studied a reconnaissance and attack scenario using
heterogeneous UAV swarms. These swarms are divided by
subsets containing reconnaissance UAVs, attack UAVs, and
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reconnaissance-attack UAVs. On the other hand, [4]
addresses the defense problem of a critical area using a swarm
of UAVs against a larger one. Reference [6] focused on
artificial intelligence models for offensive air-to-air combat
scenarios using UAVs equipped with machine guns.

In particular, manned-unmanned teaming (MUM-T) is an
essential component of the future unmanned aircraft systems’
operational environment. It extends the CEC concept by
promoting the seamless integration of unmanned platforms,
endowed with some level of autonomy, with manned ones.
The unmanned platforms aim to perform given tasks under
the command of the manned ones. This integration combines
the inherent strengths of both platforms to achieve synergy
not seen in single-agent systems, thus enabling a higher
degree of effectiveness for the team of networked agents.
Specifically, the MUM-T context includes the concept of the
loyal wingman (LW), which is an unmanned aerial vehicle
(UAV) under the tactical command of a high-level manned or
remotely controlled leader [7]. Recently, we have witnessed
a rapid emergence of multirotor aerial vehicles (MAVs) [8]
in either research and industrial applications where aircraft
size, weight, and cost play a critical role in their operation,
effectiveness, or feasibility [9]. Therefore, we argue that
low-cost experimental MAVs are a suitable alternative to
investigate the loyal wingman concept in MUM-T scenarios.

This paper investigates the use of LW MAVs with
combat capabilities to cooperatively engage and disable
aerial explosive threats. Specially, we highlight that this
work is an extended version of our previous work [10],
which evaluated a 3D defense scenario where a MUM-T
composed of loyal wingmen protects a leader UAV and a
critical infrastructure from aerial threats. Here, we present
a more detailed investigation of the same scenario. In this
paper, the vehicles are modeled as fully actuated MAVs,
which can perform independent attitude and position tracking
[11], [12]. To tackle the design problems that arise from
such context, we proposed a problem breakdown that focuses
on both the high-level (HL) decision-making tasks and the
low-level (LL) control aspects to enable the CEC among the
leader and the loyal wingmen in a defense scenario. The LL
control addresses thewell-recognized robustness requirement
for MAV flight control systems against disturbances and
uncertainties by designing a joint geometric attitude-position
control law using a multi-input first-order sliding mode
strategy. Moreover, to provide the MAVs with collision
avoidance capability, the reciprocal acceleration velocity
obstacles (AVO) [13] method is used. On the other hand,
the autonomous behavior of the MAVs is designed using
state-of-art artificial intelligence (AI) techniques, by applying
finite-state machines (FSMs) and behavior trees (BTs)
decision-making algorithms [14] to select and execute
modular behaviors for the LW and the aerial threats. We also
focus on how the agents must act cohesively as a team, so that
cooperation between the MUM-T can emerge, for this we use
the classic Kuhn-Munkres task allocation algorithm [15] to
distribute tasks between the MUM-T.

To the best of our knowledge, the main contributions of this
paper are 1) an extension of the defense scenario proposed
in [10] considering a three-dimensional environment with
realistic flight dynamics, 2) the application of the reciprocal
AVO collision-avoidance method and a multi-input sliding
mode flight control law, and 3) the modeling of AI-based
decision-making with FSMs and BTs for the proposed
scenario.

The remaining of this paper is organized as follows.
Subsection I-A presents the notation used along the paper.
Section II presents the scenario of interest. Section III
defines the LL and HL problem breakdown. Section IV
presents the methodology. Section V shows the interface
between the HL commands and the LL. Section VI shows
the computational architecture used to simulate the scenario.
Section VII evaluates the proposed solution using computer
simulations. Finally, Section VIII concludes the paper and
shares ideas for future work.

A. NOTATION
Matrices and algebraic vectors are denoted, respectively,
by uppercase and lowercase boldface letters, while geometric
(Euclidian) vectors are denoted as a⃗. Sets are denoted by
uppercase calligraphic letters as D. A Cartesian coordinate
system (CCS) is represented as Sb ≜ {B; x⃗b, y⃗b, z⃗b}, with B
denoting its origin, and x⃗b, y⃗b, and z⃗b representing the unit
geometric vectors along its orthogonal axes. The algebraic
vectors corresponding to the projection of an arbitrary
physical vector a⃗ onto Sb and Sg are denoted by ab ∈ R3 and
ag ∈ R3, respectively. The relation between ag and ab is
ab = Db/gag, where Db/g ∈ SO(3) is the attitude matrix of
Sb relative to Sg and SO(3) ≜ {D ∈ R3×3, |DTD = I3}
represents the special orthogonal group. The inverse of Db/g

is denoted by Dg/b. The identity matrix of order n ∈ Z>0
is denoted by In. Consider two arbitrary algebraic vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn). The vector inequality
x < y means that xi < yi, ∀i ∈ {1, . . . , n}. The sign of x is
defined as sign(x) ≜ (sign(x1), . . . , sign(xn)), where

sign(xi) ≜


1 xi > 0
0 xi = 0,
−1 xi < 0, ∀i = 1, . . . , n.

Moreover, the Euclidean norm and component-wise absolute
value of x are denoted, respectively, by ∥x∥ and |x| ≜
(|x1|, . . . , |xn|) ∈ Rn. Similarly, the component-wise absolute
value of a generic matrix A ∈ Rm×n is abs (A) ≜

(
|Ai,j|

)
∈

Rm×n, where Ai,j is the element of the ith row and jth column
of A. The standard basis vectors of R3 are denoted by e1 ≜
(1, 0, 0), e2 ≜ (0, 1, 0), and e3 ≜ (0, 0, 1). Let a⃗ i/g represent
an arbitrary physical quantity of Si with respect to Sg; e.g.,
along the paper, v⃗ i/g will denote the velocity of Si relative to
Sg. An open sphere of radius ρ ∈ R>0 centered at p ∈ R3,
the Minkowski sum of two sets, and the set subtraction are
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FIGURE 1. Scenario of interest where LW MAVs, highlighted in blue,
supported by ground assets, escort a leader MAV and engage kamikaze
threats in order to defend a protected area.

denoted, respectively, by

B (p, ρ) =

{
x ∈ R3

| ∥x − p ∥ < ρ
}

,

X ⊕ Y = {x + y | x ∈ X , y ∈ Y} ,

X \ Y = {x | x ∈ X , x /∈ Y} .

Finally, consider the Sg representations ag ≜ (a1, a2, a3) and
bg of a⃗ and b⃗, respectively. The vector product c⃗ = a⃗ × b⃗
is represented in Sg by cg =

[
ag×

]
bg, where

[
ag×

]
is the

following skew-symmetric matrix:

[
ag×

]
≜

 0 −a3 a2
a3 0 −a1

−a2 a1 0

 .

II. SCENARIO OF INTEREST
To address the concept of CEC among theMUM-T, we define
a defense scenario where there are two teams composed of
fully actuated MAVs: The MUM-T composed of LW MAVs
that fly in formation alongside, i.e., escorting the manned
leader, and must defend him as well as a protected area
from attacks of an adversarial team, composed by a swarm
of kamikaze threats, as depicted in Fig. 1. Therefore, the
MUM-T mission is considered to fail if the leader is hit by a
single kamikaze, or the protected area is hit by a fixed number
of kamikazes. The protected area is equipped with ground
assets that provide aerial surveillance capability to theMUM-
T members.

The LW is autonomous and capable of making intelligent
decisions based on the situational awareness information
provided by the ground assets considering that they do not
have onboard sensors to obtain information about the threats,
such as cameras or LIDAR. To be able to neutralize the
threats, the LW is equipped with two hypothetical types
of weapons, a mid-range freezing gun and a short-range
vaporizer gun, both with a limited number of cartridges and a
fixed cool-down time interval, i.e., they become unavailable
for a fixed-time period after shooting. The vaporizer gun can
neutralize the threat, while the freezing gun slows down the
threat by half of its maximum speed. The weapons’ model
is simplified, being the hitting success calculated by a given
probability. Note that, the freezing gun is intended tomake the
decision spacemore complex, in practice, this type of weapon

is infeasible given current technology, and the vaporizer gun
is also an idealized weapon that uses energy to destroy only
the electronic components of the kamikaze.

The leader is remotely controlled by a human and it is
in charge of the formation coordination, i.e., it is capable
of passing relative coordinate commands to the LW. As a
matter of simplification, we assume that the leader can only
command the loyal wingmen to fly within one predefined
formation pattern. In this paper, we consider this unique
pattern as an uniform-circular formation along the local
horizontal plane with a desired radius. We also assume that
the leader is always capable to command the loyal wingmen
whenever required, i.e, it can override the decision-making
commands of a specific LW in the MUM-T, either by
enforcing the loyal wingmen to return to the formation,
or selecting an LW to engage or shoot a specific threat.

On the other hand, the kamikaze MAVs are assumed to
explode as soon as they collide with either the leader, an LW,
or the protected area. When the explosion is triggered, its
effect destroys the target vehicle or damages the protected
area. Additionally, once a kamikaze selects a target, it will
chase this target until the kamikaze explodes itself or is
neutralized by a vaporizer gun. The number of kamikazes
is fixed in the simulated scenario, i.e., they immediately
respawn after being neutralized, thus keeping a steady stream
of attacks. The kamikazes have a simplified AI but are
assumed to be faster and more numerous than the MUM-T,
thus forcing the MUM-T to cooperatively work in order to
effectively neutralize the kamikazes.

The ground assets have a limited detection range and share
situational awareness with the MUM-T, i.e., a vector with the
state (position, attitude, and linear velocity) of all entities.
To simplify the scope of this work, we assume the ground
assets to be perfect radars, and that the communication
among the MUM-T is perfect, with no delays, packet loss,
or bandwidth limitation.

III. PROBLEM BREAKDOWN
In this section, we introduce a problem breakdown according
to the scenario of interest. A common approach in robotic
cognition involves decomposing the agent into software
layers, such as situational awareness, decision-making, and
control, as shown in Fig. 2 for a scenario containing a leader
and n ∈ Z>0 autonomous MAVs. In this paper, we use a
similar breakdown and focus on both the HL decision-making
tasks and the LL control aspects, abstracting the situational
awareness block in Fig. 2.

The HL decision-making layer receives state information
from the situational awareness containing the pose and
linear velocity of each object of interest in a global
coordinate system. Once this information is received, the
HL layer process the states using AI-based decision-making
algorithms that output action commands. There are two types
of action commands: rotational and translational movement
commands and commands regarding the use of weapons. The
LL control, on one hand, translates the movement actions
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FIGURE 2. Problem breakdown indicating the main software layers.

into appropriate state commands that are used to calculate the
control input to the MAV, and, on the other hand, allocates
the weapon actions using the available resources. Moreover,
the MAV module contains the rotational and translational
dynamics of the vehicle, the control allocator that translates
the control input into actuator commands, the actuator model,
and the weapons model. Note that, the weapons’ model
is simplified, i.e., the aiming and projectile dynamics are
instantaneous, being the hitting success calculated by a
configurable probability. Lastly, we also assume that the
MAVs share a synchronized internal model of the world in
the sense that they are aware of the same threats and other
agents state due to the ground-assets radars.

Each agent is identified by a unique ID. In this sense,
we define a set I ≜ Im ∪ Ik containing the identifier IDs of
all agents, where Im is a set containing the identifier IDs of
the MUM-T members and Ik is a set containing the identifier
IDs of the kamikazes.

A. LOW-LEVEL CONTROL PROBLEM
This section presents the translational and rotational dynam-
ics of a general fully actuated MAV equipped with fixed
rotors and defines the LL control problem. For a more
detailed dynamic modeling, please see [12], [16], [17],
and [18].

Consider a ground reference CCS Sg ≜
{
G; x⃗g, y⃗g, z⃗g

}
located at a known point G on the ground, with z⃗g oriented
upwards, parallel to the local vertical. In addition, consider
a body-fixed CCS Si ≜ {Bi; x⃗i, y⃗i, z⃗i} tied to the airframe of
the MAV i, ∀i ∈ I, with Bi coinciding with its center of mass,
as depicted in Fig. 3.

The translational kinematics and dynamics of MAV i are
described, respectively, by

ṙ i/gg = v i/gg , (1)

v̇ i/gg = − ge3 +
1
mi
f c,ig +

1
mi
f d,i
g , (2)

where r i/gg ∈ R3, vi/gg ∈ R3, and mi ∈ R>0 are, respectively,
theMAV i position, velocity, andmass, g ∈ R>0 is the gravity
acceleration magnitude, and f c,ig ∈ R3 and f d,i

g ∈ R3 are,

FIGURE 3. Schematic representation of a general fully actuated MAV
equipped with fixed rotors along with the adopted CCSs.

respectively, the control and disturbance forces acting on the
MAV i.

On the other hand, the rotational kinematics and dynamics
of MAV i are represented, respectively, by [19]

Ḋi/g = −

[
ω
i/g
i ×

]
D i/g, (3)

ω̇
i/g
i = (Ji)−1

[
Jiω

i/g
i ×

]
ω
i/g
i + (Ji)−1

(
τ
c,i
i + τ

d,i
i

)
,

(4)

where D i/g
∈ SO(3) is the attitude, ωi/g

i ∈ R3 is the angular
velocity, Ji ∈ R3×3 is the inertia tensor calculated w.r.t.
Si, τ

c,i
i ∈ R3 is the control torque, and τ

d,i
i ∈ R3 is the

disturbance torque of the MAV i.
In the proposed scenario, the MAV i moves among static

and dynamic obstacles, and is subject to velocity constraint,
i.e.,

r i/gg ∈ Pi(t), (5)

vi/gg ∈ Vi, (6)

where Pi(t) ⊆ R3 is the collision-free space, which varies as
the obstacles move, and Vi ⊆ R3 is an admissible convex set.
We now define the main problem of the LL control.
Problem 1: Execute the HL decisions in the presence of the

constraints (5)–(6) and the disturbances f d,i
g and τ

d,i
i .

To tackle Problem 1, we adopt the hierarchical control
architecture shown in Fig. 4, which contains an outer-loop
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FIGURE 4. Low level control layer of the MAV i . The set Oi contains
information about the other agents’ position and velocity.

guidance module and an inner-loop flight control module.
Additionally, the high-level to low-level (HL-LL) interface
translates the HL decisions into an appropriate target position
ř i/gg ∈ R3 and target attitude Ďi/g ∈ SO(3), which are
fed to the guidance law. The HL-LL interface is detailed in
Section V. This architecture allows to separate the overall
control requirements between the modules. In this sense,
the role of the guidance module is to conduct the vehicle
to the target pose, while avoiding collisions and ensuring
the satisfaction of linear velocity constraints. The control
module is entrusted with the task of providing stability and
robustness for the motion. We assume that the obstacles’
(i.e. other MAVs and protected area) position and velocity
are available for feedback and are represented by the set Oi.
A similar architecture has been recently investigated in [20]
for underactuated MAVs, using robust model predictive
control (RMPC) in the guidance loop.

Let us denote the command of a given variable using an
overbar symbol, e.g., r̄ i/gg and D̄ i/g denote, respectively, the
position and attitude commands.

Once the HL decision is translated to a target position and
attitude, the guidance law suitably generates the commands
r̄ i/gg and D̄ i/g to the flight control.

Under the adopted hierarchical control architecture, Prob-
lem 1 can be divided into the following two subproblems:
Subproblem 1.1: Design a flight control law to make the

MAV i described by (1)–(4) robustly track r̄ i/gg and D̄i/g in
the presence of the disturbances f d,i

g and τ
d,i
i .

Subproblem 1.2: Design a guidance law to generate r̄ i/gg

and D̄i/g to the flight control law tomake theMAV i reach ř i/gg
and Ďi/g (translated from the HL decision) while respecting
constraints (5)–(6).

To tackle Subproblem 1.1, we design a joint attitude-
position control law using a first-order sliding mode control
(SMC) approach [21]. It uses a high-frequency switching
control to drive and keep a given system output to a sliding
manifold, where the system ideally becomes insensitive to
bounded disturbances of the matched type. Specifically,
we design a global first-order sliding mode control (GSMC)
that guarantees this insensitivity property during all the time
by eliminating the reaching phase [22], [23], [24], under the
condition that the control commands are sufficiently smooth.
On the other hand, to tackle Subproblem 1.2 and guarantees
the smoothness requirement of the control commands,
we propose a guidance strategy based on the reciprocal
acceleration velocity obstacles (AVO) method [13].

FIGURE 5. Problem 2 definition diagram.

B. HIGH-LEVEL DECISION-MAKING PROBLEM
In this section, the problems to be solved by the
decision-making of the LW agents are described.

The main mission of the LW agents is to defend both
the protected area and the remotely-controlled leading drone
against multiple incursions from a swarm of kamikaze
drones. Therefore, an LW must effectively engage and
disable threats to ensure the safety of both. Furthermore, for
this mission to be successful, LW MAVs are expected to
have the ability to make intelligent decisions autonomously.
Thus, we can define necessary capabilities for this agent,
such as the ability to fly in formation with cohesion, and
the ability to engage and neutralize imminent threats to
guarantee the defense of both the protected area and the
leader. To effectively achieve neutralization, agentsmust have
the capability to use embedded weaponry, i.e, use weapons
intelligently and strategically, and in extreme cases, sacrifice
themselves to neutralize a threat.

The main problem of the HL decision-making can now be
defined.
Problem 2: Themain problem is to develop an autonomous

intelligence module for the LWMAV to successfully achieve
the mission objective, aiming at the smallest loss of LW
agents during the attack and defense maneuvers.

Based on this problem it is identified a need of defining a
set of expected behaviors for the agents. Therefore, we define
the following subproblem:
Subproblem 2.1 Design basic behaviors for the LW agents

and to develop a decision-making architecture to coordinate
these behaviors.

To tackle Subproblem 2.1 it is also necessary to design the
adversary agents present in the scenario, so we can properly
evaluate our solution to Problem 2.
Subproblem 2.2: Design basic behaviors for the kamikaze

agents and to develop a decision-making architecture com-
posed of these behaviors.

Therefore, the main agent in our problem is the LW MAV,
who will have to perform actions based on the AI-based
decision making, as seen in Fig. 5. The action a ∈ A, where
A is a set of possible actions, is performed by the agent in
a simulated environment which in turn will send the agent’s
state s ∈ S as feedback. Note that the environment is the
scenario of interest and it encompasses all loyal wingmen
agents, the leader, and its kamikaze adversaries.
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One of the subproblems to be also addressed is the
allocation (or assignment) of tasks among the LW MAVs.
By task we mean the neutralization of a specific kamikaze
threat.

Despite the LW being autonomous, the agents must act
cohesively so that cooperation between theMUM-T can arise.
One way to approach this is that the MAV leader must be
able to command the LWs when needed, so he must be able
to distribute tasks to the MUM-T members. This is known as
the classical assignment problem which is a widely-studied
problem applicable to many domains [25]. It is the problem of
choosing an optimal assignment of n ∈ Z+ workers to n tasks,
assuming that numerical ratings, or costs, are given for each
worker’s performance on each task. An optimal assignment
is the one that makes the sum of the workers’s costs for their
assigned tasks amaximum (orminimum) [26]. Note that there
are n! possible assignments, of which several may be optimal.
In this sense, consider the following subproblem.
Subproblem 2.3: Given a set of workersW , a set of tasks

J , and a set of costs C indicating how effectively each worker
wi ∈ W , where i ∈ {1, . . . , n}, can perform each task ji ∈ J
determine the best possible assignment of workers to tasks,
such that each task is assigned to one worker and each worker
is assigned one task, so the total cost is minimized.

One wishes to choose a set of n independent elements
(ci,j) of a cost matrix C , where ci,j is the element of the
ith row and jth column of C , so that the sum of these
elements is minimized. This can be expressed as permuting
the rows and columns of C to minimize the trace of a matrix
minL,R Tr(LCR), where L and R are permutation matrices,
and the cost matrix is

C =

w1
w2

...

wn

j1 j2 ... jn
c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n
...

...
. . .

...

cn,1 cn,2 . . . cn,n

. (7)

A well-known solution to the assignment problem is
given by the Kuhn-Munkres algorithm, colloquially known as
Hungarian algorithm, proposed by Kuhn [15] and refined by
Munkres [26]. This algorithm solves the assignment problem
assuming the existence of a cost matrix C ∈ Rn×n, where the
element in the ith row and jth column represents the cost ci,j
of assigning the jth task to the ith worker.

IV. METHODOLOGY
This section presents the methods used for addressing
Problems 1–2. Subsection IV-A describes the method used
to solve Problem 1, while Subsection IV-B describes the
methods used to solve Problem 2.

A. LOW-LEVEL CONTROL METHODOLOGY
This subsection designs a joint attitude-position control
law designed based on a GSMC policy and a guidance
strategy based on the reciprocal AVO method for addressing,
respectively, Subproblems 1.1 and 1.2.

1) JOINT ATTITUDE-POSITION CONTROLLER
Consider the objective of tracking a time-varying position
command r̄ i/gg and attitude command D̄i/g that satisfy the
following assumption.
Assumption 1: The time varying commands are such that,

at the initial time instant, r̄ i/gg (0) = r i/gg (0), v̄i/gg (0) = vi/gg (0),
D̄i/g(0) = Di/g(0), and ω̄

i/g
i (0) = ω

i/g
i (0), and are at least

one time differentiable with respect to time, such that their
first-time derivatives are Lipschitz continuous.

Assumption 1 is not restrictive; it just requires the
knowledge of the MAV i initial position, attitude, and
velocities, and the use of suitable differentiable commands.

To design the controller, we derive the equations describing
the control errors kinematics and dynamics. To this end,
define a command-related CCS Sī ≜

{
B̄i; x⃗ī, y⃗ī, z⃗ī

}
representing the commanded position and orientation for the
MAV i body-fixed frame Si. The attitude and angular velocity
control errors can be defined, respectively, as [12], [19],
and [27]

D̃i ≜ Di/ī
≡ D i/g

(
D̄ i/g

)T
∈ SO(3), (8)

ω̃i ≜ ω
i/ī
i ≡ ω

i/g
i − D̃iω̄i/g

i ∈ R3, (9)

where D̄i/g ≜ Dī/g and ω̄
i/g
i ≜ ω

ī/g
ī

are, respectively, the
attitude and angular velocity commands of the MAV i.
Similarly, let us define the position and linear velocity

control errors, respectively, as

r̃ i ≜ r̄ i/gg − r i/gg , (10)

ṽ i ≜ v̄ i/gg − v i/gg , (11)

where r̄ i/gg ∈ R3 and v̄ i/gg ∈ R3 are, respectively, the position
and velocity commands of the MAV i.

The time derivatives of (8)–(11) can be put, using (1)–(4),
into the following state-space model:

ẋ i1 = f i1
(
x i1, x

i
2

)
, (12)

ẋ i2 = f i2
(
x i1, x

i
2

)
+ Biui + Bid i, (13)

where x i1 ≜ (r̃ i, g̃i), with g̃i ∈ R3 being the Gibbs vector
representing D̃i/g, and x i2 ≜ (ṽi, ω̃i) are the states, ui ≜
(f c,ig , τ

c,i
i ), d i ≜ (f d,i

g , τ
d,i
i ),

Bi ≜

[
−I3/mi 03×3

03×3 (Ji)−1

]
,

f i1
(
x i1, x

i
2

)
≜

[
ṽi

1
2

(
g̃i
(
g̃i
)T

+
[
g̃i×

]
+ I3

)
ω̃i

]
,

f i2
(
x i1, x

i
2

)
≜

[
˙̄v i/gg + ge3

(Ji)−1
[
Jiω

i/g
i ×

]
ω
i/g
i −D̃i ˙̄ωi/g

i +

[
ω̃i

×

]
D̃iω̄i/g

i

]
. (14)
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From (13), it can be immediately seen that the term d i is
of the matched type, i.e., it belongs to the span of the input
matrix Bi. Consequently, a first-order SMC law is able to
guarantee the robustness (or invariance) of the closed-loop
system with respect to d i [28].

Now, let we define the sliding variable

si ≜ ẋ i1 + C ix i1, (15)

where C i
∈ R3×3. The corresponding sliding set is

S i ≜
{(
x i1, ẋ

i
1

)
∈ R6

| si = 03
}

.

From Assumption 1, note that the system is in the sliding
set S i at the initial time instant. Therefore, by designing the
control ui such that the inequality, V̇ ≤ −βV 1/2 [29], with
β ∈ R>0, is satisfied from the initial time instant, it holds
that (x i1, ẋ

i
1) ∈ S i during all the time, and consequently

(x i1(t), ẋ
i
1(t)) = (06, 06), ∀t ≥ 0. Therefore, from (14),

it holds that x i2(t) = 06, ∀t ≥ 0. In other words, the system
is capable of exactly tracking the position, attitude, linear
velocity, and angular velocity commands, i.e., r i/gg (t) = r̄ i/gg ,
vi/gg (t) = v̄i/gg , Di/g(t) = D̄i/g(t) and ω

i/g
i (t) = ω̄

i/g
i (t), ∀t ≥

0.
By differentiating (15) with respect to time and substitut-

ing (12)–(13) into the resulting expression, we can obtain the
dynamic equation for si (we omit the function independent
variables for conciseness):

ṡi = C if i1 +
∂f i1
∂x i1

f i1 +
∂f i1
∂x i2

f i2 +
∂f i1
∂x i2

Biui +
∂f i1
∂x i2

Bid i. (16)

Regarding the disturbance d i consider the assumption:
Assumption 2: The disturbance d i is bounded according to

|d i| ≤ d i,max , where d i,max ∈ R6 is a known vector with
positive components.

By choosing the control law

ui = −

(
4i
)−1

(
C if i1 +

∂f i1
∂x i1

f i1 +
∂f i1
∂x i2

f i2 + K isign
(
si
))

,

where 4i ≜
∂f i1
∂xi2
Bi and K i

∈ R6×6 is a constant diagonal

matrix satisfying

K i16 ≥ abs
(
4i
)
d i,max + 16

β
√
2
,

guarantees the existence of a global sliding mode of si

in S i, thus completing the objective of Problem 1. The proof
is omitted here but is analogous to the one presented in
Section 3.1 of Reference [30].

For implementing the control input ui, it is necessary a
control allocation module, which, for simplicity, has been
omitted in Fig. 4. The control allocation generates individual
throttle commands to the rotors to make the effective resultant
control force and torque close to the respective command. For
details about the control allocation of fully actuated MAVs
with fixed rotors, one can see reference [12]. In particular,
in the simulation study of the present paper, as we have

FIGURE 6. Block diagram of the proposed guidance strategy.

considered a non-redundant fully actuated vehicle containing
six rotors, the respective control allocation matrix is a square
one, and, consequently, the allocation is immediately solved
by, first, inverting that matrix and, second, converting the
obtained rotor thrusts into throttle commands. For this end,
as usual, we assume that the ith rotor thrust is described by
fi = kf ϖ 2

i , where kf is a force coefficient, ϖi is the rotation
speed, and i ∈ {1, 2, . . . , nr }, being nr ∈ Z>0 the number of
rotors.

2) GUIDANCE STRATEGY
This section formulates a guidance strategy based on the
reciprocal AVO method to solve Subproblem 1.2.

Let us define a CCS Sp ≜
{
P; x⃗p, y⃗p, z⃗p

}
fixed to a

protected area reference point P, with z⃗p oriented upwards,
parallel to the local vertical. In the proposed scenario, an LW
considers the other MAVs and the protected area as obstacles,
while a kamikaze only considers the other kamikazes as
obstacles since their main goal is to collide against the
MUM-T and the protected area. In this sense, we can define
a set Ioi containing the ID of all obstacles considered by the
MAV i [31].

Now, since the leader is remotely controlled, the guidance
strategy presented here for theMAV i is only implemented on
the loyal wingmen and the kamikazes, i.e., i ∈ I\ℓ, where ℓ

is the leader ID. Moreover, it is important to highlight that,
the smoothness requirement of the leader commands r̄ℓ/g

g
and D̄ℓ/g can be achieved by properly generating the leader
commands.

In order to guarantee the smoothness requirement of the
commands r̄ i/gg and D̄i/g of Assumption 1, we propose a
guidance strategy that generates these commands using a
position and an attitude reference filters, as depicted in Fig. 6.
Then, we use the AVO method to choose a target velocity
vi,∗g ∈ R3 aiming to avoid collision with the obstacles and
respect the velocity constraint (6).

The attitude reference filter is designed using a harmonic-
jerk s-curve trajectory generation algorithm [32]. On the other
hand, to fulfill the smoothness requirement of the position
command, the position reference filter generates the position
command for the MAV i by integrating twice the following
acceleration command:

˙̄vi/gg = δ−1
i

(
vi,∗g − v̄i/gg

)
, (17)

where δi ∈ R>0.
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From (17), it can be seen that by limiting vi,∗g , ˙̄vi/gg is

bounded. Therefore, by choosing r̄ i/gg (0) = r i/gg (0) and
v̄i/gg (0) = vi/gg (0), the initial conditions and smoothness
requirement of the positing command in Assumption 1 are
fulfilled.

Consider that the MAVs and the protected area can be
circumscribed by spheres. In this context, a collision might
occur between the MAV i, where i ∈ I\ℓ, and Obstacle j,
where j ∈ Ioi , if ∥∥∥r i/gg (t) − r j/gg (t)

∥∥∥ < ρij, (18)

where ρij ≜ ρi + ρj, being ρi ∈ R>0 the radius of the sphere
enclosing MAV i and ρj ∈ R>0 the radius of the sphere
enclosing Obstacle j.
Due to the existence of the global sliding mode in the

flight control loop, and considering vi,∗g as a constant input,
an expression for the MAV i position can be obtained by
integrating (17) two times with respect to time, being given
by

r i/gg (t) = r i/gg (t0) + 1tvi,∗g + gi(1t)
(
vi,∗g − v̄i/gg (t0)

)
, (19)

where t0 ∈ R>0 is an initial time instant, 1t ≜ t − t0, and
gi(1t) ≜ δi

(
e−1t/δi − 1

)
.

Similarly to the original VO approach [33], we consider
that the Obstacle j keep its velocity constant, i.e., its position
can be written as r j/gg (t) = r j/gg (t0) + 1tvj/gg (t0). Then,
substituting (19) and r j/gg (t) into the collision condition (18)
and dividing both sides of the resulting expression by 1t +

gi(1t) yields∥∥∥vi,∗g − ci(1t)
∥∥∥ <

ρij

1t + gi(1t)
, (20)

where

ci(1t) ≜ −
r i/jg (t0) − gi(1t)v̄

i/g
g (t0) − 1tvj/gg (t0)

1t + gi(1t)
. (21)

The AVO defines a set of target velocities for the MAV i
that will result in a collision with the Obstacle j within a time
horizon τ ∈ R>0, if the Obstacle j keeps a constant velocity.
It can be defined from (20) as

AVOτ
i,j ≜

⋃
t0<t≤t0+τ

B
(
ci(1t),

ρij

1t + gi(1t)

)
.

The procedure is analogous to the original VO method:
continually selecting a velocity outside AVOτ

i,j guarantees
that the MAV i and Obstacle j will not collide. By using
this procedure considering all the obstacles, we guarantee
collision-free guidance for the MAV i and consequently
satisfy the position constraint (5).

The above procedure is suitably for passive obstacles, i.e.,
obstacles that do not change their motion based on their
surroundings. However, if the moving obstacles are entities
capable of making decisions, then this reactive nature has to
be considered. This problem is referred in the literature as

reciprocal collision avoidance [34] and can be incorporate
into the presented methodology by modifying the AVO set
relative to the non-passive obstacles (see Reference [13]).

In the proposed scenario, an LW considers the other LW
as non-passive obstacles and the kamikazes as passive ones.
On the other hand, a kamikaze considers the others kamikazes
as non-passive obstacles.

To account for the velocity constraint (6), it has to be
explicitly rewritten in terms of the target velocity vi,∗g . To this
end, note that, from (17), by choosing vi,∗g ∈ Vi, it holds that
v̄ i/gg ∈ Vi since Vi is a convex set. Then, due to the existing of
the global sliding mode, one can show that by choosing

vi,∗g ∈ Vi,

we guarantee that vi/gg ∈ Vi. As a result, continuously
choosing

vi,∗g ∈ VR ≜ Vi\AVOτ
i ,

being AVOτ
i ≜

⋃
AVOτ

i,j, ∀j ∈ Ioi , guarantees the
satisfaction of the position and velocity constraints (5)–(6).

B. HIGH-LEVEL DECISION-MAKING METHODOLOGY
In this section, we discuss the methodology used to address
Problem 2. For that, we focus on the artificial intelligence
of both types of agents present in the scenario of interest.
The development of the decision-making architectures of the
agents is based on our previous work [35], where a prototype
of the scenario was developed, in order to have an initial
decision architecture of the LW and kamikaze agents.

Many approaches to robotic decision-making have been
developed; in modern applications such as autonomous
cars, the agents are highly deliberative [36]. In these
complex scenarios, decision-making is further subdivided
into modules tailored to solve subtasks, which are referred
to as behaviors [37]. Once this decomposition is performed,
we need to orchestrate the execution of these behaviors.
Many behavior selection mechanisms exist, with finite-state
machines (FSMs) [38] and behavior trees (BTs) [39]
being the most popular techniques. The design of these
mechanisms is empirical and is mainly based on intuition,
creativity, experience, and good practices [38]. Furthermore,
this process is iterative, with the agent performance being
evaluated by an expert or through statistics, in order to
select the best agent architecture [39]. On the other hand,
optimization methods and machine learning techniques may
be employed to tune decision parameters [35] or to learn
complete behaviors with no prior knowledge [40].

To start addressing Problem 2, we need the kamikaze
agents to be functional via simplified but effective AI.
Consequently, we selected the FSM technique to develop
the decision-making module for the kamikaze. The FSMs
are the most common model of computation for modeling
decision-making architectures for simple AI [39], [41], due
to its easy implementation and intuitive structure. In this
technique, a state s represents a behavior for the agent. A FSM
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can switch between behaviors in response to events. In Fig. 7,
we present the decision-making developed for the kamikaze
MAV, note that each MAV contains an identical decision
module.

FIGURE 7. Decision-Making module for a kamikaze MAV using FSM.

In our solution, the kamikaze has a setK of four behaviors,
the initial behavior is IdleState, where the agent is idle for
t1 seconds and then selects a target to attack based on the
probabilities p1, p2, and p3, which in this work are equally
distributed probabilities used for each target type. Once a
target is selected, the FSMwill transition to the representative
state of the selected target and will remain in that state
until the agent is destroyed. The exception is Attack Loyal
Wingman; this behavior targets the closest LW, and will select
the closest LW every t2 = 1 s, to avoid frequent target
switching. Once there are no more LW, the FSM transitions
to attack the leader or the protected area with a probability of
50% each.

In contrast, the behaviors to be executed by the LW
MAV are more complex given their desired capabilities,
consequently, its AI architecture requires further elabora-
tion. To effectively solve Problem 2, we implement its
decision-making module using the BT technique, due to
its inherent advantages in comparison to FSMs, such as
behaviors that are highly modular, reactive, and flexible
to changes [14], [39]. We briefly present the basic BT
framework used, but keep inmind that alternatives commonly
employ extensions [14], [42]. A BT is composed by nodes
of two types: composite or leaf. Composite nodes control
the BT logic, while leaf nodes execute the behavior modules
or condition checks. When executed, each node returns
one of the following execution statuses: Success, Failure,
or Running. Table 1 presents the return status logic of each
node type.

Therefore, based on Problem 2 description, we can identify
the modular behaviors for the decision-making of a LW,
in Table 2. We present three movement behaviors: Chase
Threat, Go To formation, and Approach Formation; and
three offensive behaviors: Vaporize Threat, Freeze Threat and
Sacrifice Attack.

Fig. 8 presents the behavior tree for a LW MAV using
the behaviors described in Table 2. Note that every LW has
an identical and independent copy of this decision-making
module.

TABLE 1. Node types of a BT.

TABLE 2. Behavior description for an LW MAV.

This decision-making module will run by default the Go
To Formation behavior, where the LW keeps a flying
formation surrounding the leading drone while there are no
threats identified. Whenever a kamikaze drone crosses the
engagement range or the LW is allocated to a task, it enters
into the Chase Threat behavior, for which the vaporizer
weapon must be available. In this case, the agent leaves
formation to pursue the threat and tries to neutralize it using
available weapons. Once a kamikaze is in range of use of
the weapons, the LW selects a neutralization method. The
selected method may be the vaporizer gun, the freezing gun
or a sacrifice as last resort when there is no remaining ammo.
A weapon is available if there is still ammunition and if it is
not cooling down after being fired. Note that the engagement
distance and the range of use of both weapons are decision-
making parameters, with the latter being less or equal than
the nominal range of the weapons, thus leaving the use of
weapons as a strategy criterion.

The neutralization strategy embedded in this BT is to first
select the closest threat within range of his freezing gun (mid-
range) and then try to freeze it. Once the threat is slower,
it is safer to approach it, then the LW uses its vaporizer gun
(short-range) to eliminate the threat. Note that the respective
gun must be available at the time that this weapon needs
to be used. The SacrificeAttack behavior is executed
when there are no remaining ammo in both weapons, it causes
the LW to collide with an imminent threat, thus using its
body-frame as a protective weapon. Immediately after the
threat is eliminated or becomes out of range, the LW returns to
formation, thus ensuring the protection of the leader. In order
to join the formation, the LW must following the sequence
present in Fig. 9. Initially, the LW must first approach the
formation from a safe distance df ∈ R>0 and send a request to
the leader asking for permission to rejoin. The leader receives
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FIGURE 8. Behavior tree for the loyal-wingman MAV.

FIGURE 9. Join formation sequence diagram.

and processes the request, allowing or not the entry into
formation. The LWwaits for the permission to be granted and
for the coordinates in the formation. The safe distance df is a
parameter.

Note that the decision-making modules described in this
section make decisions based only on its internal state and
the states of the other agents present in the scenario, which
are received through messages from the ground assets. Also,
it is important to reiterate that the leader is capable of
overriding the decisionsmade by themodule of a specific LW,
by either enforcing the loyal wingmen to return to formation,
or selecting a specific LW to engage a selected kamikaze.

C. FORMATION DEFINITION
In this work, we consider that the leader defines the formation
pattern as an uniform-circular formation along the local
horizontal plane with a desired radius rf > 0 ∈ R>0,
as shown in Fig. 10. Given that there are a total of nf ∈

Z>0 LW in formation, the positions occupied by the loyal
wingmen are defined by the set

Pf ≜
{
r ℓ/g
g + rfD3(jα + φ)e1

}nf
j=1

, (22)

where D3(·) ∈ SO(3) is the rotation matrix around z⃗g,
α = 2π/nf , and φ ∈ [−π, π) is an offset angle that
can be used to rotate the formation around the leader. The

FIGURE 10. Uniform-circular formation pattern.

assignment of the LW to the available positions in formation
is sequential, based on the order of the acknowledged request
to join the formation by the leader, and not necessarily match
the vehicle ID.

D. LW-KAMIKAZE TASK ALLOCATION
This subsection addresses the solution of Subproblem
2.3, which employs the Hungarian algorithm for the task
assignment between the LW.

As seen in Fig. 11, the workers in our context are
interpreted as the LWs available and the tasks are the
neutralization of the kamikaze threats. The distance of the
loyal wingman to a threat can be described as the euclidean
distance d(p,q) ≜

∥∥pi − qj
∥∥, where pi ∈ R3 and qj ∈ R3 are

the current position of the ith LW and the jth kamikaze threat,
respectively. So the cost of the ith LW to neutralize the jth
kamikaze is

ci,j ≜

{
d(pi,qj) + AvP, d(pi,qj) ≤ da,
+∞, d(pi,qj) > da,

where Av ∈ {1, 0} is a variable that is 1 if the LW weapons
are available, and 0 otherwise. The constant P represents an
additional penalty cost to assign a LW that does not have a
available weapon, as it is important to avoid the allocation of
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FIGURE 11. Diagram of LW-Kamikaze Task allocation problem.

unavailable LWs. Lastly, the engagement range is represented
by the radius da > 0, and the threats outside this range will
not be considered during the assignment.

The execution of the Hungarian algorithm outputs the
lowest cost path through the C matrix, representing the
optimal LW-Kamikaze assignment. In the example provided
in Fig. 11 we have the optimal LW-Kamikaze task allocation
indicated by the blue arrows, note that the threat k4 is not
considered, since it is outside da.

E. COOPERATION AND SELFISHNESS BEHAVIORS
The CEC is an emerging systems-of-systems capability in
which multiple systems coordinate their actions through a
network to improve their abilities to effectively perform a
given task [1]. Highly developed systems of cooperation
and mutual support can be found in different sorts of
systems, a general consensus is that cooperation is in general
advantageous for the group of cooperators as a whole, even
though it may curb some individual’s resources [43].

Altruism means that a system performs actions that
increase the fitness of another system. The term Weak
altruism can be defined as behavior that benefits more to
another individual than to the individual performing the
behavior. A Strong altruism denotes behavior that benefits
others, but at one’s own cost [44]. Both are common and
necessary in those highly cooperative systems, which often
have a collective organization with full division of labor,
including individuals who are only defended by others, i.e,
the MAV leader, or who are prepared to sacrifice themselves
for the defense of others, i.e, the LW who sacrifices itself in
extreme cases to ensure the protection of the leader. These
kind of systems are found in certain species of insects, and in
human society [44].

On the other hand, the term Selfishness means that the
system will only perform actions that increase its own
fitness [43], naturally selected systems will not only be

selfish, since they try to optimize their own fitness, but they
will also tend to avoid altruism. Thus, one’s own fitness is
indirectly reduced by altruistic behavior.

In our context, we can illustrate the cooperative behavior
as seen in the following Fig. 12. In the frame (a) we
have a LW1 allocated by the leader to neutralize the threat
K4, so here we have the LW1 acting in an altruistic way
for the benefit of the defense of the leader, also note the
existence of another threat called K1 in this frame. During
the displacement towards the threat K4, seen in frame (b), the
threat K1 enters the selfish engagement radius (ds), in this
case the LW1 identifies the existence of a threat within ds
and starts behaving selfishly. In this case the LW1 decides to
temporarily overwrite the command given by the leader, and
neutralize K1 which presents a great risk to itself. Finally,
we have the frame (c), demonstrating that once the threat
K1 has been destroyed, the LW1 starts to follow its altruistic
behavior again, where it will neutralize the threat commanded
by the leader.

Therefore, as demonstrated, the developed decision-making
can behave both altruistically and selfishly. The altruistic
behavior being the leader’s defense, even if it leads to his own
destruction. And the selfish behavior, where he overwrites the
leader’s assignment, thus ceasing to cooperate, and starts to
chase the neutralization of the highest risk threat, which is
the closest to him. Once it neutralizes the highest risk threat,
it goes back to cooperate with the system as a whole, seeking
to neutralize the threat allocated by the leader.

V. DECISION-CONTROL INTERFACE
As we have two main layers of software, it is necessary to
define a communication interface between such modules, i.
e., how the decision commands are translated into control
commands for the MAVs.

As defined in Fig. 7, the kamikaze MAVs have four
behaviors: idle State, Attack Leader State, Attack Loyal
Wingman State, and Attack Protected Area State. The HL-LL
interface of the kamikazes translates these behaviors only into
target position commands since the kamikaze behaviors does
not demand attitude changes.

The idle State demands the kamikaze to stay stationary in
its current position, and to do so the target position informed
to the guidance algorithm must be equal to the kamikaze
position, i.e.,

ř j/gg (t) = r j/gg (t),

where j ∈ Ik .
On the other hand, Attack Leader State, Attack Loyal

Wingman State, and Attack Protected Area State can be
executed by generating the target position as

ř j/gg (t) = rk/gg (t), (23)

where k is the ID of the desired target.
As shown in Table 2, the LWhas fourmovement behaviors:

Chase Threat, Go To formation, Approach Formation, and
Sacrifice Attack.
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FIGURE 12. Altruistic and Selfish behavior sequence.

To execute the Go To Formation, the HL-LL interface of
the LW informs the target position to the guidance algorithm
as

ř i/gg (t) = rℓ/g
g (t) + ř i/ℓg ,

where i ∈ Im\ℓ and ř i/lg ∈ R3 is a target position relative to
the leader given by the HL decision-making layer.

Similarly, to execute Approach Formation, the target
position is calculated as

ř i/gg (t) = r l/gg (t) + ř i/lg + eT3 df .

Since the formation is defined on the local horizontal plane,
the LW approaches the formation by taking a vertical offset
relative to its target position in formation for simplicity.

To execute the Chase Threat, the target position informed
to the guidance algorithm of the LW must be set as an offset
relative to the target kamikaze position, i.e.,

ř i/gg (t) = rk/gg (t) − dt
rk/ℓg (t)

∥rk/ℓg (t)∥
, (24)

where i ∈ Im\ℓ, k ∈ Ik is the ID of the target kamikaze,
and dt ∈ R>0 is the distance to be kept from the target. The
Sacrifice Attack is executed by setting dt = 0.

VI. COMPUTATIONAL ARCHITECTURE
This section describes the computational architecture used to
implement the proposed scenario. A simulation framework
is built as a proof of concept for the development of the
proposed techniques. The infrastructure is divided into two
PCs, as seen in Fig. 13. The first is responsible to compute the
LL control, physics, 3D visualization, and interface with the
human pilot through a joystick. The second one is responsible
to run the HL decision-making modules of the agents being
simulated. The computers communicate on a local network
using the Robot Operating System 2 (ROS 2) middleware
which is built on an open-source data distribution standard
(DDS) middleware that provides features such as discovery,
serialization, and transportation.1

The LL control, physics, and interface with the human pilot
through a joystick are coded in MATLAB. The 3D simulator
was developed using the Unity engine to allow a proper
visualization of the proposed scenario. On the other hand, the

1ROS2 Documentation: https://www.ros.org

FIGURE 13. Diagram of the computational implementation.

decision-making algorithms were implemented in the Python
programming language, due to its large community, support,
and availability of AI libraries, especially for machine
learning.

The data communication interface between the HL
decision-making layer and the LL control layer is imple-
mented using the framework provided by ROS 2 [45]. It is
based on topics used to publish and receive customized
messages in a publish-subscribe pattern that allows the
layers to share important information asynchronously. The
customized messages contain information regarding the
action commands from the HL decision-making module and
the status update of the vehicles calculated by the LL control
and simulation sub-module, as described in Table 3. For ease
of implementation, each vehicle is identified by a unique
ID. The LL control and simulation sub-module also sends
unidirectional information containing the pose of the vehicles
via socket to the 3D simulator that works as a visual feedback
to the pilot.

VII. SCENARIO SIMULATION AND RESULTS
In this section, we describe a series of simulations used to
evaluate the overall method. Subsection VII-A shows the
results of a formation flight simulation. Subsection VII-B
presents the qualitative results of the HL decision making.
Subsection VII-C presents a Monte Carlo simulation. Lastly,
Subsection VII-D shows the computational burden of the
overall simulation.

In all simulations, the MAVs are non-planar fully actuated
octocopters, as the one depicted in Fig. 1, with a total mass
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TABLE 3. Table of commands.

FIGURE 14. Position and attitude tracking performance of the LW 1. The symbol α1/g is the Euler angles in the 1-2-3 sequence corresponding to
D1/g.

of 1kg, arm length of 0.5 m, and inertia matrix equal to
diag(0.015, 0.015, 0.015) kgm2. Moreover, the MAVs are
subject to a sinusoidal force disturbance with the same
amplitude of 0.6 N but with different phase shifts, and to
a sinusoidal torque disturbance with the same amplitude of
0.05 Nm but also with different phase shifts.

The LL control and simulation, coded in MATLAB, use
the Euler integration method and runs with a frequency of
100 Hz. The actuator dynamics are modeled by first-order
differential equations with a time constant of 0.01 s. The
force and torque coefficients of the rotors are 1.2838× 10−5

N/(rad/s)2 and 3.0811× 10−7 Nm/(rad/s)2, respectively. It is
worth mentioning that the adopted model is typically used in
theMAV literature to describe the set consisting of a brushless
motor, an electronic speed controller, and a propeller [46].

A. LOW-LEVEL CONTROL SIMULATION
To evaluate the LL control methodology, we simulate four
LW flying in a circular-uniform formation around the
remote-controlled leader in a scenario without kamikazes.
Since the MAVs use the same flight control law, we evaluate
the tracking performance of the LL control method by only
plotting the tracking errors for the LW 1. The simulation of
this flight can be seen in this video.2

Fig. 14 shows the position and attitude tracking per-
formance of the LW 1. It can be seen that the vehicle
performs an accurate position and velocity tracking, being the
chattering [47], which is a high-frequency oscillation around
the sliding manifold caused by unmodeled phenomena, such
as time discretization, actuator dynamics, and sensor noise,
more evident in the velocity components. It can also be
seen that the attitude variables have a chattering with a
magnitude smaller than two degrees in each component.
Moreover, note that at the time instant 5.6 s, the attitude

2https://youtube.com/clip/UgkxHcMf1eOj

chattering is amplified since at this instant the vehicle is called
to formation, i.e., it starts receiving the leader attitude and
angular velocity references that also present chattering.

B. HIGH-LEVEL DECISION MAKING QUALITATIVE RESULTS
In this section, we describe the qualitative results of a series
of simulations conducted using the proposed computational
architecture for 4 LW against 2 kamikazes. This simulations
were used to test the effectiveness of the overall method,
i.e., the effectiveness of the proposed LL control method
and the LW BT architecture. The results described in this
subsection can also be seen on this video.3 Moreover, the
simulations were used to empirically find an effective LW
decision-making architecture, while developing the behaviors
and tuning the decision-making parameters. Subsequently,
we demonstrate operating sequences found during the
execution of the scenario.

First, in Fig. 15, we see the simulation result of the
case where a kamikaze threat is identified and neutralized.
Initially, in frame (a) we see the MUM-T in formation and
an identified kamikaze threat in red. The LW MAV closest
to the threat leaves the formation and chases the kamikaze
by executing the chase threat behavior. As a result, all
remaining LW MAV members in formation will readjust to
new positions defined by the leader, so no gaps for attacks
are present.

Consequently, in frame (b), we have the LW that left the
formation attacking the kamikaze with the freezing gun, this
strategy aims to facilitate the approach for neutralization
since this weapon considerably reduces the kamikaze’s speed.
Now in frame (c) the LW gets even closer to the frozen
kamikaze and uses its vaporizer gun to effectively destroy
it. Consequently, we see in frame (d) that the kamikaze is
destroyed and the LW returns to formation, initially the LW

3https://youtu.be/YQjDRBW-0nk
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FIGURE 15. Demonstration sequence of engagement to a kamikaze threat, in red. The leader is seen in the center, in green, and four
loyal wingman in blue.

FIGURE 16. Demonstration of a cooperative neutralization sequence. In this simulation, the leader is in seen in black. The LW1 are
represented in the blue circle, LW2 in the yellow circle and the kamikazes in red.

must approach the formation from a safe distance executing
the approach formation and request re-entry for the leader,
who must allow its entry and readjust the formation with the
addition of this agent. In frame (e) we see the LW successfully
re-entering the formation and sequentially executing the
behavior go to formation. Finally, in frame (f) we see
all the agents keeping formation after the success of the
mission.

Furthermore, in Fig. 16, we observe two sequences of
cooperative neutralization that emerged during the simula-
tions, where two loyal wingmen performed tasks together to
neutralize kamikazes. In the first sequence, frames (a)-(c),
we have LW1 freezing the kamikaze from a longer distance,
consequently, we observe LW2 in (b), which also identified
the same threat, neutralizing it using the vaporizer gun. In the
second sequence, frames (d)-(f), we see a similar case from
a different view. In both cases, the participating LW1 and
LW2 take complementary actions to eliminate a common
threat.

Now we present the sequence leading to the sacrifice of an
LW, in Fig. 17. The case begins in frame (a) with three loyal
wingmen in formation, after LW4 is destroyed. In frame (b),
we observe the LW1, which only has one cartridge remaining
in its weapons, engaging two kamikazes, note that after
the neutralization of the first kamikaze, it collides with the
other one present in the attack, thus eliminating two threats.
In frame (d) we have LW1 out of ammo and starting its
sacrifice attack after a new threat enters the area. In frame
(e) we have the successful elimination of the kamikaze, and
consequently, the leader readjusts the relative position in
formation of LW2 and LW3. Finally, in frame (f) we have
a new MUM-T formation composed only by the remaining
LW2 and LW3.

Unexpected behaviors can emerge, as illustrated in Fig. 18,
where we observe two kamikazes heading toward the leader,
in frame (a). In the sequence, in frame (b), we have
LW1 identifying and freezing the closest threat K1. As a
consequence, we observe that K1 collides with K2, since K1
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FIGURE 17. Demonstration of the sacrifice neutralization sequence. In this simulation, the leader is in seen in black. The LW are
represented in white and the kamikazes in red.

FIGURE 18. Freezing attack being used as a neutralization method. In this simulation, the leader is seen in black. The LW1 in white and the
kamikazes K1 and K2 in red.

has been frozen and K2 which is closely following K1 cannot
avoid the collision in time. In this way, we can highlight this
emergent behavior as an indirect neutralization method.

C. MONTE CARLO SIMULATIONS
The effectiveness of the overall method is evaluated using a
Monte Carlo simulation with 122 iterations. These simula-
tions are performed considering 4 LW against 3 kamikazes
(that respawn once neutralized) with the protected area
located at the origin and the leader hovering at the point
(5, 0, 5) m. The LW have a maximum speed of 1.5 m/s,
being the kamikazes 50% faster. The freezing and vaporizer
guns have an ammo of 10, a cooling down time of 1 s, and
a hit probability of 95%. The freezing gun can reduce the
kamikaze speed by half during 5 s.

Fig. 19 shows the Monte Carlo simulation results. It can
be seen that, on average, the survival time is 169.3 s and the
number of kamikazes destroyed is 34, without considering
the sacrifice attack behavior, which is an excellent result
since the MUM-T can only directly neutralize a maximum of
40 kamikazes given that each LW is equippedwith a vaporizer
gun with an ammo of 10. This corresponds to 85% of the total
neutralizing capability.

D. COMPUTATIONAL TIME
To evaluate the computational burden of the overall simula-
tion, we conducted a typical run using the same parameters
adopted in Subsection VII.C. For this run, both the LL and the

FIGURE 19. Monte Carlo simulation results. ST stands for survival time
and KD stands for kamikazes destroyed.

HL modules for all the MAVs were implemented in the same
computer, which is a laptop equipped with a 12th generation
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FIGURE 20. Overall simulation iteration time. Legend: • iteration time,
iteration time average, and adopted sampling time.

Intel Core i7-12700H, with 2.30 GHz and 16 GB of RAM.
The total simulation time, from the beginning to the leader
destruction, was about 131 s. In only 3.4% of a total of
13100 time steps, the sampling time of 0.01 s was exceeded.

Further, similar to the computational analysis done in [48],
Fig. 20 shows a plot of the iteration time over the simulation
time, together with the respective average and the adopted
sampling time. From this plot, we can see that, in fact, in most
of the iterations, the adopted sampling time is not violated.
It is worth mentioning that, these results are satisfactory since
real time is reasonably achieved even using a code that is not
optimized for embedded implementation.

VIII. CONCLUSION
This paper evaluated the concept of CEC applied to a
MUM-T. To this end, we proposed a defensive scenario
where loyal wingman MAVs cooperate to defend a manned
leader and protect a critical infrastructure from a swarm of
kamikazes with explosive capabilities. To deal with such
threats the loyal wingmen have the capability to engage
and neutralize the threats, using two idealized weapons,
a vaporizer gun representing a short-range weapon capable
of neutralizing a threat with a single shot, and a freezing
gun, a non-lethal weapon of mid-range, capable of slowing
down the threat. To reduce the complexity of this problem,
all the vehicles are modeled as fully actuated MAVs, and
the problem is broken down into two parts, one involving
an LL control layer, and another involving an HL layer
of intelligent software capable of making autonomous and
decentralized decisions. The LL control designs a joint
attitude-position control law using a first-order sliding mode
control that guarantees the closed-loop system robustness
with respect to model uncertainties and disturbances. On the
other hand, the decision-making for loyal wingman agents
was developed using the behavior tree technique and reduced
to modular behaviors, such as: chasing a threat, remaining
in protective formation, approaching formation to initiate
rejoin procedure, and attack behaviors using the available
weapons or using the sacrifice attack in the extreme case
where there are no more weapons available. The method

is analyzed using a high-fidelity 3D simulator and shown
to be effective. In future works, we plan to increase the
complexity of the kamikazes’ behaviors in order to improve
the difficulty of the proposed scenario and investigate
different formation patterns. We also plan the development
of consensus algorithms using a world model that is not
synchronized among the MUM-T agents. Moreover, more
complex scenarios can be defined involving different types
of threats and drones.

This paper reported a low technology readiness level (TRL)
researh project, which is expected to move to a higher
TRL in future works. Moreover, in an immediate future
phase, this project will focus on state estimation (navigation
and tracking) as well as on distributed hardware-in-the-loop
simulation.
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