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ABSTRACT Obesity and laziness are some of the common issues in the majority of the youth today. This
has led to the development of a proposed exergaming solution where users can play first-person physical
games. This research study not only proposes a solution for physical fitness in the form of a game using
wearable sensors but also proposes a multi-purpose system that provides different applications when trained
for the domain-specific dataset. Critical tasks of gesture recognition and depiction in virtual reality can be
applied to many applications in the domains of crime detection, fitness, healthcare, online learning, and
sports. In particular, the proposed system enables a user to perform, detect, and depict different gestures in
the virtual reality game. First, the system pre-processes input data by applying a median filter to overcome
the anomalies. Then, features are extracted through a convolutional neural network, power spectral density,
skewness, and kurtosis methods. Further, the system optimizes different features by using the grey wolf
optimization. Lastly, the feature set which is optimized is fed to a recurrent neural network for classification.
When Compared to the traditional methods, the suggested system gives better results while being easier
to use. The IMSporting behaviors (IMSB) dataset includes badminton and other physical activities, the
WISDM dataset includes common locomotor motions, and the ERICA dataset which includes a variety
of exercises, were used in the experimentation. According to experimental findings, the suggested approach
outperformed current methods, which showed detection accuracies of 85.01%, 88.46%, and 93.18% over
the IMSB, WISDM, and ERICA datasets, respectively.

INDEX TERMS Convolution neural network, exergaming, grey wolf optimization, recurrent neural network,
virtual reality, wearable sensors.

1. INTRODUCTION industry, which was estimated to be worth “$179.7 billion”
According to global statistics, the gaming sector is now the in 2021, is predicted to increase at a “CAGR of 8.94%”
one that is expanding the quickest globally. The gaming from 2022 to 2027 and reach a value of $339.95 billion. [1].
Playing games using a mouse and keyboard is old-fashioned,

The associate editor coordinating the review of this manuscript and and the need for a new methodology for playing games
approving it for publication was Alberto Cano . is essential to further expand this billion-dollar industry.
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Apart from that, studies have revealed that people with more
screen time are prone to become obese, lazy, sleepless, and
tired [2]. Generally, sleeplessness can cause anxiety, mental
disorders, and anger issues in adults. Most of these adults
have no physical activities, and they are addicted to gaming,
which causes a lot of rash effects on their behavior and their
bodies [3]. Researchers have been trying to find new ways to
make games less harmful and more useful in areas like health,
education, sports, and the military. This is because games
are used by a lot of people and can have negative effects on
them.

Morton Heilig created the first virtual system in 1957 and
gave rise to the concept of virtual reality (VR). The proposed
gadget was known as sensorama, but later, in 1987, researcher
Jaron Lanier came up with the phrase “virtual reality” [4].
VR headsets are now too expensive for the general pub-
lic to use. Oculus Go, for instance, has the highest pricing
at $545. The Oculus headgear may be purchased for as low
as $249 [5]. There are some systems similar to Meta Quest 2,
HTC Vive Pro 2, Sony PlayStation VR, and Wii Nintendo that
provides similar and amazing experiences to their users, but
they are quite costly. Apart from that these VR devices have
long wires attached to computers which restrict users from
moving freely in the space around them. There is no gesture
recognition system inside these systems. They can only be
used for a single purpose at a time. Powerful computing
machines are required for generating VR views, and VR illu-
sions and the controllers for playing games only work after
buttons on the controllers are pressed. Some VR headsets
have cameras that continuously detect the controller move-
ments, and, in this way, they performed an action. In such a
system it is common to witness action delay, speed issues,
and gesture accuracy issues. Apart from these issues, there is
also a configuration issue that is common in almost all VR
headsets i.e., login, signup, and connectivity-related issues.
Hence, a novel, more efficient, wireless, cost-effective, and
the sensors-based wearable system is suggested in order to
make a difference. It will help youngsters having obesity
and other related issues by encouraging the use of physical
exercise in them.

1) The proposed approach is multi-purpose and not only
limited to gaming, but it can also be used in other
domains such as fitness, robotics, drones, sports, and
e-learning.

2) It connects VR and human physical health through
playing games in an indoor environment.

3) The system will also enhance the trend of old-fashioned
games by introducing a sensors-based wearable device
that can control gaming objects precisely through
accelerometer data generated from human body
gestures.

4) The system makes a unique virtual reality experience
by using inertial sensors, and it is both affordable and
user-friendly.

5) The system removes the wires and the need for pow-
erful computers. Instead, the wireless approach is
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designed for playing exergames in a virtual reality
headset using wearable sensors.

6) To anticipate the values, an accurate recurrent neural
network (RNN) classifier is utilized.

The proposed approach uses 6 DOF (degrees of freedom)
inertial sensors to measure acceleration. This data will be
transferred via a transmitter to the computer, where a pre-
trained deep-learning model will test via an RNN classi-
fier. Finally, the gaming behavior will be predicted, and
the appropriate interface will be loaded into the game. The
sensor data controls the avatar gestures and sends the real-
time gesture data to a pre-trained model. The motions and
activity recognition may be shown over the personal com-
puter (PC) at the same time as the user watches in their
VR headset.

Numerous head-mounted displays for VR (HMD-VR)
exergames are being utilized widely for rehabilitation and
to aid the recovery of patients [6]. In addition, VR games
have several uses in the medical field, such as preventa-
tive health and well-being along with medical evaluations
in clinical treatments [7]. VR gaming has a wide range of
educational uses as well. The use of games in a classroom
increases students’ engagement and motivation, whereas
first-person VR game usage will keep students active and
healthy while having fun [8]. There has been a resurgence in
the research related to delivering therapy using VR gaming
systems. VR games offer potential in the treatment of numer-
ous ailments, including post-stroke, Parkinson’s disease, and
others [9].

The following are our system’s significant contributions:

o Our suggested system provides a cost-effective solution
to very serious issues like childhood obesity and other
health-related problems.

o Similar systems exist in the realm of VR, but they are
exceedingly expensive and out of the reach of the com-
mon man. As a result, the suggested method creates a
product that allows individuals to keep in shape while
playing games in an indoor environment.

o Our hardware-based system is being developed and
tested. Therefore, it is a reliable solution for physical
health and other applications.

« To make our system efficient and affordable, we are
incorporating a straightforward and inexpensive VR
device.

o The system outperformed other already made approaches
in terms of accuracy rates.

The remaining article is structured as follows: Section II
looks at similar research in the area of VR sports
action detection using sensors and cameras. The sug-
gested technique is thoroughly explained in Section III.
The many datasets that were utilized to verify the effec-
tiveness of the suggested strategy and the outcomes of
those tests are described in Section IV. The paper’s con-
cluding part and goals for the future are included in
Section V.

12461



IEEE Access

M. M. Afsar et al.: Body-Worn Sensors for Recognizing Physical Sports Activities in Exergaming via Deep Learning Model

Il. RELATED WORKSs

For deep learning and machine learning-based systems
employing a range of sensors, including inertial measure-
ment units (IMU), cameras, and other fused sensors, several
methodologies have been proposed by numerous academics.
This section reviews the research on camera-based and wear-
able sensors-based systems.

A. VIRTUAL REALITY EXERGAMING WITH WEARABLE
SENSORS

Virtual reality games and sensors have been utilized in several
applications in recent years. I. Paraskevopoulos and E. Tsek-
leves suggested a system in [10] that incorporated motion
capture technology that was more affordable, flexible, and
off-the-shelf with video games that were specially designed
to meet the needs of Parkinson’s Disease (PD) rehabilita-
tion. However, they used larger controllers for the game, and
D. Fitzgerald et al. developed a computer game for VR in
order to lead an athlete through several advised rehabilitation
activities [11].

In an effort to enhance physical performance while avoid-
ing or treating musculoskeletal disorders, certified profes-
sionals have prescribed training programs to athletes. With
the use of serious games and virtual environments, Mon-
dragén Bernal et al. developed and assessed a system for
teaching power distribution operation. Building information
modelling from a “115 kV”* substation was utilised to create
a scenario with high technical details suited for professional
training in the VR simulator. [12].

Immersive 3D virtual worlds and serious games, or video
games meant to be educational, are both growing in popular-
ity. Serious games have just lately been tested for healthcare
education. Following a review of educational philosophies
highlighting the importance of serious games and virtual
simulations as teaching aids, Ma et al. examined various
instances of early teaching models and evaluated procedures
in their study [13]. They further made recommendations for
how to assess their worth in a learning environment.

VR technologies are gaining popularity as a way to model,
evaluate, and improve the assembly process. Abidi et al. dis-
cussed the development of a “‘haptic virtual reality platform”
for virtual assembly planning, execution, and evaluation. The
technology enables real-time handling and interaction with
virtual components. To examine the advantages and disad-
vantages of combining haptics with physical-based modeling,
the system consists of several software programs including
Open Haptics, PhysX, and OpenGL/GLUT libraries [14].

B. VIRTUAL REALITY EXERGAMING WITH CAMERA

Researchers have used a variety of approaches while employ-
ing camera-oriented VR systems. To put handicapped persons
at ease, Gerling et al. [15] devised a system that employed
the “Kinect v2 depth camera” to evaluate the movement
of wheelchair and created two Unity VR games. The
study’s findings were highly encouraging since an immersive

12462

VR experience for persons with disabilities proved to be a
wonderful experience for them.

Stomp Joy was a camera based VR game which was spe-
cific to one task which was rehabilitation after lower limbs
stroke developed by Xu et al. [16]. Sangmin et al. [17] created
a VR game in Unity for the A-Camera and A-Visor. They dis-
played cutting-edge head-mounted virtual reality controllers
that enthusiasts could easily construct for themselves using
corrugated cardboard, an Arduino, and sensors.

Another study expands the use of VR in manufacturing
by incorporating ideas and research from training simula-
tions into the evaluation of assembly training efficacy and
training transfer [18]. A research was carried out by Abidi
et al. to evaluate and contrast the virtual assembly training
method used for the first Saudi Arabian vehicle prototype.
Three learning contexts were examined in this study: con-
ventional engineering, computer-aided design environments,
and immersive VR. Random assignments were made to the
various training contexts for 15 university students [19].

Industrial design, planning, and prototyping are more suc-
cessful and economical when done in VR. The study con-
ducted by Abdulrahman M. Al-Ahmari and colleagues and
reported in this paper was primarily concerned with creating
a “‘virtual manufacturing assembly simulation system’ that
tackles the limitations of VR settings. Using a virtual environ-
ment, the proposed system builds an interactive workbench
for looking at different assembly options and teaching how to
put them together [20].

Dissimilar from the above systems in literature, our frame-
work proposed wireless body-worn sensors for controlling
3D game objects, a deep learning-based approach for rec-
ognizing sports behaviors, and activity recognition for an
indoor gaming activity that is used to predict the label of the
considered game activity.

Ill. OUR APPROACH

This section elaborates on the proposed architecture for active
monitoring of the sports-related activities of humans and their
conversion into IMU data for its recognition in gaming activ-
ity. Such recognition can be very helpful for demonstrating
complex sports behaviors in VR. It is also helpful for artificial
intelligence-based gaming objects to recognize a set of sports
behavior.

Fig. 1 shows a description of the overall system. Accord-
ing to the figure, wearable sensors generate accelerometer
data for particular gaming activity, which is performed by
humans using the body-worn sensors-based device. The pub-
licly available benchmarked datasets were used to evalu-
ate the proposed system. The data was pre-processed, and
the corresponding features were extracted. A well-known
approach of grey wolf optimization (GWO) was efficiently
used for feature optimization over the extracted features.
RNN classifier is further applied for the classification of these
optimized features to recognize the gestures performed by
humans. Lastly, the predicted gesture was depicted in the
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Activity Recognition and Classification Using

Depiction in VR Game

FIGURE 1. Overall flow of the architecture of system.

VR game and the user can play the game as first person in
the VR world.

A. DATA PRE-PROCESSING

The ERICA dataset contained 3-axes accelerometer data,
which is obtained by integrating mpu6050 device with
Arduino. Each value in the data portrayed a certain position
of a body part where the body-worn device is attached in 3D
space. Hence, each value of the dataset is equally important in
the proposed approach, but the data may contain irrelevancy,
irregularity, inconsistencies, and repetition that can affect the
proposed model and generate false predictions [21]. It is
called the noise in data that needs to be calibrated before it is
fed to the classifier. To reduce this noise, the data was divided
into frames, which improve the quality of data and ensure
the employment of signal enhancement for data filtering to
identify undesired features. It also helps in avoiding irrele-
vancy, irregularity, inconsistencies, and repetition issues [22].
Then, a 3" order median filter has been used to cancel the sig-
nificant noise artifact. However, the median filter is a “‘non-
linear filter””, which removes ‘‘speckle noise” from a given
signal. It provides the median of the signal in a required size
and outperformed the “low pass filter”” because of reducing
noise with keeping the original signal. The median filter is

calculated as:
by [g] if niseven

MedX) =1 yin — 121 + X[n + 12] s odd M
I nis o

2
where n is the count of values and X is the “ordered set of
values™ in the dataset [23]. ERICA is a lightweight dataset
containing sensor data from three different gym exercises.
Every data value is important, and a small proportion of data
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requires pre-processing. For this purpose, median filter was
applied. Fig. 2 shows the result of the median filter applied
over ERICA dataset in the form of filtered and unfiltered
signals. The dotted line displays the filtered wave, and the
solid line shows the unfiltered data.

—— Unfiltered
Filtered

—— Unfiltered
0.6 Filtered "
A A

0.4

0.2

0.0

FIGURE 2. Filtered and Unfiltered 3-axes accelerometer signal of motion
sensor from ERICA dataset.

B. FEATURES EXTRACTION

After pre-processing, the data is further subjected to features
extraction methods to collect unique features from the data.
These features were then passed to the features optimiza-
tion module for further processing. We have utilized four
different feature extraction methods including power spectral
density (PSD), skewness, kurtosis, and convolutional neural
network (CNN).

1) POWER SPECTRAL DENSITY (PSD)

PSD determines the “power of a signal as a function of
frequency” by using the signal’s per unit frequency [26].
Watts per hertz (W/Hz) is a typical unit of measurement
for PSD. Fast Fourier Transform (FFT) has it’s function to
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produce the Discrete Fourier Transform X (w;) of a signal,
where w; gives the frequency point. Following is the equation
to calculate PSD:

! 2
Pwi) = S 1X (wi) | @

The average power P, can be explained as S () df , where
the function S (f) is used to express the power of each min-
imal limit unit’s frequency component, it will be referred to
as the PSD [27].

1 oo
Py = lim — [ E[|X,("|]dr A3)

10—~ 2ty J_oo

_ /°° tim EL[X0 O]

oo fo—00 2t

to—> 00 2to

df

S = “

PSD shows the energy of fluctuations relative to frequency.
In other words, it demonstrates the frequencies whose certain
variants are strong and those frequencies that are weak. PSD
is applied over three columns of the dataset, which contains
accelerometer data in the X, y, and z-axis. This data is col-
lected concerning time domain. When PSD is applied over
the ERICA dataset, unique features are extracted from the
frequency domain. Fig. 3 elucidates the results, which show
the signals’ power vs frequency. This helped in explaining the
distribution of data between multiple frequency domains.

7 ‘ —— PSDWX
PSDWY
—— PSDWZ

1072 107!
FREQUENCY

FIGURE 3. Features Extraction using PSD over ERICA Dataset.

2) SKEWNESS

Skewness can be defined as a slight deviation from the ““nor-
mal distribution or symmetrical bell curve” in a collection
of data. There are various conditions. If the curve is seen
inclined towards right or left, data has skewness. Skewness
can have zero, negative, positive, or undefined values [28].
Skewness can be calculated as:

>V X —x)°
(N—=1) %03
where N is the total sample count in data, X; is the value of the

samples, X gives the mean, and o shows the standard devi-
ation. Skewness scores are calculated between —3 and +3.

Skewness =

&)
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If a value of skewness in a distribution is more than 1 or lesser
than -1, it is said to be strongly skewed, if it is between 0.5 and
1 or -0.5 and -1, it is said to be mildly skewed. Additionally,
the distribution is said to be very symmetrical if the value of
skewness is between -0.5 and 0.5 [29]. The skewness of the
“ERICA dataset” is shown in Fig. 4.

0.8

o
o

DENSITY
o
Y

0.2

0.0

-2 -1 1 2

0
SKEWNESS

FIGURE 4. Features Extraction using Skewness over ERICA Dataset.

3) KURTOSIS

The final feature extraction method used in our proposed
system was kurtosis. It can be termed as the cumulative
weight of a distribution’s tails in relation to its middle point.
A set of essentially normal data may be visualized using a
histogram to reveal a bell-shaped peak with the majority of
data falling within three standard deviations (plus or minus)
of the average [30]. The equation below is a mathematical
formula for kurtosis:

N Xi=X)

Kurtosis = 121—41\’ (6)
o

where N is the total sample count in data, X; is the value
of the samples, X denotes mean and o denotes standard
deviation. A metric in the statistics field is called kurtosis,
which expresses the measure of divergence of a distribution’s
tail from those of a normal distribution. Kurtosis, thus, tells
if a particular distribution’s tails include greater values. [31].
Fig. 5 displays the features selected from ERICA dataset via
the kurtosis-based features extraction method.

-6 -4 2 0 2 4
KURTOSIS

FIGURE 5. Features Extraction using Kurtosis over ERICA Dataset.
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4) CONVOLUTIONAL NEURAL NETWORK

To extract features, we applied CNN over the filtered data
that collected the features, while a dissimilar neural network
classified the features. The feature extraction network uses
input data. Three layers make up a neural network; input,
output, and hidden layer. The neurons in CNN are similar
to the neurons of human body. The way they take the input,
analyze it and send the response to the body is similar. Data
arrays are accepted as input by the input layer. CNN’s may
have several hidden layers that employ mathematics to extract
characteristics from the provided data. Several instances of
this include convolution, pooling, corrected linear units, and
fully connected layers. Formally, the following formulas were
used to extract key features map via one-dimensional convo-
lution operation:

g™V @) = o+ Kjp (1) *aj (1)
F! !
AP AR

N

where a} (t) denotes the “feature map j in layer I”’, o is a
“non-linear function”, F' gives the ‘“number of feature maps
in layer 17, K]} displays the “kernel convolved over feature
map f in layer 1” to form the ‘“‘feature map j in layer (14-1)”,
P is the “length of kernels in layer I’ and b; provides a “‘bias

vector’ [25]. The datasets have some activities and when we
pass the dataset columns to CNN based feature extraction
method, we will get a unique feature. The features extracted
of CNN on the ERICA dataset are demonstrated by three
different colors in Fig. 6.

0.3

0.2

0.1

CONVOLUTION FEATURE

\ |/ —— CONVOLVEDACCX
~02 | CONVOLVEDACCY
—— CONVOLVEDACCZ

0 20 40 60 80 100
DATA

FIGURE 6. Features Extraction using CNN over ERICA Dataset.

The algorithm for data preprocessing and features extrac-
tion methods described above is shown in Algorithm 1:

C. FEATURE OPTIMIZATION

The dimensionality reduction method was employed next
over multiple datasets to divide and reduce the vector size
to make them more manageable groups. A necessary step
in the ‘““feature selection process” of a predictive model is
to make the feature array smaller and use only the features
that are important in certain cases. Fewer input variables
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Algorithm 1 “Data Preprocessing and Feature Extraction”

Input: Dataset
Output: Filtered dataset and extracted features
For i from 0 to length of dataset
For j from 0 to length of dataset[i]
Set dataset[i][j] to median(dataset[j])
For i from O to length of dataset
For j from 0 to length of dataset[i]
Apply 1 by 1 convolutional layer
Extract and add result feature map to extracted features
For i from O to length of data
For j from 0 to length of data[i]
Compute Skewness of data
Extract and add result feature map to extracted features
For i from O to length of dataset
For j from O to length of data[i]
Compute Kurtosis of data
Extract and add result feature map to extracted features
For i from 0 to length of dataset
For j from 0 to length of data[i]
Compute Power Spectral Density of data
Extract and add result feature map to extracted features

might improve the model’s performance while simultane-
ously minimizing the computational expense of modeling.
Modern advanced feature selection techniques choose a sub-
set of essential features utilizing the strength of optimization
algorithms to improve classification outcomes [32].

Numerous controlling factors were used by the majority
of optimization algorithms including the genetic algorithm.
They must be tuned for improved performance. The optimiza-
tion step of the proposed system uses the GWO technique,
which is a novel meta-heuristic optimization technique. Its
guiding premise is to model cooperative hunting behavior
similar to that of grey wolves in the wild. Compared to other
techniques, GWO has a unique model structure. The goal of
the GWO is to use population interaction to locate the best
areas of the complicated search space [33]. The pack finds its
prey by changing the positions of the individual agents with
respect to the prey location as follows:

X(@+1)=X,()+AD ®)

where X, is the prey position, X is the grey wolf position ¢
is the iteration, the dot operator shows vector entry-wise
multiplication, and D is defined as:

D =|C.X) (1) — X(1)] )]
where coefficient vectors (A and C) are computed as follows:

A=2ar —a (10)
C =2n (1T)

where “ri and rp”are random vectors with ranges [0, 1]
and a is a linear function of the number of exploration and
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exploitation repetitions. All wolves have the same value for a.
According to these calculations, a wolf can modify its loca-
tion in the search area around its prey at any random time. The
entire pack engages in hunting based on information provided
by the beta, alpha, and delta wolves, who are aware of the
whereabouts of the prey, as stated in the following:

X X X
X(t+1) = % (12)
where X, X, X3 are calculated as follows:
X1 = |Xg —A1.Dy| (13)
Xy = |Xg — A2.Dg| (14)
X3 = |X, —Az.Dy | (15)

where X1, X2, X3 are best results and Dy, Dg, D,, are calcu-
lated as [34]:

Dy = |C1.Xy — X| (16)
Dp = |C2.Xp — X| (17)
D, = |C3.X, — X| (18)

Fig. 7, Fig. 8, and Fig. 9 display the visualization of the
fitness value or best solution with the number of iterations
by applying GWO over the ERICA, IMSporting Behaviors
(IMSB), and WISDM datasets, respectively.

0.0022
0.0020
0.0018
0.0016¢%
0.0012{@
0.0012

FIGURE 7. Grey Wolf Optimization Visualization over ERICA Dataset.

Samples

. 0.0015¢%
10 0.0010
Ons

FIGURE 8. Grey Wolf Optimization Visualization over IMSB Dataset.
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Samples

FIGURE 9. Grey Wolf Optimization Visualization over WISDM Dataset.

D. RECURRENT NEURAL NETWORK

The classification of interactions has been carried out by a
classifier named RNN and it is the last phase of the proposed
system. The RNN is a fast, robust, and one of the most
reliable neural networks currently available due to its unique
feature called internal memory [35]. Fig. 10 shows a visual
representation of the RNN for the ERICA dataset, which has
a 5 hidden layers of LSTM, one input layer of LSTM and an
output-dense layer.

lstm_input | mput:

[(None, 3. 1)]
[(None, 3, 1)]

InputLayer | output:

 J

Istim nput:
LSTM

(None, 3, 1)
(None, 3, 128)

output:

| J
Istm 1 | mput: | (None, 3, 128)

LSTM | output: | (None, 3, 128)

L |
lstm_2 | put: | (None, 3, 128)

LSTM | output: | (MNone, 3, 128)

 J
Istm 3 | mput: | (None, 3, 128)

LSTM | output: | (None, 3. 128)

|

Istm 4 | mput:
LSTM | output:

(None, 3, 128)
(None, 128)

 J
dense | mput:

(None, 128)
(None, 4)

Dense | output:

FIGURE 10. Recurrent Neural Network Visualization over ERICA Dataset.

x(t) is used as input at any time step ¢ in RNN. One-
hot vector x1, for instance, may correspond to a word in a
text. H(t) serves as the network’s ““memory”’ and represents a
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concealed state at time t. The hidden state of the previous time
step and the current input is used to determine 4 (¢). The RNN
has connections for hidden input, hidden-to-hidden recurrent
connections, and hidden-to-output connections, all of which
were parameterized by a “’weight matrix U,” ’weight matrix
W,” and “weight matrix V,” respectively. Over time, all of
these “’weights (U, V, W) were shared. By o(t), the network
output is shown. [36]. The following set of equations can be
used to model the RNN forward pass:

a® = b+ wh'D 4 ux® (19)
o = ¢+ vh® (20)
Y = tanh (a(’)) 21
)A/(t ) = softmax(o(’)) (22)

The equations shown above are an illustration of a recurrent
network that converts an “‘input sequence” into an identically
lengthened “‘output sequence”. The sum of the losses across
all the time steps would thus be the overall loss for a par-
ticular series of x and y values. We suppose that the vector
of probabilities over the output was obtained by using the
“outputs o(¢)” in the softmax function [37]. We also suppose
that, given the current input, the loss L is the “negative log-
likelihood” of the genuine goal y(t). The algorithm for fea-
ture optimization and classification by RNN is shown below
in Algorithm 2:

Algorithm 2 Grey Wolf Optimization and Classification by
RNN

Input: Dataset with extracted features
Output: Optimized features and classification result
Initialize the grey wolf population X;, i = 1, n
Initialize a, A and C
Find each search agent fitness
Xx = “Best Search Agent”
Xp ="Second Best Search Agent”
Xy ="Third Best Search Agent”
while t < iterations maximum number do
for each search agent do
Randomly initialize r{and rp
Update current search agent position
Update a, A and C
Find all search agent fitness
Update X, X}g and X,
t=t+1
Return X
Initialize X to dataset[features]
Initialize Y to dataset[classes]
Split X and Y to train and test data by 80% and 20% ratio
Set RNN to sequential mode
Add an “LSTM” layer with 128 units, and return_sequence = True
Add an “LSTM” layer with 128 units, and return_sequence = True
For each i which is [True, True, False]
Add LSTM layer with return_sequence = i
Add Dense layer with softmax activation function and units =
outputclasses.length
Compile RNN with adam optimizer and
categorical_crossentropy loss function
Run RNN with 100 epochs and batch size = 8
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IV. EXPERIMENTAL SETUP AND RESULTS
The experimental results part discusses about the benchmark
datasets which we have used in our study, and experimental
setup for the proposed system, statistical evaluation, results
by implementing the proposed architecture, and comparison
of this work with other body-worn systems.

A. DATASET DESCRIPTION AND METRICS

High-intensity interval training (HIIT) can be delivered
through exergaming in virtual reality, which combines exer-
cise and enjoyment. We have used three different datasets
in this study i.e., IMSB [38], [39], WISDM [40], and
ERICA [41].

The first dataset used is IMSB created by Intelligent Media
Centre, Air University, Islamabad. There are six different
sports-related interactions in the IMSB dataset including
table tennis, football, cycling, badminton, basketball, skip-
ping. Three tri-axial accelerometers were attached to the
knee, wrist, and lower neck regions of the subjects. The
dataset contained motion data from participants performing
six different sports as mentioned above. The dataset also con-
tained 120 data sequences with varying exercise time period
from the 40s to 60s. A total of 20 subjects were engaged in
repetitive behaviors. Fig. 11 shows the plots of raw data from
three accelerometers in x, y, and z coordinates for basketball
and badminton behavior.

9500 9600 9700 9800 9900 10000

FIGURE 11. Raw data plots of three accelerometers showing (a)
basketball and (b) badminton behavior from IMSB dataset.

The WISDM is the next dataset that was used. The activ-
ities included in the dataset are running, sitting, standing,
going up and down stairs, and so on. There are 1,098,207
total samples in this dataset, including 424,400 walking sam-
ples, 342,177 jogging samples, 122,869 upstairs samples,
100,427 downstairs samples, 59,939 sitting samples, and
48,395 standing samples. Fig. 12 represents the walking and
Jjogging behavior over the WISDM dataset.
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FIGURE 12. Raw data plot of one accelerometer displaying (a) walking
and (b) jogging behavior from WISDM dataset.

The third dataset utilized was ERICA, which was created
for the automated tracking and analysis of exercise activities
at the individual level. This dataset was acquired as part of the
development of a low-cost, pervasive digital personal train-
ing system that combines affordable IoT sensors linked to
dumbbells with personal wireless ear-worn devices (earables)
to enable fine-grained tracking of a person’s free-weight
exercise training. Total of 324 samples from three separate
free-weight workouts carried out by 27 subjects are included
in this dataset. The activities performed in a dataset are biceps
curls, lateral raises, and triceps extensions. Fig. 13 shows

i N
— ACCX
—— ACCY
-1.0 { — Accz

5800 5825 5850 5875 5900 5925 5950 5975 6000

(b)

FIGURE 13. Raw data plot over one accelerometer showing (a) Biceps
curls and (b) lateral raises behavior from ERICA dataset.
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the biceps curls and lateral raises behavior of the ERICA
dataset.

B. EXPERIMENTAL SETUP

This section gives a brief description of the implementation
of our proposed system. A 3D VR game will be made in
Unity3d which when playing is visible to the person by a
screen attached to the VR headset and on the PC as well
through screen casting method [42].

A 6 DOF sensor MPU6050 is utilized for capturing the
motion data of the human body during exergaming. Arduino
nano read the sensor data and send it via nrf24101 to the
receiving point, which is computer, using serial communi-
cation. Further, the User Datagram Protocol (UDP) com-
munication was used to establish a secure connection using
specific IP based path to convey data from host to destination
and in our system, it helps in establishing a secure channel
connection between computer and VR game to convey the
predicted results from the proposed model to the game [43].
The results are presented in the form of confusion matrices
and a precision-recall table. On a Windows 10 computer
running the Unity3D and Python programming languages,
with 16 GB of RAM, and a Core i7-7500U CPU running at
2.70 GHz, all processing and experimentation were carried
out. nRF24L.01 and MPU6050 on an Arduino Nano were uti-
lized to create body-worn. Finally, using the IMSB, WISDM,
and ERICA datasets, the suggested system’s performance is
compared to the precision of other already made systems.

C. SATISTICAL EVALUATION

We will go over the experimental findings of the suggested
model using the publically accessible IMSB, WISDM, and
ERICA datasets in this part. We will also be comparing the
results with other state-of-the-art methods.

1) IMSporting BEHAVIORS DATASET

Regarding the IMSB dataset, confusion matrices are used
to demonstrate interaction recognition for different dataset
types. A “confusion matrix”’ measures the effectiveness of
a classifier on the basis of “true positives, false positives,
true negatives, and false negatives”. [44]. The amount of true
positives reveals the correctly detected classes represented
on the matrix diagonal. Table 1 demonstrates the confusion
matrix over the IMSB dataset.

TABLE 1. Confusion matrix over imsporting behaviors dataset.

Classes BDN BTB Cg FB Sg TT
BDN 0.84 0.02 0.00 0.14 0.00 0.00
BTB 0.01 0.97 0.00 0.02 0.00 0.00

Cg 0.00 0.00 1.00 0.00 0.00 0.00
FB 0.16 0.09 0.00 0.68 0.00 0.07
Sg 0.02 0.01 0.00 0.07 0.88 0.02
TT 0.02 0.00 0.00 0.05 0.00 0.93

Mean Accuracy = 85.01%

*BDN = Badminton; BTB = Basketball; Cg = Cycling; FB =
Football; Sg = Skipping; TT = Table Tennis
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The confusion matrix in Table 1 shows that a few interac-
tion classes having related activity types are confused with
each other. The mean accuracy achieved by applying the
classifier is 85.01%. The recall, precision, and F1-score for
different classes over the IMSB dataset are shown in Table 2.

TABLE 2. Classification results over imsporting behaviors dataset.

In(tjeizzszison Precision Recall Sclz)lre
Badminton 0.82 0.94 0.88
Basketball 0.98 0.97 0.98
Cycling 1.00 1.00 1.00
Football 0.89 0.80 0.84
Skipping 0.99 0.95 0.97
Table Tennis 0.97 1.00 0.99
Mean 0.94 0.94 0.94

Hence, an accurate system was developed, which was able
to recognize each game with high precision [45]. The results
of the gaming interface using the IMSB dataset are presented
in Fig. 14.

Activity: Table Tennis Activity: Football

(a) (b)

FIGURE 14. Gaming Interface for predicted gaming activities (a) Table
tennis and (b) Football using IMSB dataset.

Table 3 represents a comparison of classifier results when
compared to the other state-of-the-art methods. Many sys-
tems were developed that are similar to the proposed method.
A comparison of the systems developed over the IMSB
dataset has been displayed in Table 3. The results from other

TABLE 3. Imsporting behaviors dataset accuracy (%) comparison with
state of the art methods.

Recognition Accuracy

Method (%)

MLP [49] 75.90

Classification using LSVM 80.0
[48]

Artificial Neural Networks 82.83
[46]

Random Forest [47] 83.42

Proposed 85.01
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systems using different classifiers over the IMSB dataset are
compared with the proposed method. Authors have used arti-
ficial neural networks algorithm along with features extrac-
tion methods and got an accuracy of 82.83% [46]. Another
system utilized a random forest algorithm and achieved an
accuracy of 83.42% [47]. One of the other proposed systems
used for classification through LSTM with multi-fused fea-
tures extraction achieved an accuracy of 80% [48]. Lastly,
a system using the multi-layer perceptron (MLP) achieved an
accuracy of 75.90% [49]. The system proposed in this paper
has achieved an accuracy of 85.01% that outperformed all the
previously proposed systems.

2) WISDM DATASET

For WISDM dataset, the results from RNN classifier over
the optimized features produced the confusion matrix that is
shown in table 4. It is clear that the result of interaction classes
was efficient and acceptable. A small amount of data from
some interaction classes was confused i.e., achieving a mean
accuracy of 88.46%.

TABLE 4. Confusion matrix of WISDM dataset.

Classes WLK Jg Up Dw Stg Std

WLK 0.82 0.13 0.02 0.03 0.00 0.00
Jg 0.05 0.88 0.03 0.04 0.00 0.00
Up 0.10 0.31 0.48 0.10 0.00 0.01
Dw 0.09 0.35 0.13 0.42 0.00 0.01
Stg 0.00 0.01 0.00 0.00 0.99 0.00
Std 0.00 0.03 0.02 0.00 0.00 0.95

Mean Accuracy = 88.46%

*WLK = Walking; Jg = Jogging; Up = Upstairs; Dw = Downstairs;
Stg = Sitting; Std = Standing

The ratio of “correct positive predictions” to the “total
positives” is precision while the recall is the ““true positive
rate”, and it is the ratio of “correct positive” to the “total
predicted positives”. The average of precision and recall is
the F1 score [50]. The precision, recall, and Fl-score for
classes of the dataset are given in Table 5.

TABLE 5. Classification results over WISDM dataset.

Interaction

Classes Precision Recall F1 Score
Walking 0.87 0.82 0.84
Jogging 0.76 0.88 0.82
Upstairs 0.62 0.48 0.54
Downstairs 0.54 0.42 0.47
Sitting 0.99 0.99 0.99
Standing 0.93 0.95 0.94
Mean 0.78 0.76 0.77
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An accurate system was developed that can recognize each
game with high precision. The results of the gaming interface
using the WISDM dataset are shown in Fig. 15.

Activity: Walking
(a) (b)

Activity: Siting

FIGURE 15. Gaming Interface for showing predicted gaming activities
(a) Waling and (b) Sitting using WISDM dataset.

Table 6 represents a comparison of RNN results over
the WISDM dataset with other state-of-the-art models. The
results were compared with the conventional system and
compared with the proposed method. Authors in [51] have
used a reweighted genetic algorithm and achieved an accu-
racy of 87.75%. Another proposed system in [52] utilized
MLP and achieved a 75.09% accuracy rate. Another system
applied classification through CNN and achieved 75.90%
accuracy [53]. The Hoeffding tree algorithm has achieved an
accuracy rate of 75.54% in another proposed method [53].
Lastly, a system utilized support vector machines and
achieved 82.77% accuracy [38]. The proposed system in
this paper has outperformed these systems by achieving an
accuracy rate of 88.46%.

TABLE 6. Wisdm dataset accuracy (%) comparison with state of the art
methods.

Recognition Accuracy

Methods (%)

MLP [52] 75.09

Hoeffding tree [53] 75.54

CNN [53] 75.90

SVM [38] 82.77

reweighted genetic algorithm 8775
(rGA) |51] )

Proposed 88.46

3) ERICA DATASET

Due to its light nature, many classifiers generate efficient
results over the ERICA dataset. The accuracy acquired by
the proposed system via RNN and optimized features from
ERICA dataset is 93.18%. The confusion matrix over ERICA
dataset is shown in Table 7. It is shown that the results of
interaction classes have achieved a mean accuracy rate of
93.18%. Despite the complications in activities, the results
show that few activities are confused with other activities.
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TABLE 7. Confusion matrix over erica dataset.

Classes BC LR TE
BC 0.87 0.11 0.02
LR 0.09 0.89 0.02
TE 0.02 0.03 0.95

Mean Accuracy = 93.18%
* BC = Bicep Curls; LR= Lateral Raise; TE = Triceps Extension

TABLE 8. Classification results over erica dataset.

Interaction Precision Recall F1 Score
Classes
Biceps curls 0.89 0.87 0.88
Lateral Raise 0.86 0.89 0.88
Triceps 0.96 0.95 0.95
extension
Mean 0.90 0.90 0.90

Position: -1.15 0.18 0.06

Position: 0.44 0.68 0.18

LATERAL RAISE

FIGURE 16. Gaming Interface for showing predicted gaming activities of
(a) Biceps curls and (b) Lateral raises using ERICA dataset.

TABLE 9. Erica dataset accuracy (%) comparison with state of the art
methods.

Recognition Accuracy

Method (%)
Random Forest [41] 70.0
Decision trees [54] 81.7
Artificial neural 84.0
network [55]
Proposed 93.18

The precision, recall, and F1-score for activities recognized
are given in Table 8.

The outcomes from the gaming interface over ERICA
dataset are shown in Fig. 16. The interface also illustrates the
gaming object’s gesture position that will give the informa-
tion regarding gaming label prediction.

Table 9 represents a comparison of RNN results over the
ERICA dataset with other state-of-the-art methodologies.
According to the table, Radhakrishnan et al. used the ERICA
dataset for their experiment and achieved 70.0% accuracy
using a random forest classifier [41]. An accuracy rate of
81.7% was attained for identifying gym workouts while mon-
itoring the leg muscles using a pressure-sensing system [54].
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The accuracy of the Kalman filter is 84.0% in a filter-based
sensor fusion activity recognition system [55].

V. CONCLUSION

The proposed system effectively implemented a VR first-
person game with an accurate deep learning-based gesture
recognition system. Recently, it solved a major problem of
obesity caused by a lack of physical activity particularly
in the young generation. Three datasets were utilized for
experimenting with the proposed approach, which are IMSB,
WISDM, and ERICA datasets. First, the dataset used is
pre-processed by applying a third-order median filter. Next,
features were extracted by four well-known techniques called
power spectral density, CNN-based features extraction, skew-
ness, and kurtosis. Then, the datasets were further reduced
through grey wolf optimization to get the optimized features.
Further, the gestures were classified by applying the RNN
classifier. After gesture prediction, the hardware is imple-
mented using Arduino and motion sensors. Furthermore, the
hardware and software components are created and com-
bined by serial communication. Extensive experiments have
been performed over the three datasets and demonstrated
the effectiveness and efficiency of the system by achieving
remarkable results and superior performance. It also outper-
formed the recognition accuracy of conventional state-of-the-
art systems.

As for limitations, the sensor must be calibrated otherwise,
it will generate wrong results. The sensor must be placed in
the right place to get the desired gesture result. The dataset
was generated by taking data on exercises from healthy and
young persons, and if you try Bodyworns on disabled persons,
you may get the wrong result. Activity labels might appear
after a few seconds of delay if you performed multiple activ-
ities together in less than 2 seconds. A battery power of 5V is
required for the sensor to work normally.

By including new features and playable games, we want
to increase the effectiveness of the suggested system in the
future. Additionally, we want to create a jacket with body-
worn sensors. In the future, we also hope to increase the
system’s precision and provide consumers a better user inter-
face so they may play and take pleasure in a virtual gaming
experience.
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