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ABSTRACT In this paper, we propose the WaveBYOL model, which can learn general-purpose audio
representations directly from raw waveforms based on the bootstrap your own latent (BYOL) approach, a
Siamese neural network architecture. WaveBYOL does not extract features in a handcrafted manner, and
the model learns general-purpose audio representations from raw waveforms by itself. Thus, the model
can be easily applied to various downstream tasks. The augmentation layer in the WaveBYOL model
is designed to create various views from the time domain of the raw audio waveforms; the encoding
layer is designed to learn representations by extracting features from the views, which are augmented
audio waveforms. We assess the representations learned by WaveBYOL by conducting experiments with
seven audio downstream tasks under both frozen-model evaluation and fine-tuning settings. The accuracy,
precision, recall, and F1-score are observed as performance evaluation metrics of the proposed model, and
the accuracy score is compared with those of the existing models. In most downstream tasks, WaveBYOL
achieves competitive performance compared to that of the recently developed state-of-the-art models such
as contrastive learning for audio (COLA), BYOL for audio (BYOL-A), self-supervised audio spectrogram
transformer (SSAST), audio representation learningwith teacher-student transformer (ATST), andDeLoRes.
Our implementation and pretrained models are located on GitHub.

INDEX TERMS Self-supervised learning (SSL), audio waveform augmentation, audio representation.

I. INTRODUCTION
Self-supervised learning is a methodology for learning gen-
eralized representations from large datasets without labels.
To learn a meaningful representation from a dataset, a pretext
task needs to be defined. A pretext task is defined as a task that
is not directly useful, but it learns transferable representations
from unlabeled datasets, creating a pretrained model. The
pretrained model can be applied to various downstream tasks
through transfer learning. The downstream task is a stage in
which knowledge transfer is performed to address a specific
problem.

Recently, a self-supervised learning approach has been
successfully used in the computer vision domain. In partic-
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ular, the Siamese neural network architecture [1] has become
a widely used architecture for self-supervised learning. The
Siamese architecture consists of two similar networks that
share parameters. One of them is typically used as a training
target for the other, comparing the representations extracted
from two networks. However, the Siamese architecture has a
collapsed representation problem in which all output values
collapse into constants [2]. Various methodologies to alle-
viate collapsed representations have been proposed, such as
contrastive learning [3]. Contrastive learning is a machine
learning (ML) technique used to teach models which data
points are similar or different to learn the general features
of unlabeled datasets. The goal of contrastive learning is to
learn an embedding space in which pairs of similar samples
(i.e., positive samples) are kept close to each other while pairs
of dissimilar samples (i.e., negative samples) are far apart.
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Contrastive learning is a useful approach in self-supervised
learning when working with unlabeled data.

SimCLR [4], [5] is a simple framework for contrastive
learning of visual representations. Two different data aug-
mentations are applied to the image; an augmented image
from the same image is defined as a positive sample, and
an augmented image from different images is defined as a
negative sample. This framework effectively extracts visual
representations with unlabeled images, but the performance
of the model has a large deviation depending on the quantity
and quality of negative samples. Usually, contrastive learning
requires a very large batch size because the larger the number
of negative samples is, the more meaningful representations
that can be learned. SimCLR uses a large batch size of 8192 to
include various negative samples. To stabilize the training
process, the authors used the layer-wise adaptive rate scaling
(LARS) optimizer [6], which is suitable for large batch sizes.
Another way to reduce the batch size is to use a memory
bank to avoid uploading negative samples to the batch [7].
It is a method that performs sampling by constructing a
dictionary after storing the representations of all data in the
memory bank. This includes the problem that a large number
of negative samples can be used without being placed in a
batch, but the negative samples are not updated. Momentum
contrast (MoCo) [8], [9] provides a framework for unsuper-
vised learning of visual representations with dynamic dic-
tionary lookups. Compared the approach of memory banks,
queue-based MoCo dictionary allows reuse of representa-
tions of mini-batches from the immediately preceding data.
The advantage of MoCo over SimCLR is that MoCo sepa-
rates batch size from negative samples. However, SimCLR
requires large batch sizes to obtain enough negative samples,
and performance degrades with decreasing batch sizes.

On the other hand, the bootstrap your own latent
(BYOL) [10] approach utilizes a strategy to train themodel by
using only positive samples. BYOLuses two neural networks,
an online and a targeted network, that interact and learn from
each other. Starting from an augmented view of an image,
BYOL trains an online network to predict the representation
of the target network for different augmented views of the
same image. BYOL addresses the collapsed representation
problem by adding a predictive layer to the online network
so that the two networks can have slightly different struc-
tures. Moreover, since negative samples are not used, it is
important to apply effective data augmentation techniques to
generate different types of views. The target network does not
perform backpropagation by itself and adopts an exponential
moving average (EMA) strategy so that the weights of the
online network can be updated at a certain rate at regular
intervals. This strategy also prevents representation collapse
while maintaining the weight of the target network. BYOL
has achieved the best performance in the computer vision
domain.

In the audio domain, recent studies have been conducted
to extend the model proposed in the computer vision domain
to suit the characteristics of audio input. Recent models to

which contrastive learning is applied in the audio domain
are contrastive predictive coding (CPC) [11] and contrastive
learning for audio (COLA) [12]. CPC is an autoregres-
sive model that uses past audio segments to generate a
context vector and learns by comparing future and past
representations. COLA is a model extension of SimCLR,
a self-supervised pretraining approach for learning general-
purpose representations of audio. When training the model,
the audio segment extracted from the same audio clip is
defined as a positive sample, and the audio segment extracted
from different audio clips is defined as a negative sam-
ple. Since COLA also has a contrastive learning architec-
ture, the quantity and quality of negative samples have a
large effect on model training. Self-supervised audio spectro-
gram transformer (SSAST) [13], [14] is a transformer-based
self-supervised learning model, and the authors proposed a
masked-spectrogram patch modeling technique. Decorrelat-
ing latent spaces for low-resource audio representation learn-
ing (DeLoRes) [15] is a framework consisting of two sim-
ple self-supervised pretraining methodologies for learning
general-purpose audio representations of speech and sound.
Inspired by the Barlow Twins framework [16], the authors
used a redundancy reduction-based loss function to make the
computed cross-correlation matrix as close to the identity
matrix as possible regarding the embeddings of the aug-
mented sample pairs of the same audio segments. DeLoRes
also uses the same augmentation module as BYOL for audio
(BYOL-A) [17], [18].

BYOL-A [17] is a general-purpose audio representation
learning model based on BYOL. Since this model is extended
based on BYOL, negative pairs are not used for model
training. A single audio segment extracted from an arbitrary
position in the audio clip is used as the input to the model.
The extracted single audio segment is converted into a log-
mel spectrogram and a view is created through augmentation.
In BYOL-A, mix-up, random resize crop, and normalization
block were adopted to create various views. Audio represen-
tation learning with teacher-student transformer (ATST) [19]
is a transformer-based teacher-student self-supervised learn-
ing model. ATST adopts transformer encoder into the base-
line teacher-student scheme of BYOL-A [17]. ATST out-
performs BYOL-A’s convolutional neural network (CNN)
encoder in learning the long-term semantic information con-
tained in speech. BYOL-A uses one short segment to create a
positive pair, while ATST uses two different long segments.
This is better suited for a transformer where the network
needs to learn longer time dependencies and match more
distinct positive pairs generated from two segments. ATST
has achieved state-of-the-art results on various audio classifi-
cation benchmarks.

The performance of any ML model depends on the fea-
tures on which the training and testing processes are per-
formed. Hence feature extraction is one of the most vital parts
of an ML process [20]. Audio representation models such
as COLA, DeLoRes, SSAST, ATST, and BYOL-A convert
raw audio waveforms into intermediate representations with
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FIGURE 1. Original BYOL and WaveBYOL architecture overview.

handcrafted features such as log-mel spectrograms and use
them as model inputs. Many studies have converted raw
waveforms into spectrograms and applied various augmen-
tation techniques such as random resizing, cropping, and
SpecAugment [21]. SpecAugment is an augmentation tech-
nique that erases some areas of time and frequency from a
spectrogram. However, handcrafted feature extraction may
not be optimal for learning general-purpose audio represen-
tations [20].

In this paper, we propose a model that can learn repre-
sentations through various views while directly using raw
waveforms as input. The key contributions of this paper are
as follows.
• We propose using raw waveforms as direct inputs to
models learning general-purpose audio representations.
Unlike BYOL-A, the proposed model does not use an
intermediate representation in which raw waveforms are
converted into spectrograms.

• We propose a self-supervised learning model called
WaveBYOL. We propose an augmentation layer for
generating various views from raw waveforms and an
encoding layer for learning meaningful representations.
Although performance differences are observed depend-
ing on the downstream tasks, WaveBYOL generally
shows competitive performance compared to the previ-
ously proposed models [12], [14], [15], [17], [18], [19].

• Ablation studies are conducted to verify the contribution
of each component and their combinations.

The rest of this paper is organized as follows. Section II
describes BYOL and the architecture of the proposed model.
Section III presents the utilized datasets, training, and perfor-
mance evaluation. Section IV contains the ablation studies.
Finally, Section V concludes the paper.

II. MODEL DEVELOPMENT
The overall architecture of WaveBYOL proposed in this
paper follows the BYOL [10] structure as shown in Figure 1.
We expand the BYOL to learn audio representations yθ from
raw waveforms without the use of negative samples.

A. BYOL
BYOL [10] consists of an online network and a target net-
work. The online network is defined by a set of weights
θ and comprises three neural network layers: an encoding
layer fθ , a projection layer gθ , and a prediction layer qθ .
The target network has the same architecture as the online
network (but without the prediction layer) and uses a different
set of weights ξ . Given a set of raw audio waveforms A,
for a raw audio waveform x ∼ A sampled uniformly from
A, BYOL (as well as WaveBYOL) produces two augmented
views v ≜ t(x) and v′ ≜ t ′(x) applying audio augmentations
to x. From the first augmented view v, the online network
outputs a representation yθ ≜ fθ (v) and a projection zθ ≜
gθ (yθ ). The target network outputs the target representation
y′ξ ≜ fξ (v′) and the target projection z′ξ ≜ gξ (y′ξ ) from the
second augmented view v′. Then, the model L2-normalizes
both qθ (zθ ) and z

′
ξ to qθ (zθ ) = qθ (zθ )/

∥∥qθ (zθ )
∥∥
2 and zξ

′
=

z′ξ/
∥∥∥z′ξ∥∥∥2. Because this prediction layer applies only to online

networks, the architecture is asymmetric between online and
target pipelines. Finally, the model defines the mean squared
error between the L2-normalized predictions qθ (zθ ) and tar-
get predictions zξ ′ as

Laθ,ξ =
∥∥qθ (zθ )− zξ ′

∥∥2
2 = 2−

2qθ (zθ )Tz′ξ∥∥qθ (zθ )
∥∥
2 ·

∥∥∥z′ξ∥∥∥2 . (1)

BYOL symmetrizes the loss Laθ,ξ in (1) by separately
feeding v′ to the online network and v to the target network to
compute Lbθ,ξ . At each training step, it performs a stochastic
optimization step to minimize LTotalθ,ξ = Laθ,ξ + L

b
θ,ξ with

respect to θ only but not ξ . The parameter ξ of the target
network is the EMA of the online network parameter θ . Given
a target decay rate α ∈ [0, 1], it performs the following
updates after every training step: ξ ← αξ + (1− α) θ . The
target network updates the weights without backpropagation.
In practice, the part where the model learns representations
is fθ (·) of the online network and is used later as a pretrained
model for the downstream task.
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FIGURE 2. Augmentation Layer architecture of WaveBYOL.

B. WaveBYOL AUGMENTATION LAYER
The augmentation layer of the WaveBYOL consists of three
steps, as shown in Figure 2. In the first step, an audio
segment of 1.28 seconds is extracted from a raw waveform
at an arbitrary location. A single audio segment length of
1.28 seconds is the same as the audio segment length used by
wav2vec [22] and applies only to the pretext task. For each
downstream task, the average audio segment length of that
dataset is applied.

In the second step, time dropout, reverberation, pitch shift,
audio clipping, speed change, and additive noise are applied
to an audio segment in any number and order to generate an
augmented audio segment. Time dropout is applied to prevent
the encoder from overfitting the dataset by removing random
time periods between 0 and 0.5 s from the raw waveform.
Additive noise is a method of adding noise to the background
of the original sound source and is used to enable the encoder
to separate the background and foreground.We use themusic,
speech, and noise corpus (MUSAN) dataset [23] and ran-
domly select a signal-to-noise ratio between 5.0 and 20.0 dB.
Reverberation is a method of adding reverberation that is
generated by reflections in a specific space to audio, and it
is used to enable the encoder to find real sound in response
to reverberation. We use random values between 50.0 and
100.0m3 for the size of the space. Pitch shifting is a technique
in which the original pitch of a sound is raised or lowered. The
applied change in the pitch is an integer sampled uniformly
between −300 and +300, measured by 1/100 of a tone. The
speed change coefficient is randomly selected from {0.95,
0.93, 0.9, 0.85, 0.83, 0.83, 0.8, 0.75, 0.6, 0.5} speeds. That
is, if 0.75 is selected, the speed becomes 3/4 of the original
speed. The audio clipping we applied is distortion of the
waveform to cut 0-100% based on themaximum amplitude of
the audio segment. These six augmentation techniques help to
generate various views of the audio segment. Finally, in the
audio normalization step, the augmented audio segment is
L2-normalized.

C. WaveBYOL ENCODING LAYER
The encoding layer of the WaveBYOL consists of multiple
steps, as shown in Figure 3. The feature extractor, the first
sublayer of the WaveBYOL encoding layer, extracts fea-
tures from augmented audio segments that have been passed
through the augmentation layer, replacing the typical hand-

crafted methods. The existing handcrafted methods focus on
feature extraction processes that are optimized for specific
tasks, but the proposed model allows the encoder to directly
extract general-purpose audio features from raw waveforms.
The learned general-purpose audio representations can be
optimized for various tasks during fine-tuning.

The feature extractor consists of S stacks with B blocks in
each (in Figure 3, B = 5). Each block contains 1D convolu-
tion, 1D batch normalization, and ReLU activation functions,
as shown in Figure 3. It focuses on analyzing the input com-
ponents of a specific frequency range using a 1D convolution
layer with a kernel size of kℓ from the input of each block ℓ.
Larger kℓ values tend to cut more high-frequency components
from the input of the block, forcing the block to focus on
analyzing low-frequency content. Blocks with larger kernel
sizes kℓ help to focus on learning low-frequency features. The
feature extractor is implemented based on the convolutional
network of wav2vec [22].

The segmentation and reassembly (SAR) layer divides the
output of each stack into three segments of equal length, takes
one segment from each stack, and reassembles it into a struc-
ture with three channels. The segments used for reassembly
do not overlap each other on the time axis. Since the number
of stacks is one (i.e., S = 1) in the current setup, we take
all three segments from the stack to create a feature with a
three-channel structure. Then, the augmented representations
are L2-normalized.

In the computer vision domain, various methods, such as
context prediction [24], rotation [25], jigsaw puzzle [26],
colorization [27], and inpainting [28], are used so that the
encoder can learn general-purpose representations. In the
audio field, there is also a study in which a jigsaw puzzle
is applied [29]. For example, in [14] intermediate represen-
tations are divided into n × n patches and sequentially used
as inputs to the encoder. Inspired by these methods, in this
layer, the semantic region of the audio feature is transformed
so that the encoder can learn the general-purpose audio rep-
resentation.

Finally, in the feature encoder, the model is designed to
learn representations from the two-dimensional features. The
feature encoding module consists of repeated two-layer 2D
convolution, 2D batch normalization, and ReLU activation
functions. Afterward, adaptive max pooling and adaptive
average pooling are taken to pass through the projection
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FIGURE 3. Encoding Layer architecture of WaveBYOL. The feature extractor on the left and the feature encoder on the right. In the feature
extractor, rl is the audio sampling rate.

layer, and then elementwise adding and L2-normalization are
performed to generate an embedding vector.

III. MODEL TRAINING AND PERFORMANCE EVALUATION
We evaluate the performance of our self-supervised rep-
resentation learned on FSD50K [30] under two settings:
frozen-model evaluation and fine-tuning. In frozen-model
evaluation, a linear classifier with a multilayer perceptron
(MLP) layer is trained to classify a new dataset based on top
of the frozen pretrained network, and in fine-tuning, we allow
all weights to vary during training. In the frozen-model evalu-
ation experiment, WaveBYOL is compared with COLA [12],
DeLoRes [15], BYOL-A [17], [18], and ATST [19], and
in the fine-tuning experiment, it is compared with COLA,
DeLoRes, SSAST [14], and ATST.

A. DATASET
Our study for unsupervised pretraining, which trains the
encoder network fθ (·) without labels, is done by using the
FSD50K [30] dataset. FSD50K is an open dataset contain-
ing over 51,000 audio clips, corresponding to a total of
108.3 hours of manually labeled audio by using 200 classes
drawn from the AudioSet [31] ontology. AudioSet was
released in 2017 to address the shortage of large-scale sound
event datasets. It consists of 5,731 hours of data and is
being used in various fields. However, AudioSet is not an
open dataset because it consists of audio tracks taken from
YouTube videos. Additionally, the video may disappear at
the request of a YouTuber, making it difficult to use as a

benchmark dataset. Currently, our model is trained using the
FSD50K dataset.

We assess the performance of the representation from
WaveBYOL after self-supervised pretraining on the train-
ing set of the FSD50K dataset. We evaluate it on
other tasks, including UrbanSound8K (US8K) [32] and
ESC-50 [33] for sound classification, VoxCeleb1 [34] for
speaker identification, VoxForge [35] for language iden-
tification, SpeechCommandV2 (SPCV2) [36] for keyword
recognition, the Ryerson audio-visual database of emotional
speech and song (RAVDESS) [37] for emotion recognition,
and NSynth [38] for musical instrument identification. For
the US8K dataset [32], a predefined 10 folds without shuf-
fling of the data is used, and a 10-fold cross-validation is per-
formed, as indicated in the instructions. The VoxCeleb1 [34]
dataset contains both development and test sets. We split the
development set 4:1 to use for training and validation. For
the rest of the dataset, we put 56% of the data in the training
set, 19% in the validation set, and 25% in the test set. The
sampling rate of all data used for training and testing is set to
16,000 Hz.

B. MODEL SETUP
For the implementation of the proposed WaveBYOL model,
we used the Torchaudio library of the PyTorch framework.
Utilizing the WavAugment library [39], we implemented six
raw waveform augmentation techniques of the augmentation
layer. The parameters of the feature extractor in the encoding
layer are set as follows. The number of feature extraction
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blocks is 5, the kernel widths of the convolution layer are (10,
8, 4, 2, 2), the strides are (5, 4, 2, 2, 2), the zero-padding sizes
are (2, 2, 2, 2, 1), and the output consists of 513 channels.
This structure is identical to that of the wav2vec [22] encoder,
except that the kernel sizes of the 4th and 5th convolution
layers are 2, which is smaller than the 4 in wav2vec. The next
step is to reshape the audio feature to have a 3-channel shape.
Starting with the first segment, the remaining segments are
stacked down in order, and normalized features are obtained
through L2-normalization. The normalized segments are fed
as inputs to the feature encoder as depicted in Figure 3. There
are 4 feature encodingmodules in this step. The kernel widths
of the 2D convolution of each feature encoding module are
(3, 3), the strides are (1, 1), and the zero-padding sizes are
(1, 1). The channel sizes of the first feature encoding module
are (64, 128), the channel sizes of the secondmodule are (256,
512), the channel sizes of the third module are (512, 512), and
the channel sizes of the last module are (1024, 1024). For 2D
max pooling, the filter width is set to 2, and the stride is set
to 2 without zero-padding and dilation. Then, 2D adaptive
max pooling and 2D adaptive average pooling are applied
followed by a reshape block to produce a 1 × 1 output with
1024 channels. Each output is elementwise added to create
embeddings.

The projection and prediction layers have MLP structures,
and the structures of the two layers are identical to each
other. Each MLP consists of a linear layer with an output
size of 4096 followed by batch normalization, ReLU, and
a final linear layer with an output dimension of 4096. The
decay factor α of BYOL is raised to a value close to 1 by
using cosine annealing according to iteration but is fixed to
0.99 in the proposed WaveBYOL model. AdamP [40] is used
as an optimizer for training WaveBYOL. AdamP can sup-
press excessive weight norm growth; it removes the gradient
component parallel to the direction of the weight generated
by momentum through projection. The learning rate used for
training is 0.0001, the batch size is 64, the epoch is 200, and
the weight decay is set to 1.5× 10−6.
Wemanually tune the hyperparameters for theWaveBYOL

framework. The hyperparameters used in WaveBYOL are
summarized in Table 1.We use Docker on Ubuntu 18.04 LTS.
One Tesla V100 GPU is used for training WaveBYOL.
Our implementation and pretrained models are given on
GitHub [41].

C. DOWNSTREAM SETUP
Both frozen-model evaluation and fine-tuning are performed
by adding one MLP layer to the output of the pretrained
encoder. The structure of the MLP layer is the same as that
of the projection layer, and the output dimension of the last
linear layer is the number of classes in the given dataset. The
frozen-model evaluation freezes the encoder weights so that
they are not updated, and only the MLP layer is optimized for
the dataset. In this case, the learning rate is set to 0.0008, and
weight decay value for regularization is set to 1.5 × 10−6.
Fine-tuning enables backpropagation for both the encoder

TABLE 1. Considered hyperparameters.

and the MLP layers. In this case, the learning rate is set
to 0.00001, and the weight decay is 1.5 × 10−6. In both
evaluations, the model is trained for up to 100 epochs, and the
training process stops early if no loss decrease is detected over
10 epochs. The tests are performed using the model trained
up to the point in time when an early stop is detected. The
input audio length of each task is set as the average length of
the dataset for each task.

D. RESULTS
Table 2 shows the results of comparing the existing method
through a frozen-model evaluation with the proposed Wave-
BYOL. The dataset for the pretrained models of COLA,
DeLoRes, ATST, and BYOL-A is AudioSet [31], and the
dataset for pretrained WaveBYOL model is FSD50K [30].
AudioSet is a dataset that is 41 times larger in terms of number
of audio clips and 53 times larger in terms of total duration
than FSD50K. The input format of the COLA, DeLoRes,
and BYOL-A models is a log-mel spectrogram, the input
format of the ATST model is a mel spectrogram, and the
input format of the WaveBYOL model is a raw waveform.
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TABLE 2. Comparing the accuracies (%) of the proposed WaveBYOL with those of the existing models under the frozen-model evaluation setting.

TABLE 3. Comparing the accuracies (%) of the proposed WaveBYOL with those of the existing models under the fine-tuning setting.

COLA is trained using contrastive learning, BYOL-A is
trained using BYOL, and DeLoRes is trained using Barlow
Twins. For the results of the existing model, the results
published in the relevant papers are referred to. As a result
of the experiment, WaveBYOL shows the best performance
on the VoxForge dataset but the lowest performance on the
US8K dataset. For the rest of the dataset, it shows moder-
ate performance compared to that of the recent state-of-the-
art models. WaveBYOL has confirmed that it can directly
extract features and can learn useful representations from
raw waveforms, even though it is trained with a smaller
dataset.

The VoxCeleb1 [34] dataset contains 153,514 utterances
for 1,251 celebrities extracted from videos uploaded to
YouTube with an average duration of 8.2 s. Because the num-
ber of classes to classify is quite large, the 56.4% accuracy
from the WaveBYOL model shown in the speaker identifica-
tion problem is a competitive performance compared to that
of the other models. On the SPCV2 [36] dataset, which is a
keyword recognition dataset, the accuracy of ourWaveBYOL
is slightly lower than that of the existing models. WaveBYOL
uses an augmented raw waveform segment with a duration of
1.28 seconds, whereas the average audio segment length of
SPCV2 is 1 second. As this is shorter than the audio segment
length used for WaveBYOL training, it seems that there
is a limitation with regard to learning representations. The
NSynth [38] dataset in the musical instrument identification
area has a large dataset imbalance, so it seems that learning
about the characteristics of each class is insufficient. On the
NSynth dataset, the amount of data in each class differs by

up to 5 times or more. The performance achieved on the
RAVDESS dataset is not shown in Table 2 because it is not
tested with the comparative models.

Table 3 shows the results of comparing the accuracy of
the existing models and WaveBYOL when using fine-tuning.
In this experiment, all the existingmodels use AudioSet as the
training dataset for the pretext task, and features are extracted
from intermediate representations such as mel spectrograms.
The input format of the COLA, DeLoRes, and WaveBYOL
models is the same as that of the previous experiment, and the
input format of the SSAST model is a log-mel spectrogram.
The results of the existing models are derived from their
original published papers. As shown in Table 3, the proposed
WaveBYOL model shows accuracies that are comparable to
the state-of-the-art results achieved in the VoxCeleb1 [32],
SPCV2 [34] and VoxForge [33] downstream tasks. In partic-
ular, WaveBYOL achieves a great performance improvement
on the VoxForge dataset for used for language identification.
WaveBYOL achieves a certain level of accuracy without
using intermediate representations such as mel spectrograms.
It can be seen that the model itself learns meaningful general
audio representations from raw waveforms. Compared to the
existing models, WaveBYOL can extract features and learn
representations directly from raw waveforms, so all weights
are optimized from the feature extraction step to the feature
encoding step during fine-tuning to fit the downstream task.

In the frozen-model evaluation, only the MLP layer is
trained with the weights frozen, so the number of weights that
the model can fit is very small. On the other hand, fine-tuning
shows relatively high accuracy because the model fine-tunes
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TABLE 4. Performance evaluation of the proposed WaveBYOL model under the frozen-model evaluation setting.

TABLE 5. Performance evaluation of the proposed WaveBYOL model under the fine-tuning setting.

the pretrained model and trains the MLP layer. Thus, the
model can learn representations that are more suitable for
downstream tasks.

Tables 4 and 5 are the evaluation results produced by
WaveBYOLwith respect to the precision, recall, and F1-score
metrics for the frozen-model evaluation and the fine-tuning of
downstream tasks. Since the weighted-average F1-score is a
more useful performance evaluationmetric for an imbalanced
dataset, we observe both the macro-average and weighted-
average performance metrics. The weighted-average weights
each class value with its proportion in the dataset. As a
result of the experiment, the difference between precision
and recall is very small and predicts uniformly without bias
in all downstream tasks. Additionally, since the difference
between accuracy and F1-score is small, the accuracy val-
ues of Tables 2 and 3 can be trusted. In Table 4, since the
difference between precision and recall is less than 0.053, the
proposed model accurately predicts across all classes even in
an imbalanced dataset. In particular, it shows very high recall
and precision values in language identification.

Table 5 shows the results of fine-tuning, which yields
higher performance than the frozen-model evaluation.
In addition, the difference between precision and recall is
0.032 or less, making very stable inferences in all classes.
In particular, the prediction performance is excellent and sta-
ble on the VoxForge dataset, a language identification dataset,
and the SPCV2 dataset, a keyword recognition dataset.

IV. ABLATION STUDY
We believe that the advantages of the WaveBYOL archi-
tecture are rooted in its end-to-end feature extraction

nature without using handcrafted intermediate represen-
tations. In this experiment, six augmentation techniques
applied to the augmentation layer are evaluated to determine
their contribution to WaveBYOL model training. In addi-
tion, we check how much the normalization applied to
the augmentation layer and encoding layer affect model
training.

Table 6 shows the results of removing the data augmen-
tation techniques one by one after setting the frozen-model
evaluation with a pretrained model trained up to 100 epochs.
All parameters and the environment of the pretrained model
are the same as those in Table 1 except for the number of train-
ing epochs. As shown in Table 6, among the six augmentation
techniques, the factors that have the greatest influence on the
training of the WaveBYOL model are the order of pitch shift,
time dropout, reverberation, speed change, additive noise, and
audio clipping. The pretrained model that removes the pitch
shift and applied only the remaining 5 augmentation tech-
niques shows the lowest performance in most downstream
tasks.When the time dropout function is removed, a relatively
large performance degradation occurs in the frozen-model
evaluation. It can be observed that the six audio augmentation
techniques applied to this model create various augmented
views that affect WaveBYOL’s ability to learn audio repre-
sentations.

Table 7 shows the results of the frozen-model evaluation
performed by generating a pretrained model after removing
the L2-normalization contained in the augmentation layer and
encoding layer of the proposed model. The L2-normalization
removed from the encoding layer is located before passing
through the feature encoder.
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TABLE 6. Ablation study results. Comparison of the effects of different component in the augmentation layer in terms of accuracy (%).

TABLE 7. Ablation study results. Evaluation of the contributions of the augmentation layer (AL) and encoding layer (EL) with L2 normalization in terms of
accuracy (%).

In the pretrained model, the architecture and parameters of
the model are set the same as those in the previous exper-
iment except for L2-normalization. In this ablation study,
we can determine the contribution of the L2-normalization
to representation learning in the pretext task. As shown in
Table 7, even if only one L2-normalization applied to the
model is removed, a decrease in performance occurs. In par-
ticular, when the L2-normalization process of the encod-
ing layer is removed, the accuracy drops significantly for
most downstream tasks. The application of L2-normalization
to the encoding layer plays a role in preventing collapsed
representations so that a general-purpose representation can
be continuously learned in the WaveBYOL model. Since
applying L2-normalization to the augmentation layer also
normalizes the augmented raw waveform to create views,
we believe that it helps the model learn general-purpose audio
representations. Through two ablation studies, the contribu-
tions of the augmentation layer and encoding layer proposed
in this paper are observed.

V. CONCLUSION
In this paper, we proposed the WaveBYOL model, which
can learn general-purpose audio representations directly from
raw waveforms based on the BYOL approach. The augmen-
tation layer in the WaveBYOL model is designed to create
various views from the time domain of the audio waveform;
the encoding layer is designed to learn representations by
extracting features from the views, which are augmented
audio segments. We assess the representations learned by
WaveBYOL by conducting experiments involving five audio
applications with seven audio downstream tasks under both
frozen-model evaluation and fine-tuning settings. For a per-
formance evaluation, we compared WaveBYOL with state-

of-the-art models. In most downstream tasks, WaveBYOL
showed competitive performance compared to that of the
recently developed state-of-the-art models such as COLA,
BYOL-A, SSAST, and DeLoRes. In particular, the proposed
model achieved high performance improvements in speaker
and language identification.

Two follow-up studies are currently in progress. First,
we are conducting experiments that utilize the large-scale
AudioSet [31] for pretraining. Second, we are redesigning
the feature encoder structure so that each stack can focus on
learning different audio frequency components by applying
different sampling rates and convolution kernel sizes for each
stack.
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