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ABSTRACT Underground porosity is important in many earth sciences and engineering fields, including
hydrocarbon reservoir characterization and geothermal energy production. Popular methods largely rely on
the analysis of lithological core data, well logs, and seismic inversion methods. While these methods are
reliable, they are also time-consuming, expensive, and difficult to implement. In addition, seismic inversion
has nonlinearity, data dimensionality, and non-uniqueness issues. However, deep learning (DL) can provide a
more flexible, efficient, and accurate capability by mapping directly from seismic attributes to underground
porosity. Therefore, we trained several DL models with different optimization functions. In the training
steps, we labelled every seismic attribute data point with its corresponding porosity derived from the well-
logs. In contrast to popular ensemble techniques, we proposed a weighted prediction approach based on
the strengths of each model. Testing results showed a coefficient of determination (R2) of 0.94345 and a
Pearson’s correlation coefficient of 0.9725 between the actual model and themodel of the proposed approach,
versus 0.9681 and 0.9716 for the best single and popular ensemble models, respectively. Further, we tested
the effectiveness of our method using real seismic data from the North Sea. With a Pearson’s correlation
value of 0.9743, the inverted model ranges from 27 to 35%, compared to the reference model, which has an
overall range of 20 to 33%. These results provide insights into the potential of the proposed method and its
applicability to any other seismic volume to determine spatially varying underground porosity from seismic
attributes directly.

INDEX TERMS Deep neural networks, ensemble methods, seismic inversion, reservoir properties.

I. INTRODUCTION
Porosity is a critical parameter in many applied geoscience
and engineering fields for delineating and characterizing
petroleum and geothermal energy reservoirs in order to fur-
ther quantify reserves and drill production wells. Predicting
and analyzing subsurface porosity enables understanding the
properties of fluid flow [1], [2] and the mechanical behavior
of rocks [3]. In addition, porosity is key in the assessment
of subsurface contamination [4] and CO2 sequestration [5].
Commonly, a variety of techniques are used to determine the
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subsurface porosity, including but not limited to the analysis
of lithological core samples and well logging [6], [7], which
are often challenging, time-consuming, and expensive [8].
Seismic inversion-based techniques have been an alternative.
These techniques typically concentrate on waveform inver-
sion workflows, which allow for the determination of elastic
properties such as Poisson’s ratio, acoustic impedance, etc.

By using rock physics models, one can transform the elas-
tic properties into the reservoir porosity [9], [10], [11], [12].
Moreover, some other researchers, such as [13], use Bayesian
joint inversion of petro-physical and elastic properties to
derive porosity from seismic data. Unfortunately, researchers,
including [14], have found that conventional methods of
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seismic inversion suffer from strong nonlinearity, non-
uniqueness, stability, and uncertainty. In addition, [15] and
many other researchers noted that joint inversion increases the
dimensionality of the data, making the problem very complex
and requiring an exorbitant computational cost for evaluation.

However, innovative methods based on machine learning
(ML) and DL, which have a strong ability to handle non-
linear features, are now proving to be very powerful in the
field of earth sciences. Actually, ML and DL provide a
collection of algorithms that imitate the ways of intelligent
entities, learning from data to make predictions [16], to the
extent that problems that an expert usually solves intuitively
can also be automatically solved [17] using ML and DL.
So far, by utilizing these algorithms, many researchers have
found good results.

For instance, [18] proved the concept by using unsuper-
vised ML and a colour feature blending technique to perform
reservoir prediction from multiple seismic attributes. The
results showed that the approach could help highlight interest-
ing geological and hydrocarbon characteristics and improve
traditional seismic interpretation techniques. Likewise, [19]
used the Random Forest algorithm to deduce porosity from
a number of seismic attributes, and the results proved the
effectiveness of ML to characterize spatially varying porosity
in a reservoir rock with quantification of the uncertainty.
Reference [20] proposed applying DL to predict lithofacies
from seismic data and found that the approach improved res-
olution in the presence of complex geological environments.
In addition, [21] exploited the possibility of interpolating
lithology between many wells by using geophysical inverse
methods in a DL framework. Reference [22] discussed the
possibility of using statistical and classification approaches
of ML as a supporting workflow to the subsurface property
characterization, integrating heterogeneous geophysical data
that includes electromagnetic, seismic, gravity, and well
data, which combines the approaches of both geophysical
modelling and geophysical data inversion. Reference [23]
evaluated the effectiveness of a multi-attribute ML method
in the Denver-Julesburg basin, which resulted in enhanced
seismic resolution. References [24] and [25] got much
cleaner and more accurate interpreted geological structures
than those obtained from post-stack structural seismic
images, which were used to train a convolutional neural
network to attenuate noise in marine seismic data. [26]
used a multiresolution deep neural network to track seismic
horizons. The results showed accurate predictions even in
areas located far from known horizons. A state-of-the-art
ML method for image processing successfully allowed [27]
and [28] to delineate subtle salt domes and faults from 3D
seismic images. Yet, [29] used synthetic seismic images to
train a convolutional neural network to accurately estimate
fault orientations in seismic images. Reference [30] dis-
cussed an automated approach to seismic interpretation by
using DL.

As demonstrated by the works cited above, researchers
have used single models to solve a specific problem. Thus,

despite the success of applying thesemodels individually, and
since every algorithm may have its own ability to adapt to the
training samples, meaning that, by using different algorithms,
the user may obtain different models with different errors
or accuracies, the reliability of the result may be affected.
To address this issue, researchers developed the concept of
ensemble learning, which allows for results that are more
accurate with lower variance and errors. Thus, commonly,
ensemble learning relies on bagging, stacking, or boosting
approaches [31] to combine predictions from base models by
voting and averaging them to improve the result. Although the
latter has recently succeeded in many fields, no application
of DL ensemble as a seismic inversion method has been
reported, and in contrast to the common ensemble learning-
related techniques, no other approach has been performed.

II. DL POROSITY INVERSION
A. DNN ALGORITHMS
In general, deep neural networks, referred to as ’’DNNs,’’ are
designed to model a function that underpins the connections
between predictor X and prediction Y in a flexible way
that meets the user’s strategy. Thus, many different learning
techniques exist in practice. Somemethods are used to handle
classification problems alone, whereas others can only be
used to solve regression scenarios.

The supervised regression learning approach was the focus
of our study. Actually, for a specific supervised multi-
regression problem, the overall connection between X and Y
is captured by

Yi = b0 + b1xi1 + b2xi2 · · · + bnxin + en (1)

This is a linear equation for predicting values of Y from
those of x, which minimises the sum of the squared errors
as follows:

n∑
i=1

e2i =

n∑
i=1

(yi − yi)2

n∑
i=1

e2i =

n∑
i=1

[yi − (b0 + b1x1 + b2x2 · · · + bnxn)] (2)

This expression gives the error for each predicted porosity.
Considering i =1. . .n in (1), we can obtain n correspondences
between multiple variables as follows:

y1 = b0 + b1x1 + e1
y2 = b0 + b1x2 + e2
...

yn = b0 + b1xn + en

 ⇔


y1
y2
...

yn

 =


1 x1
1 x2
...

...

1 xn


[
b0
b1

]

+


e1
e2
...

yn

 (3)

Formulation (3) shows the link between several predictors
and their associated predictions that our developed DNNs
would try to replicate.
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TABLE 1. Summary of the trained network properties.

Seismic inversion, on the other hand, can be viewed as
a process of reconstructing a subsurface property model of
interest, such as porosity, from the observed seismic data.
Usually, the conventional seismic inversion methods are
formulated as deterministic or stochastic processes, in which
typical inversion workflows for reservoir properties such as
porosity, permeability, lithology, and fluid saturations, the
first step is the determination of elastic properties such as P-
wave velocity, S-wave velocity, density, Poisson ratio, etc.

Next, one may apply established rock-physics models to
convert those elastic properties into the desired reservoir
property [32], [33], [34].

However, we designed our DNN-based inversion opera-
tor [35] to use multiple attributes from the observed seismic
amplitudes as inputs to output a number of subsurface
porosity models. As an optimization problem, the training
process was defined as supervised learning by

argminW

(
1
N

N∑
i=1

(
mi −

⌢m (di,W )
)2)

(4)

where i denotes the ith training sample, mi is the seismic
amplitude model from which we generate seismic attribute
data (di), and

⌢m (di,W ) is the inversion operator used to
predict the inverted porosity model (⌢mi) from the input
attributes and the weight vector (W ).
We designed DNNs in a sequential architecture, using

Python’s Keras and TensorFlow libraries. We made up the
baseline model with several hyper-parameters, including four
dense layers in total with 500, 1000, 1000, and one node,
respectively. Each hidden layer was activated by the rectified
linear unit function (ReLU), after which a dropout probability
of 0.1 was defined. A learning rate of 0.001 was defined
to be used in each of the four selected optimizers, namely
adaptive moment estimation (Adam) and SGD [36], as well
as RMSProp and Nadam.

A batch size of 128 was used to fit the model. Both loss
and evaluation metrics were used to track the performance of
the models during the training and testing processes. Table 1
summarizes the trained networks’ properties, which enable
the networks to aggregate the inputs in a more sophisticated
way to produce a rich prediction capability.

B. ENSEMBLE LEARNING
In this study, the ensemble learning approach was used
effectively to improve the performance of the designed
predictive models. Due to its ability to use insights from
various models to aid in decision-making, ensemble learning

FIGURE 1. The flow chart of the proposed weighted ensemble approach
to DNN-based porosity inversion from multiple seismic attributes.

has gained popularity recently [37]. Actually, ensemble
learning is a remarkable technique that involves combining
the performance capabilities of various models to provide
better outcomes with a reduced variance while allowing for
the avoidance of overfitting [38] and yielding amuch superior
model [39]. Because the ensemble model includes all the base
models, even if one is incorrect, the other base models might
be able to fix it.

There are three main methods of ensemble learning. One
of them is the so-called ’’boosting technique.’’ The important
feature of the boosting method is the idea of revising
prediction errors. The algorithms are fitted and summed to
the ensemble in order, with the second model attempting
to correct the first model’s predictions, the third model
correcting the second model, etc. Simple averaging is used
to combine the predictions of the poor models to obtain one
strong model.

In the proposed approach, the contribution of eachmodel is
weighed proportionally to its performance, and Fig. 1 shows
our workflow of a weighted ensemble approach to enhance
porosity inversion from seismic attributes.

With our proposed ensemble approach, porosity inversion
is a simple and low-cost operation that can be carried out
after models have been trained. In the results and discussion
section, we will compare the results of the DNN’s porosity
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TABLE 2. The summary of the complete seismic dataset used as to train and test the designed deep neural networks.

inversion for field data to those of one of the traditional
seismic inversion methods.

C. MODEL TRAINING
1) DATA SETS
The primary seismic data used to train the above-described
DNNs is part of the F3 block seismic data in the offshore
domain of the Netherlands in the North Sea. The size
of the considered area ranges from 624 milliseconds to
924 milliseconds in depth and, laterally, from 400 to
600 inlines and 750 to 950 cross-lines. In total, we computed
26 seismic attributes to be used as porosity predictors, which
were labeled by corresponding porosity and measured using
the so-called horizon cube inversion method, developed
by ’’dGB Earth Sciences B.V.,’’ which successfully blends
well log attributes and seven horizons that are approved by
professionals.

To boost model performance and accuracy by reducing
data dimensionality, we performed feature selection based
on the variance threshold method. This method removes all
the features whose variance is zero, just like those with
the same values in training samples. Further, we performed
feature ranking using the random forest algorithm and finally
got 14 attributes (Fig. 2), which are relevant for porosity
prediction. Table 2 summarizes the final dataset used to train
our DNN models.

The Inst., TB, HC, and SD suffixes in ’’Attributes’’ column
of the table refer to instantaneous, thick beds, horizon cubes,
and spectral decomposition, respectively. Seismic attributes
are quantities derived from seismic data to highlight subtle
information in the geological interpretation of the data. The
documentation regarding the above-chosen attributes can be
accessed online at the ’’dGB Earth Sciences B.V.’’ website.

2) OPTIMIZERS AND METRICS
Training a DNN is a challenging task. The model may look
well-trained, but if it is unable to make accurate predictions,

FIGURE 2. Ranking of the final features, retained as predictors to train
our DNN-based porosity inversion.

then it is useless. According to [40] and [41], this problem
is commonly due to the challenges of fitting the algorithm
during training steps. Overfitting occurs when the algorithm
predicts well on training samples but not on new data. If there
is a lack of data in the training steps, an under-fitted model
cannot predict based on training samples.

Therefore, a good generalization ability is critical for any
predictive model. During the training steps, we must provide
sufficient data so that the algorithm can efficiently learn from
it. In addition, we have to set its parameters in such a way that
its predictions and training labels are close to each other.

One of the powerful practices is using the cross-validation
technique, which allows us to use every data point from the
whole dataset in the training and testing steps [42], [43]. This
popular technique usually results in less biased estimation of
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the DL-trained algorithm’s skill. Since in supervised learning
every training data point is labeled, meaning that the outcome
is known, we are able to compare predictions with labels to
the extent that we can change the parameters of the algorithm
until both predictions and labels fit well [44]. The main goal
here is to give the algorithm enough ability to successfully
generalize and strengthen its interpretability.

As an optimization problem, the aim is to determine the
DNN’s efficiency at the lowest possible cost. The weights and
biases of the model have to be updated through optimization
functions to lower errors.

The Adaptive Momentum Estimation, also known as
Adam [45], [46], and the Nesterov Accelerated Adaptive
Moment Estimation, popularly known as Nadam [47], were
two of the four optimizers that we used in this study. However,
choosing an appropriate optimization function helps the
algorithm produce optimal and rapid predictions.

An optimized model will also result in minimal errors and
losses on the testing dataset, which represents the model’s
real-world performance. This testing data is a portion of the
data that we have divided from the full training data. The
algorithm won’t observe or learn from it during the training
process, in other words. Consequently, we predict using the
testing data in order to assess the algorithm’s performance.

Recently, it has been quite common to apply certain
advanced means for dividing the complete dataset into
training and testing samples. In this work, we applied a
technique known as ’’k-fold cross-validation. ’’

By allowing each data point from the primary data to be
used separately in the training and validation processes, this
data sampling approach divides the original data into several
subsets. The parameter k represents how many subsets were
extracted from the entire set of data. We set k to three so that
the original data could be divided into three sets. The k-fold
cross-validation approach is a trustworthy way of evaluating
algorithm performance.

Comparative evaluation performances of all the trained
DNNs using a 3-fold cross-validation approach are shown
in Figs. 3, 4, 5, 6, and 7. In total, four models have been
trained with different optimizers. The number of epochs was
set to 30, and for all the models, the loss was decreasing with
the number of epochs, while the R2 that gives insights into
the accuracy of the trained models was increasing with the
number of epochs.

Since we have defined our porosity inversion problem to be
a multiple regression task, according to [48], we can use the
mean squared error (MSE) expressed below to measure the
loss of the trained models. MSE is the squared average of
the difference between the measured and inverted porosities.

MSEloss =
1
n

n∑
i=1

(
yi − ŷi

)2 (5)

Like in the estimate of classification model accuracy, the R2

in the equation below gives a comprehensive measure of the
regressionmodel’s precision by indicating the extent to which

FIGURE 3. Losses of the different trained DNN-based porosity inversion
models: The NADAM optimizer-based model showed the lowest loss,
followed by the ADAM, RMSP, and SGD optimizer-based models. After
11 epochs, the RMSP model tended to overfit. The early stopping of the
hyperparameter helped to save its best performance on the 11th. While a
small gap can be seen between ADAM and Fig. 1. NADAM-based models,
RMSP and SDG-based models show a considerable gap between them,
which is why we did not want to display the SGD learning curve to keep
the detail of the other curves visible.

FIGURE 4. R2 of the different trained DNN-based porosity inversion
models: The NADAM optimizer-based model showed the highest R2,
followed by the ADAM, RMSP, and SGD optimizer-based models,
respectively. As for the loss, after 11 epochs, the RMSP model tended to
overfit, but the early stopping of the hyperparameter helped to stop the
training and save its best performance at the 11th epoch. While a small
gap can be seen between ADAM and NADAM-based models, RMSP and
SDG-based models show a very large gap between them, so we did not
display the SGD learning curve to keep the detail of the other curves
visible.

the dependent variable can be predicted.


R2
(
y, ŷ
)
metric = 1 −

n∑
i=1

(
yi − ŷi

)2
n∑
i=1

(yi − ȳi)2

ȳ =
1
n

∑n

i=1
yi ,

∑n

i=1

(
yi − ŷi

)2
=

∑n

i=1
e2i

(6)
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FIGURE 5. MAE of the trained DNN-based porosity inversion models: the
NADAM optimizer-based model showed the lowest error, respectively,
followed by the ADAM, RMSP, and SGD optimizer-based models. After
11 epochs, the RMSP model was tending to over fit. The early stopping of
hyper-parameter intervened by halting the training and saving the best
performance at 11th epoch. A small gap can be seen between the ADAM
and NADAM models, but the RMSP and SDG models show a considerable
gap between them. The SGD learning curve is not displayed to keep the
detail of the other curves visible.

FIGURE 6. RMSE of the trained DNN-based porosity inversion models:
the NADAM optimizer-based model showed the lowest error, respectively,
followed by ADAM, RMSP, and SGD optimizer-based models. After
11 epochs, the RMSP model was tending to overfit. The early stop of the
hyper-parameter intervened by stopping the training and saving the best
performance at the 11th epoch. A small gap can be seen between the
ADAM and NADAM models, but the RMSP and SDG models show a
considerable gap between them. The SGD learning curve is not displayed
to keep the detail of the other curves visible.

In addition to that, we used the mean absolute error (MAE),
expressed below, to measure the error of the trained DNNs.
This function has the advantage of not considering variable
directions. It calculates a linear score by equally weighting
the average of all the individual differences.

MAE
(
y, ŷ
)
metric =

∑nsamples
i=1

∣∣ŷi − yi
∣∣

nsamples
=

∑nsamples
i=1 |ei|

nsamples
(7)

The root mean squared error (RMSE), as shown by the
following equation, is a quadratic scoring rule that is used
to square the errors before they are averaged. For comparison
with the MAE, the RMSE gives high weight to large errors.

FIGURE 7. Measured porosity versus inverted porosity on testing samples:
comparatively, the proposed weighted ensemble produced untapped
results, followed by the common ensemble-based model. Among the
trained DNNs, the NADAM-based model has the best performance.

For this reason, it is useful where large errors are undesirable.
In all of these equations, ⌢yi and yi refer to the inverted and
measured porosities, respectively.

As shown in Figs. 8, 9 and 10, during the testing step,
the weight-averaging ensemble DNN resulted in the best
findings, followed by the popular averaging-based ensemble.
The NADAM DNN-based porosity inversion model resulted
in superior results among all the DNNs taken individually.

RMSE
(
y, ŷ
)
metric =

√√√√√ 1
nsamples

nsamples−1∑
i=0

∣∣yi − ŷi
∣∣ (8)

III. APPLICATION EXAMPLE
A. FIELD DATA RESULTS
After training and testing the different DNNs, we performed
porosity inversion using the pre-trained models. The data
used herein is a subset cube cropped from F3 seismic data.
In order to give insights into the distribution and quality of the
inversion results, in this section we display and comparatively
analyze several maps drawn from raw seismic data: the
results from one of the conventional inversion methods,
called horizon cube, and those of DNNs, namely, single
DNN, common ensemble DNN, and the proposed weighted
DNN. The maps highlight subtle differences between them
in accordance with the performance power of each method.
We consider the horizon cube result as our reference
model.

B. PERFORMANCE DISCUSSION
In addition to the spatial distribution maps shown above,
we computed Pearson correlation coefficients for all the
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FIGURE 8. Seismic data and inverted porosity versus a reference porosity model: (A) seismic data and (B) a reference porosity model from a
conventional inversion method called horizon cube inversion are compared with DL-based porosity inversion results on 10 inline sections.
Visually, all the DNNs were able to capture the spatial distribution of the subsurface porosity very well. Thus, the (C) weighted DNN-based result
produced superior resolution, followed by the ensemble (D) and (E) single DNN, respectively.

inversion results in the testing steps, which we reported
in Table 3. Further, using the trained models, we applied

inversion to a new data set and compared each inverted model
with the reference model in Table 4.
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FIGURE 9. A reference porosity model vs seismic data and inverted porosity are shown: On 10 cross-line sections, the results of DL-based porosity
inversion are compared with seismic data and a reference porosity model from horizon cube inversion, a traditional inversion technique. Visually,
the spatial distribution of the subsurface porosity was very well captured by all of the DNNs. The ensemble (D) and single (E) DNN results
respectively produced better resolution than the (C) weighted DNN-based outcome.

Pearson correlation is a way of quantifying the relationship
between inverted results and the measured, referred to as the

reference model herein. Pearson’s method outputs a range of
coefficients that take values between minus one, indicating
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FIGURE 10. Seismic data and inverted porosity against the reference porosity model are shown. Ten time-slice portions of DL-based porosity
inversion findings are compared with seismic data and (A) a reference porosity model from horizon cube inversion, a traditional inversion
technique. Visually, the spatial distribution of the subsurface porosity was very well captured by all of the DNNs. The ensemble (D) and single
(E) DNN results, respectively, produced better resolution than the (C) weighted DNN-based outcome.

a negative linear correlation, which is perfect, and plus one,
indicating a positive linear correlation, which is also perfect.

When the coefficient is zero, there is no linear correlation at
all [34], and the closer the coefficients are to one, the stronger
the relationship between the results and the reference porosity

model. It is important to keep in mind that the geology of
the chosen application interval is generally acknowledged to
be composed of deposits from a significant fluvial-deltaic
system, as stated in the TerraNubis-Data Info of the F3
Demo 2020 webpage. There are several seismic facies, such
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TABLE 3. Pearson correlation coefficients of the testing results between inverted porosity from the trained models and the measured porosity.

TABLE 4. Pearson correlation coefficients of the application results
between inverted porosity from the trained models and the reference
horizon cube porosity model.

as transparent, chaotic, linear, and shingle. Well-logging
revealed that transparent facies consist of uniform lithology,
interpreted as sandstone, siltstone, and shale. Chaotic facies
can occur in slumped deposits.

However, it has been noted that the data in this area is
noisy, thus before computing the necessary attributes for use
with our trained models, we applied a dip-steered median
filter to decrease noise. The region has a high porosity overall
(20-33%), and the predicted values of porosity, which broadly
range from 0.27 to 0.35, are pretty close to those already
known in the area. This high porosity might be connected to
the sand- and shale-containing deltaic package.

In conclusion, the testing phase demonstrated outstanding
performance for both the weighted ensemble DNN and
common ensemble methods. The results from the NADAM
DNN-based porosity inversion were the best when all the
DNNs were considered separately.

The weighted ensemble model WEDNN-Inversion, fol-
lowed by the common ensemble model EDNN-Inversion,
displayed the strongest correlation with the reference model
HC-Inversion during the real inversion application. While
the SDNN-Inversion of the NADAM DNN-based porosity
inversion was the best of all DNNs when viewed separately,
it fell short of the performance of the common ensemble.

Although the proposed methodology is repeatable, we can-
not guarantee that the trainedmodels will perform on any new
datasets that do not have the same properties as those used
during their training. We recommend quickly retraining the
models for the new dataset. We also suggest that, in order to
improve the generalization ability of the new models, future
research would focus on comprehending the topology and
other model parameters.

IV. CONCLUSION
Conventional seismic inversion methods suffer from prob-
lems of strong nonlinearity, non-uniqueness, model stability,
and data dimensionality, which increase the computational
costs and affect the expected solutions. To address these
problems, in this study, we have proposed the approach of
using DL, which has proven to be powerful for working
with non-linear futures. While many researchers previously
used single DL methods as well as ensemble learning-based
approaches for subsurface porosity inversion from multiple
seismic attributes, despite these methods producing good
results, we tried another approach that we called ’’weighted’’
ensemble DL-basedmethod for subsurface porosity inversion
from multiple seismic attributes.

The proposed method, when compared to the traditional
ensemble method, provides a more accurate spatial distri-
bution of the results with lower error and minizers the
computational cost. Testing of the proposed method resulted
in an R2 of 0.94345 and a Pearson’s correlation coefficient
of 0.9725 between actual measurements and the model of
the proposed approach, versus 0.9681 and 0.9716 for the
best single and popular ensemble models, respectively. The
application case on F3 seismic data proved the effectiveness
of the suggested approach.

With a Pearson’s correlation value of 0.9743, the inverted
model ranges from 27 to 35%, compared to the refer-
ence model, which has an overall range of 20 to 33%. The
trained model needs only fourteen seismic attributes from the
original seismic data (reduced from 26 during the training
stage) to make a porosity inversion. This study proved that a
weighted ensemble learning approach could be used to more
precisely infer any spatially changing reservoir property than
porosity itself.
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