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ABSTRACT The English grammatical error correction system is suitable for the English learning
environment, with the goal of accurately correcting errors in learners’ writing. However, false corrections
are often generated in practical applications, and many errors cannot be corrected, thus misleading learners.
The quality estimation model is beneficial to ensure that learners obtain accurate grammatical error
correction results and avoid misleading sentences caused by error corrections. Grammatical error correction
models can generate multiple hypotheses of higher quality, but existing quality estimation models do
not consider interactions between different hypotheses. Based on this, we propose a model based on
multiple hypotheses interaction and self-attention, BGANet, for English grammatical error correction quality
estimation. BGANet builds interactions between multiple hypotheses, extracts and aggregates grammatical
error correction evidence in hypotheses through two kinds of self-attention mechanisms, and evaluates the
quality of the generated hypotheses. Experiments on four grammatical error correction datasets show that
BGANet has better quality estimation performance.

INDEX TERMS Attention mechanism, grammatical error correction, neural quality estimation.

I. INTRODUCTION
Grammatical Error Correction (GEC) in English is an impor-
tant application in the field of natural language processing
in the English environment, and its main purpose is to
provide guidance for English learners. Due to the progress
and popularization of machine learning and deep learning
methods, the research on grammatical error correction based
on deep learning methods has also made significant progress.
With the progress of globalization, the demand for learning
English is increasing day by day, and grammatical error
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correction has gradually attracted the attention of more
natural language processing researchers.

By far, English is the most widely spoken language and
the most spoken language as a second language in the world.
As non-native English speakers learn English, they tend to
make grammatical errors in their writing. Therefore, it is
crucial to create a tool that can accurately and effectively
correct grammatical errors of English learners, so we first
focus on the task of correcting grammatical errors in English.

The best performing work in the CoNLL-2014 Shared
Task [1], GECToR [2], its F0.5, precision and recall are
65.3, 77.5, and 40.1, respectively. Considering the complexity
and diversity of languages used in real-world scenarios,
the challenges faced by GEC are still daunting. In the
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practical application of language learning, GECmay produce
output that misleads learners. At this time, experienced
language learners can manually intervene to correct errors.
Estimating the quality of the GEC system’s output can greatly
assist learners in checking and correcting possible erroneous
outputs of the system. Based on this, we propose a deep
learning-based method for evaluating the quality of GEC
outputs.

GEC is generally regarded as a natural language generation
task [3], with Seq2Seq [4] architecture designed to correct
grammatical errors and beam search to generate correction
hypotheses [5]. Because of the effectiveness of transformer-
based architectures in natural language generation tasks [6],
they are also used to implement error correction [7]. To evalu-
ate GEC systems, Courtney et al. [8] proposed reference-less
metrics known as GBMs. Leshem et al. [9] provided another
measurement for meaning preservation using a semantic
annotation scheme. Large-scale pre-trained models such as
BERT [10] brings opportunities to improve the performance
of GEC, demonstrating its effectiveness in context learning
and enabling better quality estimation [11]. In terms of
natural language generation tasks, the interaction between
multiple hypotheses has an important impact on quality
estimation [12], but the existing quality estimation of GEC
outputs do not consider the interaction among hypotheses.

To fully exploit the valuable GEC evidence from GEC
hypotheses, we propose a model based on multiple hypothe-
ses interaction and self-attention, BGANet, to enable mul-
tiple hypotheses interaction-based GEC quality estimation.
Through beam search, BGANet selects K hypotheses sen-
tences from the output of the basic GEC model, and uses
the source sentence and hypothesis sentence pair as a node
to construct a connectivity graph to propagate GEC evidence
among multiple hypotheses, thereby establishing hypotheses
interactions. Then BGANet proposes two attention mecha-
nisms on the graph: attention based on hypothesis association
and attention based on hypothesis importance, summarizing
and aggregating the necessary GEC evidence from other
hypotheses to estimate the quality of tokens.

The main contributions are summarized as follows:
• We introduce the method of learning GEC evidence
through interactions between hypotheses for estimating
the quality of the generated hypotheses.

• We propose two types of attention for interactions of
different hypotheses and interactions between source
sentences and hypotheses based on the self-attention.

• We conducted extensive experiments to validate the
effectiveness of our method and show that it has
better performance on CoNLL-2014, FCE, BEA19, and
JFLEG datasets.

II. RELATED WORKS
A. GRAMMATICAL ERROR CORRECTION
Grammatical error correction (GEC) aims to enable the
system to automatically correct grammatical errors in a
given text, including any errors in vocabulary, syntax, and

semantics that violate the standards of English usage. At first,
mainstream methods used classification based methods to
correct preposition or article errors. In this approach, the
classifier is trained on a large number of error-free texts to
predict the correct target word, taking into account language
features given by the context. However, there is still some dis-
tance to correcting all the error types of goals here. With the
development of deep learning, GEC systems based on neural
machine translation that apply SeqSseq become mainstream,
correcting all possible errors by translating sentences that
do not conform to grammatical standards into correct ones.
Recently, the pre-trained language model BERT has proved
its effectiveness in context token representation, and some
methods rely on it to achieve better performance [2].

B. GRU
Gate Recurrent Units(GRU) [13], which is adapted from the
Simple Recurrent Neural Network (RNN) [14], is similar
to the Long Short-term Memory (LSTM) network [15], but
because the GRU has fewer parameters and has a faster
convergence speed, the actual training time is much less,
which can greatly speed up the iterative process of the model.
Compared with RNN, the improvement of GRU lies in the
addition of gating mechanism.

The reset gate and the update gate are important structures
for GRU to solve the problem of long dependencies. Unlike
LSTM, GRU reduces a gate. LSTM chooses to expose part of
the information (the output of the hidden layer is the desired
result, and the memory unit is only the carrier of information,
not as the output result), while GRU chooses to display all
the information, and the change of their output affects the
structure of each model. The reset gate is in principle a
modification of the output gate of the LSTM, since the output
changes, it changes into the process of computing h̃t . The
reset gate will process the rules of combining the input of
the current time step with the memory of the previous time
step, the update gate will process the memory of the previous
time step, calculates the memory that needs to be retained and
save it to the current time step. The structure of the GRU unit
is shown in Figure 1.

FIGURE 1. The structure of GRU unit.

At time step t , when input xt enters a GRU unit, it first
passes through the update gate.

zt = σ
(
W (z)xt + U (z)ht−1

)
(1)
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In the update gate, the current input xt and the memory of
the previous moment ht−1 will undergo linear transformation
and sum, and the result will be mapped to between 0 and 1 by
Sigmoid function. If the value is close to 0, the information
will be discarded, and if it is close to 1, it will be saved.
The update gate determines how much information of the
last time step will be retained. The reset gate determines
how much information from the previous time step needs
to be forgotten, for input xt and ht−1 of the previous time
step.

rt = σ
(
W (r)xt + U (r)ht−1

)
(2)

C. BERT
In the early days, most natural language processing systems
adopted rule-based approaches [16], [17], [18], while were
later replaced by machine learning models [19], [20], [21].
Machine learning models need to create features from
raw data, which requires domain expertise and takes a
long time. Current Pre-trained language models based on
Transformer(T-PTLM) [22] have the ability to learn common
language representations from large-scale unlabeled text data
and transfer that knowledge to downstream tasks. When the
target task is similar to the source task, transfer learning
allows researchers to reuse the parameters learned from the
source task to the target task.

Devlin of Google and his colleagues proposed the bidi-
rectional encoder representation technology based on the
transformer, also known as BERT, in 2018. It abandoned
the decoder part of bidirectional Transformer, leaving only
the remaining encoder as its model architecture. In pre-
training, Masked Language Model is used to extract word-
level features, and Next Sentence Prediction is used to extract
sentence-level features. When pre-training model is used,
large quantities of data are not needed for training, thus
improving experimental efficiency.

The Multi-layer Bidirectional Transformer’s encoder is
the basis of BERT, and the implementation in BERT is
the same as the original implementation. In the process of
BERT implementation, the author expressed the number of
Transformer blocks as L, the number of hidden layer neurons
as H , and the number of heads in Multi-head Attention as
A. In all cases, the size of the forward propagating filter is
set to 4H , and the author provides two models, simple and
complex:

BERTBASE : L = 12,H = 768,A = 12

BERTLARGE : L = 24,H = 1024,A = 16 (3)

The number of parameters of the former is 110M, and the
number of parameters of the latter is 340M. BERT’s input
vector is the unit sum of three embedding features, which are:

• Token Embedding: Build a character vector dictionary
to map each character in the text to a one-dimensional
vector.

• Position Embedding: The position information of char-
acters is also encoded as feature vectors to prevent the

FIGURE 2. BERT’s input representation.

FIGURE 3. The calculation process of Self-Attention mechanism.

position information of words in sentences from being
modified by self-attention.

• Segment Embedding: Used to divide sentences.
In the Masked Language Model, the author believes that

the bidirectional depth model has stronger performance than
the one-way shallow connection. In order to obtain a good
bidirectional depth representation through training, the author
adopts the method of randomly masking token with 15% and
predicting only the masked part. The author calls this process
Masked Language Model. In Next Sentence Prediction,
its task is to judge whether two sentences are context or
not, and generate training data by randomly extracting two
consecutive sentences from parallel corpus. Half of the
data is reserved for two sentences, which conform to the
continuation relationship, and the other half are two sentences
randomly extracted from corpus, which have no relationship
with the previous sentence.

D. SELF-ATTENTION
Self-attention is evolved from Attention, it does not need
much external information and is characterized by good
detection of inter-data or internal correlation of features.
In the field of text processing, the key role is to solve the
problem of long-distance dependence in the long text by
calculating the relevance between characters.

The self-attention mechanism adopts query-key-value
scheme to improve the performance of the model, and the
operation process is shown in the figure 3. When the input
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FIGURE 4. The structure of the BGANet. The source and hypothesis are spliced together and the feature representation is learned by the
Seq2Seq module composed of BERT and BiGRU, then the interaction information between hypotheses is learned by hypothesis association
attention to obtain GEC evidence, and the importance of nodes is discriminated by evidence aggregation attention. Finally, the model
aggregates the token-level quality estimation to calculate the quality estimation results on the hypotheses.

is X = [x1, · · · , xN ] ∈ RDx×N , the query vector, key vector
and value vector are calculated first:

Q = WqX ∈ RDq×N

K = WkX ∈ RDk×N

V = WvX ∈ RDv×N (4)

where W is the parameter matrix of linear mapping,
Q = [q1, · · · , qN ] is the matrix composed of query vectors,
K = [k1, · · · , kN ] is the matrix composed of key vectors, and
V = [v1, · · · , vN ] is the matrix composed of value vectors.
For each query vector qn ∈ Q, the output vector hn can be
calculated:

hn = att ((K ,V ) , qn)

=

N∑
j=1

αn,jvj

=

N∑
j=1

softmax(s(kj, qn))vj (5)

where n, j ∈ [1,N ] is the position of the sequence of output
and input vector, and αn,j represents the correlation degree
between the j-th input and the i-th input.

III. HYPOTHESES ESTIMATION MODEL
First, we combine the source sentence s and each sentence
in its corresponding hypothesis set H = {h1, h2, . . . , hK }

into a source-hypothesis pair s-hi, where K denotes the
number of hypotheses, and all s-hi pairs are considered as
nodes and connected to establish the interaction between
different hypotheses. The Seq2Seq model will then obtain
the feature representation of s-hi pair, the encoder of
Seq2Seq model consists of BERT and the decoder consists
of Bidirectional GRU(BiGRU). Subsequently, two kinds
of attention mechanisms are proposed, attention based on
hypothesis association and attention based on hypothesis
importance, summarizing and aggregating the necessary
GEC evidence from other hypotheses to estimate token
quality. Finally, the quality of the hypothesis is estimated
by aggregating the token-level quality estimation scores. The
model structure is shown in Figure 4.

A. INITIAL FEATURE REPRESENTATION
For the source sentence s with length L and the hypothesis
hi with length N , the s-hi pair first passes through the
encoder constituted by BERT in Seq2Seq, and then the
output of the hidden layer of encoder is used as the input
of decoder BiGRU to obtain the token-level feature repre-
sentation Ri = {R1i ,R

2
i . . . ,RL+2

i , . . . ,RL+N+3
i } of the i-th

pair:

Ri = BiGRU(BERT(s-hi)) (6)

where R1i denotes the representation of ‘‘[CLS]’’, RL+2
i and

RL+N+3
i denotes the representation of ‘‘[SEP]’’.
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B. NODE REPRESENTATION OF ATTENTION BASED ON
HYPOTHESIS ASSOCIATION
Attention based on hypothesis association obtains supporting
evidence of the l-th node from the i-th node, thus establishing
token-level node representation V l→i.
For the p-th token tpi in the i-th node, we first calculate

the association score αl→i
q between nodes according to the

correlation between tpi and the q-th token tql in the l-th node:

αl→i
q = softmax((Rpi )

T
·W · Rql ) (7)

where W is a learnable parameter, Rpi and Rqi are feature
representations of tpi and tql respectively. Then all token
representations of the l-th node are aggregated:

V l→i
p =

L+N+3∑
q=1

(αl→i
q · Rql ) (8)

Based on V l→i
p , a token-level representation of the l-th

node pointing to the i-th node is further established:

V l→i
= {V l→i

1 , . . . ,V l→i
p , . . . ,V l→i

L+N+3} (9)

C. EVIDENCE AGGREGATION ATTENTION BASED ON THE
IMPORTANCE OF HYPOTHESIS
Attention based on hypothesis importance measures node
importance and is used to aggregate supporting evidence
from the representation V l→i of the l-th node. We use
attention-over-attention [23] to represent source sentence hls

and hypothesis hlh, which is used to calculate the attention
score γ l of the l-th node, and then obtain the verification
representation V i

p of the node according to this score.
To calculate the attention score γ l , we establish the

interaction matrix M between the source and the hypotheses
of the l-th node. Calculating each element M l

r,c in M l

according to the correlation between the r-th token of the
source sentence and the c-th token of the hypothesis sentence:

M l
r,c = (Rrl )

T
·W · RL+2+c

l (10)

where W is a learnable parameter. Then, the attention score
λlsr and λlhc are calculated along the source dimension and
hypothesis dimension respectively:

λlsr =
1

L + 2

L+2∑
r=1

softmax (M l
r,c)

λlhc =
1

N + 1

N+1∑
c=1

softmax (M l
r,c) (11)

Then calculate the representation of the source and
hypothesis:

hls =

L+2∑
r=1

λlsr · Rrl

hlh =

N+1∑
c=1

λlhc · RL+2+c
l (12)

Finally, for evidence aggregation, the importance score γ l of
the l-th node if calculated:

γ l = softmax(Linear((hls ◦ hlh); hls; hlh)) (13)

where ◦ is the element-by-element multiplication operator,
and ; is the connect operator.

The node importance attention score γ l aggregates evi-
dence for the verification representation V i

p of t
p
i :

V i
p =

K∑
l=1

(γ l · V l→i
p ) (14)

where V i
= {V i

1, . . . ,V
i
p, . . . ,V

i
L+N+3} is the verification

representation of the i-th node.

D. HYPOTHETICAL QUALITY ESTIMATION
For the p-th token tpi in the i-th node, the probability
P(y|tpi ) of quality label y is calculated using the validation
representation V i

p:

P(y|tpi ) = softmax(Linear((Rpi ◦ V i
p);R

p
i ;V

i
p)) (15)

where, ◦ is the element-by-element multiplication operator,
and ; is the connect operator. We average all probability
P(y = 1|tpi ) of token-level quality estimation as the
hypothesis quality estimation score f (s, hi) for s-hi pair:

f (s, hi) =
1

N + 1

L+N+3∑
p=L+2

P(y = 1|tpi ) (16)

E. END-TO-END TRAINING
In this part, we use the source sentence labels and the
hypothesis sentence labels to indicate the syntactic quality of
the source sentence and the accuracy of GEC hypothesis.

The cross entropy loss of the p-th token tpi in the i-th node
is calculated by using the ground truth token labels y∗.:

F(tpi ) = CrossEntropy(y∗,P(y|tpi )) (17)

BGANet’s training loss is then calculated:

Loss =
1
K

1
L + N + 3

K∑
i=1

L+N+3∑
p=1

F(tpi ) (18)

IV. THE EXPERIMENT
A. DATASET
We use FCE [24], BEA19 [25], NUCLE [26],
CoNLL-2014 [1] and JFLEG [27] as datasets for training and
testing:

• The Cambridge Learner Corpus First Certificate in
English (FCE), is a dataset composed of English short
texts, which contains 77 types of errors and are manually
marked with errors.

• The Building Educational Applications (BEA) 2019
Shared Task introduces a new dataset, theWrite&Impro-
ve+LOCNESS corpus, which represents a broader range
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of native and learner English proficiency and ability, and
controls the amount of participant annotated data.

• NUCLE is a large, annotated Corpus of English learners’
texts released in 2013, using about 1,400 undergraduate
papers from the National University of Singapore, all of
which have the errors flagged and corrected.

• Grammatical error correction is the shared task of the
Eighteenth Conference on Computational Natural Lan-
guage Learning in 2014 (CoNLL-2014). CoNLL-2014
allows participants to work on the same grammatical
error correction task and evaluate the same blind test set
using the same evaluation indicators and raters, which is
a commonly used test set in the GEC field.

• JHU FLuency-Extended GUG (JFLEG) Dataset rep-
resents a broad range of language proficiency levels
and uses holistic fluency edits to not only correct
grammatical errors but also make the original text more
native sounding.

The data volume distribution of training, validation, and
testing is shown in Table 1. Under all the experiments, three
of them were used for training, two for validation, and four
for testing.

TABLE 1. Dataset partitioning.

B. EVALUATION METRICS
We introduce evaluation metrics in token-level quality
estimation and sentence-level quality estimation. We use
the same evaluation metrics precision, recall and F0.5 as
the previous grammatical error detection (GED) model as
the evaluation metrics for token-level quality evaluation.
Assuming that S is the predicted error character position, G
is the real error character position, and O is the intersection
of S and G, the calculation of precision and recall rate is as
follows:

pre = O/S

rec = O/G (19)

The F measure can be calculated from precision and recall:

F =
(1 + β2) × pre × rec

β2 × pre + rec
(20)

when β is equal to 0.5, F measure is F0.5.
For sentence-level quality evaluation, we also used

GLEU [8] to evaluate the performance of the model on

JFLEG dataset. GLEU calculates a weighted precision of
n-grams. For a hypothesis H with a corresponding source
S and reference R, the modified n-gram precision for
GLEU (H ,R, S) is shown in (21).

p′
n =

∑
n-gram∈C

fR\S (n-gram) + fR(n-gram)∑
n-gram′∈C ′

fS (n-gram′) +
∑

n-gram∈R\S
fR\S (n-gram)

(21)

(22) and (23) describe how the counts are collected given a
bag of n-grams B.

fB(n-gram) =

∑
n-gram′∈B

d(n-gram, n-gram′) (22)

d(n-gram, n-gram′) =

{
1 if n-gram = n-gram′

0 otherwise
(23)

The calculation of the final GLEU score is shown in (24)
and (25):

GLEU (H ,R, S) = BP · exp(
N∑
n=1

wnlogp′
n) (24)

BP =

{
1 if c > r
e(1 − c/r) if c ≤ r

(25)

where N = 4 and wn =
1
N , c is the length of the hypothesis

and r is the effective reference corpus length.

C. EVALUATION RESULTS
We evaluate the performance of BGANet from two aspects:
toke-level quality estimation and sentence-level quality
estimation. Finally, an ablation study is conducted to
investigate the effect of our proposed attention method on the
performance of the overall model.

The experiment was carried out in theWindows 10 system,
NVIDIA Tesla P100 and Pytorch 1.8.1. And we set the
learning rate as 1e-5, batch size as 4. The maximum length
of BERT input is set to 243 and its hidden layer size is set to
768, while the hidden layer size of GRU is also set to 768.

1) TOKEN-LEVEL EVALUATION
We first perform token-level evaluation on the model,
comparing it with the previous state-of-the-art GED model
MHMLA [28] and its variant MHMLA (HYP). MHMLA is a
syntactic error detection model using large-scale pre-training
model. A multi-head multilevel attention model is proposed
to determine the appropriate layers in BERT. It integrates the
information of the last layer of the model and the middle
layer of the pre-trained model to detect grammatical errors,
and processes the MHMLA variant MHMLA (HYP) by
considering the first GEC hypothesis of beam search.

As shown in Table 2, the source and hypotheses scenarios
are used to evaluate the performance of the model. As with
the GED model [29], the source scenario evaluates the
grammatical quality estimation ability of the model; the
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TABLE 2. Evaluation on token-level. Evaluate grammatical quality estimation ability under source and hypotheses separately. Bold indicates the highest
score in each column.

TABLE 3. Evaluation on sentence-level. We use the reordered top-1 hypothesis to calculate GEC metrics. Bold indicates the highest score in each column.

TABLE 4. Results of metrics evaluation under FCE and CoNLL-2014 in ablation study.

quality estimates ability on GEC accuracy is evaluated under
hypotheses scenario.

It can be seen that in both cases BGANet shows further
improvement compared to MHMLA. Under the source
sentence, BGANet’s F0.5 is higher than MHMLA by more
than 0.4 for all datasets. Under the hypotheses sentence, the
F0.5 of BGANet is improved by 9.61 under CoNLL-2014
ann.2. These improvements indicate the benefits of multiple
hypotheses interaction for token-level quality estimation.

2) SENTENCE-LEVEL EVALUATION
In this section, we evaluate BGANet’s performance in
sentence-level quality estimation by reordering beam search
decoding hypothesis.

Compared with MHMLA, NQE [30] and the methods
of Yuan et al. [31] and Kaneko et al. [32], the NQE
model is the first supervised GEC quality estimation model.
Encoder-Decoder architecture is used to encode source
sentence-hypothesis sentence pairs, and it is verified that the
performance of GEC system can be improved by reordering
n candidate hypotheses through evaluation scores. Yuan’s
method uses multi-class grammatical error detection system
to improve grammatical error correction for English, and
propose a multi-encoder GEC model and two-step training
strategy, we use its added GED re-ranking mothed for

comparison. Kaneko’s method incorporates a pre-trained lan-
guage model into an encoder-decoder model for grammatical
error correction, we use its BERT-fuse GED for comparison.

As shown in Table 3, compared to quality estimation
based on language models, the quality estimation model
based on GEC accuracy achieved better accuracy and
F0.5, and provided more accurate feedback to users. The
experiment results support our claim that beam search’s
multiple hypotheses provide valuable GEC evidence and
contribute to a more effective quality estimation of the
generated GEC hypotheses.

3) ABLATION STUDY
In order to investigate the effect of our designed attention
method on the performance of GEC quality estimation,
we conducted an ablation study on BGANet. BGANet:
Our complete GEC quality estimation model; BGANet-
A: Remove the attention based on hypothesis association
and attention based on hypothesis importance, and only
the Seq2Seq model composed of BERT and GRUs is used
to estimate GEC quality. Table 4 shows the results of the
ablation study. It can be concluded that attention based on
hypothesis association and attention based on hypothesis
importance can effectively aggregate GEC evidence, imple-
ment the interaction between different hypotheses to estimate
the quality of tokens.
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V. THREATS TO VALIDITY
A. INTERNAL VALIDITY
Internal validity concerns the strength of the experimental
results, i.e., whether there are factors outside the experimental
variables that influence the experimental results. An impor-
tant influencing factor is the correctness of the code. In this
experiment, in order to avoid the effects of subjectivity and
inconsistent code implementation standards and to make
it universal, we use the interface provided by the widely
recognized and used Pytorch framework to implement the
network model, and finally we ensure the accuracy of the
code by reviewing it by multiple people.

B. EXTERNAL VALIDITY
External validity concerns the extent to which experimental
results can be generalized to more general scenarios. In order
to verify the degree of generality of our experimental results,
we chose four publicly available datasets, CoNLL-2014,
FCE, BEA19 and JFLEG, which are commonly used in
the field of English grammatical error correction, and the
data of these four datasets are collected from the writing
contents of real writers. We have conducted sufficient
experiments and achieved good performance with these four
datasets, so our experimental results are to some extent
general.

VI. CONCLUSION
This study presents a BGANet model for multiple hypotheses
GEC quality estimation. BGANet models the interaction
of multiple hypotheses, and then extracts GEC evidence
with two kinds of attention: hypothesis association attention
and hypothesis importance attention. They summarize and
aggregate GEC evidence from multiple hypotheses to verify
the quality of tokens. Experiments on four datasets show
that BGANet achieves state-of-the-art quality estimation
performance.

There may be some possible limitations in this study.
Because the pre-trained BERT model used in this study
has restrictions on the length of the input and all sentences
must be of the same length, a threshold needs to be set
for the length of the sentences, and sentences with lengths
exceeding this threshold need to be truncated and those that
are insufficient need to be filled. This preprocessing of data
may affect the original semantic information of the sentences,
resulting in the model not being able to learn the semantic
information in the sentences completely. In addition, although
the pre-trained model BERT has created good generalization
ability due to the accumulation of large amount of data,
it still needs to fine-tune the pre-trained model to adapt to the
downstream task, and the design of the fine-tuning strategy
will have an important impact on the results. Therefore,
to explore how to fully learn the semantic information of the
sentences and find the appropriate fine-tuning strategies to
make the pre-trained model better adapted to the downstream
tasks is the next focus of our research.
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