IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 December 2022, accepted 12 January 2023, date of publication 23 January 2023, date of current version 3 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3239365

== RESEARCH ARTICLE

Interminable Flows: A Generic, Joint,
Customizable Resiliency Model for Big-Data
Streaming Platforms

BARA ABUSALAH !, THAMIR M. QADAH 2, (Member, IEEE),
JULIAN JAMES STEPHEN""3, AND PATRICK EUGSTER'-#

!Electrical and Computer Engineering Department, Purdue University, West Lafayette, IN 47907, USA
2Computer Systems Department, Umm Al-Qura University, Mecca 24382, Saudi Arabia

3IBM Watson Research Center, Yorktown Heights, NY 10598, USA

4Computer Systems Institute, Universita della Svizzera Italiana, 6900 Lugano, Switzerland

Corresponding author: Bara Abusalah (baraabusalahl@gmail.com)

ABSTRACT The examiner of cloud computing systems in the last few years observes that there is a trend of
the emergence of a new Big Data framework almost every year. Since Hadoop was developed in 2007, new
frameworks followed it such as Spark, Storm, Heron, Apex, Flink, Samza, Kafka...etc. Each framework is
developed in a certain way to target and achieve certain objectives better than other frameworks do. However,
there are few common functionalities and aspects that are shared between these frameworks. One vital
aspect all these frameworks strive to achieve is better reliability and faster recovery time in case of failures.
This is particularly crucial for streaming systems (compared to batch processing systems) where events are
processed and monitored online in real time, and any delay in data delivery will cause a major inconvenience
to the users. Another observation is that some reliability implementations are redundant between different
frameworks. Encapsulating these implementations into one layer and make it shared between different
applications will benefit more than one framework without the burden of re-implementing the same reliability
approach in each single framework. These observations motivated us to present Warden, a generic, multi-
framework, flexible, customizable, low overhead protocol to ensure the resiliency of streaming applications
running on streaming Big Data frameworks. Most reliability protocols carry out one rigid fault tolerance
approach targeted towards one system at a time. It is more challenging to provide a reliability approach
that is pluggable in multiple Big Data frameworks at a time and can achieve low overheads comparable with
single targeted framework approaches, yet is flexible and customizable by its users to make it tailored towards
their objectives. The genericity is attained by providing an interface that can be used in different applications
from different frameworks. The low overhead is achieved by providing faster application finish times with
and without failures. The customizability is fulfilled by providing the users the options to choose between
two delivery semantics (Exactly Once / At Most Once) combined with two fault tolerance guarantees (Crash
Failures / Byzantine Failures). To the best of our knowledge, such approach was never tried on multiple
streaming frameworks before. We built a prototype of Warden on Flink and Samza (with Kafka) streaming
frameworks. Our evaluations highlight the effectiveness of our approach in the presence of failures and
without failures compared to other fault tolerance techniques (such as checkpointing).

INDEX TERMS Fault tolerance, reliability, replication, resource management systems (RMS), streaming

frameworks.
I. INTRODUCTION
The associate editor coordinating the review of this manuscript and In recent years, Cloud Computing technologies have evolved
approving it for publication was Chong Leong Gan . rapidly and become one of the most researched areas in
10762 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023


https://orcid.org/0000-0002-6762-9714
https://orcid.org/0000-0003-0754-0504
https://orcid.org/0000-0003-2613-531X
https://orcid.org/0000-0002-2951-1192

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

IEEE Access

distributed systems and computer science in general. The
term ‘Big Data‘ has emerged as a result of this evolvement
to refer to Cloud Computing technologies that target appli-
cations which deal with very large data sizes. Since cloud
application requirements are different from each others and
the types of inputs are not the same, different types of Big
Data systems have been developed to target the different
requirements of these cloud applications. These Big Data
systems are usually referred to as Big Data frameworks.
Probably the best way to elaborate what does this term mean
is by giving an example about it which is Hadoop. Hadoop
is one of the most well known Big Data frameworks in
the Cloud Computing community. It is a batch processing
framework that uses Map Reduce algorithm to process input
data files and uses HDFS as its distributed file system. The
announcement of the first version of Hadoop in 2007 opened
the door for developers to create new frameworks each of
which is specialized in processing certain types of inputs and
has its own characteristics that makes it unique from others.
Some of these frameworks load data in memory, others are
targeted towards database transactions, some others process
data in real time and deal with continuous data streams.

In general, these Big Data frameworks can be split into
two main categories according to the type of input they
process; batch processing frameworks and streaming frame-
works. From their names, batch processing frameworks deal
with applications that process input data in bounded batches,
whereas streaming frameworks specialize in processing con-
tinuous unbounded streams of data.

There are other characterizing factors for these two types of
frameworks other than the type of the input data they process.
The way these frameworks deal with security, fault toler-
ance, nondeterminism, . . . etc. is tailored towards the type of
the framework. For instance, the fault tolerance techniques
applied to online real time streaming systems is different
than how it is dealt with in offline batch processing frame-
works. A machine crash in a batch processing framework
may result in restarting all batch processing tasks running on
that machine. This task restart may not have a huge impact
or a drastic effect to the end user if he/she is not expecting
the output of the batch application to be delivered within a
certain time window. On the other hand, this is not the case in
online streaming systems where end users are monitoring live
data streams in real time where a machine crash may result in
restarting the streaming tasks running on it which may end up
halting the data stream for end users. This is not an acceptable
behaviour if the end users expects the stream to be ‘alive’ and
continuous without interruptions and to be delivered within a
certain time frame.

Dealing with faults in streaming systems is much more
challenging than batch processing systems. The difficulty
of dealing with faults in streaming systems is it has to be
transparent to the end user, i.e end users should not notice
any interruption in the data stream as if the failure didn‘t
happen at all. The focus of this paper is targeted towards

VOLUME 11, 2023

fixing this particular problem. In other words, we strive to
enhance the fault tolerance and reliability of Big Data stream-
ing frameworks by introducing a protocol we call Warden.
There are many reasons and motivations that let us believe
that fixing this problem is important for the Big Data and
Cloud Computing communities. These motivations will be
discussed in the following subsection.

A. MOTIVATION
There are five main observations that have driven us to do this
work. These observations are:

1) LIMITATIONS OF CHECKPOINTING

In general, to achieve reliability for any system, there are two
most common fault tolerance techniques that can be applied:
checkpointing and replication. Most Big Data frameworks
(both batch and streaming) already have checkpointing built-
in and uses it to recover tasks progress in the case of machine
failures. There are several shortcomings and weaknesses for
the built-in checkpointing mechanism that makes replication
more attractive and superior in many cases.

The first and most noticeable drawback of checkpointing
is, in case of failure, there is always some time wasted in redo-
ing the work that has been done from the latest checkpoint no
matter how frequent the system takes checkpoints.

The second drawback of checkpointing is the overhead of
consistent saving frequent checkpoints to persistent storage
and the overhead of loading/transferring the checkpoint from
the hard disk or any network persistent storage device to the
new machine where the new task has restarted.

Third, the time it takes the task to timeout and the time it
takes the system to notice that the task/machine has failed.
Note that this timeout could be a compound combination of
timeouts of multiple systems working together. For example,
as will be shown later, a streaming framework called Samza
can run top of a resource management system (RMS) called
YARN using Kafka as the datastream. There are multiple
timeouts in this setup: Samza Application Master (AM) time-
out, Samza container timeout, Kafka brokers timeout, YARN
NodeManager (NM) timeout, YARN task container timeout,
YARN AM timeout. Some of these timeouts can‘t be changed
by the system users such as YARN NM and YARN AM time-
outs because they are shared with other frameworks running
on the cluster (managed by YARN).

Fourth, some systems have certain conditions and require-
ments to use their built-in checkpointing mechanisms. For
instance, Flink is a streaming framework that constraints
the user within certain preconditions to use Flink‘s built-
in memory checkpointing mechanisms [1]. Samza (until
recently) didn’t have an option to run as a standalone system,
instead it needed an execution engine such as YARN and a
messaging system such as Kafka to operate. Each of these
systems has its own constraints to use its built-in reliability
features.

10763



IEEE Access

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

2) STREAMING FRAMEWORKS RECOVERY TIME

As stated before, generally there are two types of Big Data
frameworks based on the type of load they process; batch
and streaming frameworks. In batch processing systems, the
user submits a job and waits for it to deliver one final out-
put. The user doesn‘t monitor the job online in real time,
and he/she may accept some delays in job finish time if
the batch job is not a Mission-Critical type. Hence if one
of the job tasks fails and restarts the user may not notice
that. However, this is not the case in streaming frameworks.
In streaming systems, some users are monitoring the live
feed of updates online and in real time. If any task in the
pipeline of that live stream fails and restarts, most likely
the user will notice some interruptions in this live stream.
Therefore, achieving low recovery time for streaming frame-
works is much more needed and yet very challenging at the
same time.

3) REDUNDANT WORK

The observant of the Big Data frameworks and Cloud Com-
puting technologies in general will notice that some services
and features are common between them. For instance, the
examiner of the reliability aspect of these frameworks can see
that almost all of them implement some kind of checkpoint-
ing inside the framework. Some parts of the checkpointing
implementations are actually redundant and can be shared
between different frameworks. It will be interesting to encap-
sulate these implementations into one component that can
be shared between different frameworks. Although, as stated
before, checkpointing has many shortcomings, so it is worth
investing in another fault tolerance mechanism to make it
shared between different frameworks.

4) MODELS OF CONSISTENCY IN

STREAMING FRAMEWORKS

The way each streaming framework deal with failures is
different but generally there are three common models of
delivery/consistency in streaming frameworks: Exactly Once,
At Most Once and At Least Once.

Briefly, in Exactly Once, a framework guarantees that, for
all applications running on top of it, the receiver will receive
the sent tokens exactly one time. In other words there are no
redundant delivery of the same tuple or no missing tuples due
to machine failures or out of sync snapshots. Even if failures
happen, the system built-in fault tolerance mechanism still
has Exactly Once guarantees. This model is the best delivery
model between the three mentioned models because it will
mask failures and make them transparent to the user in a way
that no missing tuples or redundant tuples arrive mistakenly
to the end user.

In At Most Once scheme, some tuples may not reach to
the destination at all. This happens, for example, when a
machine failure occurs and the sending source keeps sending
tuples without getting back to the latest checkpoint. The exact

10764

opposite of this scheme is At Least Once where, in case of
failures, the sending source has to rollback to the latest taken
checkpoint and resend all tuples after that snapshot. This
may resend some of the tuples that has already been received
in the destination before the failure happen. The number of
redundant tuples can be reduced by taking more frequent
checkpoints.

In this paper we try to achieve Exactly Once in both
Byzantine and Crash modes. We also give users an option to
reduce the level of guarantees in both Byzantince and Crash
modes from Exactly Once to At Most Once to give them faster
delivery time as will be discussed later.

5) CHEAPER HARDWARE & IDLE MACHINES

Another observation that can be perceived from latest
advancements in computer hardware is that it is getting
cheaper with every generation. Moreover, many clusters and
datacenters have idle machines and commodity hardware
that are not used and unutilized for a long time. These idle
machines can be used to achieve better reliability for stream-
ing frameworks with very low recovery time to overcome the
aforementioned limitations of checkpointing and enhance the
reliability of streaming systems in particular.

These observations, among others, have motivated us to
create Warden. In the following sections we will show the
objectives, design and implementation of Warden that helped
in overcoming the above shortcomings and achieve better
reliability guarantees for Big Data frameworks in general and
streaming systems in particular.

Contributions and Roadmap: Concretely, this paper makes
the following contributions:

1) We provide a reliability approach that targets multiple
Big Data streaming frameworks (not a single frame-
work as most approaches do). Particularly, we focus on
online realtime streaming systems since their reliabil-
ity is more challenging than offline batch processing
system.

2) We provide users an option to choose between dif-
ferent fault tolerance models (Byzantine/Crash) com-
bined with different consistency options to choose from
(Exactly Once/At Most Once) each of which is tailored
towards particular applications and use cases.

3) We empirically show our evaluations on two well
known streaming frameworks: Flink and Samza, with
different consistency models (Exactly Once vs At Least
Once).

The remainder of this paper is structured as follows.
Section II presents the main objectives of Warden. Section II1
explains Warden‘s internal details followed by Section IV
which shows evaluations on two applications running on
two streaming frameworks. Section V discusses alternative
approaches and why we ended up with our current approach.
Section VI presents related work and Section VII concludes
with final remarks.

VOLUME 11, 2023



B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

IEEE Access

— RMS (YARN) —
| . Samza _ _ Flink Apex
Kafka [ RabbitMQ] HDFS] Kafka | RabbitMQ[Flume] Kafka | RabbitMQ[ZeroMQ

!

RMS (YARN
T WKI&DEN N |

L 1 1
| . Samza _ Flink R Apex
Katka | RabbitMQ] HDFS| Katka | RabbitMQ|Flume| Katka | RabbitMQ[ ZeroMQ

FIGURE 1. Vision of Warden.

Il. WARDEN's OBJECTIVES

The primary objective of Warden is to provide a generic,
multi-framework, flexible, customizable, low overhead pro-
tocol to ensure the resiliency of streaming applications run-
ning on streaming frameworks. In this section, we will go over
the primary characteristics of Warden that help it achieve this
goal.

A. MULTI-FRAMEWORK APPROACH

Some research papers focus on achieving fault tolerance for
one framework at a time, but it is more challenging when
the target is multiple frameworks at a time as shown in
Figure 1. Moreover, having different implementations for
different frameworks may end up having some redundant
work. Whereas encapsulating all these implementations into
one master project help in reusing some of the components
that are shared between all these projects, and at the same time
without sacrificing the performance of the generic approach
(compared a single framework approach) by giving the users
the ability to customize and modify the behaviour of Warden
by using a predefined set of APIs to make the behaviour of
Warden tailored towards their frameworks objectives as if
Warden was built specifically and solely for their particular
framework.

Also, since we are targeting multiple frameworks at a time,
it will be wise to choose a fault tolerance technique that is
not already implemented in most of the frameworks. One of
the main reasons we choose replication as the fault tolerance
technique of choice is the fact that most streaming frame-
works doesn’t have task replication built-in already. We are
not aware of any framework that runs redundant execution
tasks and verifies the data at the level of tasks (not at the level
of applications). Whereas checkpointing has been widely
implemented in many streaming frameworks, so choosing
checkpointing as the main fault tolerance technique may not
benefit a large subset of streaming frameworks as it is the case
in replication.

Furthermore note that we are doing replication at the level
of tasks, not the level of data. Some systems provide repli-
cation for their data partitions such as Kafka, and their data
blocks such as HDFS. Replicating tasks is more challenging
than blindly replicating data partitions, because the latter
only ensures high availability for the data itself but it doesn’t
ensure fast recovery time or any form of verification to tasks
outputs as it is the case in the former.

VOLUME 11, 2023

B. MINIMUM RECOVERY TIME POSSIBLE

Compared to batch processing, stream processing applica-
tions expect lower response time and latency. Active repli-
cation helps achieve this by having at least one other replica
that can take over the responsibility of the failed component
with minimum fail over time.

In our context, this means, if a replica fails, there is at least
one other replica that can take over control and continue the
flow of the stream of data in a way that makes the failure fully
transparent to the end user. This fast recovery time performs
better compared to some other fault tolerance techniques such
as checkpointing where the application has to rollback to the
latest checkpoint and reprocess data from that snapshot. This
reprocessing of data causes an undesirable delay for the tuples
to arrive to the destination.

Also Warden tries to minimize recovery time not only by
blindly implementing replication but also by optimizing this
technique to make its overhead as low as possible. This will
be discussed later in Section III where we will show that
all data streams will be flowing through an entity, called the
verifier, which has enough data and information to process
the replicated streams, make decisions and directly forward
the data to the following stage tasks without blocking the flow
of data between different execution stages.

C. FLEXIBILITY & CUSTOMIZABILITY
Many resilient/reliable systems claim that they can provide
reliability to applications running on them by using a cer-
tain rigid/firm technique that only works in very certain
conditions, and doesn’t give the users much flexibility to
customize this technique. Warden will provide its users many
customizable options to choose from to give the users the best
tailored reliable system that works exactly as they need. This
is achieved by giving the users the option to choose which
failure model they want their system to run on by changing the
number of replicas (r = f 4 1 Crash, r = 3f 4 1 Byzantine).
Moreover we give users the flexibility to choose between
two consistency models: Exactly Once and At Most Once.
Most users prefer to work in Exactly Once mode in both
Byzantine and Crash since Exactly Once doesn’t drop or
duplicate any tuple. But there are some cases where users are
willing to sacrifice some tuples in the favor of receiving the
fastest update of the current status of the system. For example,
consider a security camera that sends a video stream which
raises a security flag as soon as it detects a movement, users of
such system are more concerned in getting an alarm about an
intruder threat even if they skip some video frames. Another
possible application for At Most Once delivery model is
sensors in the field. Users who use these sensors are more
interested in knowing the most recent sensor value even if
some older values dropped from the stream. Another use of
the At Most Once delivery is watching a live sports match
where viewers are more interested in watching the most
recent live stream of the match even if that meant dropping
some video frames.

10765



IEEE Access

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

On the other hand, Exactly Once applications vastly out-
number At Most Once applications. Most financial transac-
tions and Stock Market applications can’t tolerate dropping
any transaction in the stream, hence it needs Exactly Once
guarantees. Mission-Critical applications will also require
Byzantine Exactly Once to ensure the correctness of the
values of the tuples in the stream (such as counting votes in
presidential elections day).

We didn’t add At Least Once mode since almost all
frameworks already have it built in. In general, most Big
Data frameworks already use checkpointing as the main fault
tolerance technique. Usually in checkpointing, the delivery
guarantee is At Least Once since some tuples will be sent
twice after a failure and getting back to the latest checkpoint.
Hence we decided to focus on the other two delivery models.
Combining both failure model and delivery guarantees give
users a wide variety of options to choose from (please look at
Figure 2):

1) Byzantine Exactly Once. Byzantine Exactly Once is the
slowest and the most resource heavy between all the
options since it requires 3f 4 1 replicas, it needs to
compare the actual values of the tuples and it has to
ensure that each next stage replica receives exactly one
copy of the verified tuple.

2) Byzantine At Most Once. In this mode, we need
3f + 1 replicas but it will be faster than Byzantine
Exactly Once since some tuples can be dropped in case
the end user desires to have the fastest and the most
recent update of the data without the requirement of
receiving each single tuple in sequence.

3) Optimistic Byzantine. In this mode, samples of
data are taken between spicific intervals (10 tuples,
100 tuples, ...) to make sure the data values between
different replicas are as expected. This mode is usually
used when users have high confidence/trust in the com-
putations done on the data but the users want to verify
samples of data during the application runtime.

4) Crash Exactly Once. This is the most common mode
where Warden acts as a bridge between sending and
receiving tasks to tolerate crash failures of the sending
tasks. If any sending replica fails, the tuples from the
other sending replica will be sent to both receiving
replicas. The values of the tuples are not verified as
in Byzantine, instead the sequence numbers of the
tuples from both replicas are tracked and the data
is buffered in queues to maintain the Exactly Once
guarantee.

5) Crash At Most Once. This mode is faster than Crash
Exactly Once since in Crash Exactly Once there is a
need to guarantee that next stage replicas receive one
single copy of each unique tuple, whereas users in
Crash At Most Once are willing to sacrifice dropping
some tuples in the favor of receiving the most updated
changes to the data. It is similar to Byzantine At Most
Once but the difference is this mode is faster since it
doesn’t compare the values of the tuples.

10766

We-ll elaborate more details on these modes when we
discuss their implementation details in Section III.

Furthermore, we give framework developers the flexibility
to change the granularity of the execution unit that has to be
verified by giving them the ability to choose what to verify.
This is done by giving the framework developers the option
to insert Warden APIs any place they want inside the task,
between tasks, or even after the whole application is done and
before submitting the final output to the end user. This will be
discussed in Section III-B.

lll. WARDEN's IMPLEMENTATION

In this section we will dive into the implementation details
that helped in achieving Warden’s objectives. But before that
we need to define some terms. In this paper, the word tuple is
used to indicate the abstraction of the data piece that is being
sent in the stream. This tuple could be any data type (String,
Integer, . .. etc) or could be called different names like token
or value. The word framework refers to a Big Data framework
such as Hadoop, Spark, Storm, Heron, ... etc. There is a
centralized component that we call the verifier where all tasks
communicate with to send their data to be verified.

We deal with two types of failures: Crash and Byzantine.
In Crash failures, the machine stops working (fail-stop) and
the tasks running on the machine no longer produce or con-
sume any data, maybe due to a power outage, network dis-
connection, operating system failures, ... etc. In Byzantine
failure the machine and the tasks running on it will continue
working, but the tasks could produce corrupted results and the
processes running on the machine could behave randomly or
arbitrarily. It is very hard to detect a Byzantine failure without
comparing the output of the corrupted tasks with the output of
the correct tasks, that is why verification (comparing outputs)
is needed. Byzantine failures could happen due to many
reasons: corrupted memory chips, CPU bits flip due to power
transients, malicious user accessing the machine. .. etc.

We use an RMS called YARN as the wagon to carry our
protocol (Warden). Concisely, YARN is an RMS that man-
ages a cluster of resources. Frameworks (such as Hadoop,
Spark, Storm, ... etc.) run on top of it to share the resources
of the cluster. Each application running on top of each of these
frameworks gets a specialized container called the Applica-
tion Master (AM). From its name, the purpose of the AM
is to be the head of the application where all application
tasks communicate with to get more resources from YARN.
Each task from these frameworks (Mappers and Reducers in
Hadoop, Executors in Spark, Spouts and Bolts in Storm, . ..
etc) runs in what is called a YARN container (which is often a
JVM). There is a centralized Resource Manager (RM) which
acts as the central authority arbitrating resources among all
the applications from all frameworks that run in the cluster.
For more details about YARN please refer to its paper [2].

YARN is not the only RMS in the Big Data world, there
are many other well known RMSs such as Mesos [3], Kuber-
netes [4], Docker Swarms [5], Omega [6], Fuxi [7], ... etc.
There are many reasons for choosing YARN over other RMSs

VOLUME 11, 2023



B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

IEEE Access

beside its popularity and it comes packaged already with
Hadoop, some of these reasons are:

1) Some frameworks are YARN-native which means they
already uses YARN out of the box as the main resource
scheduler for the framework, and to run the framework
tasks inside YARN containers. In other words, there
is no standalone mode for this framework to run on,
instead its ‘standalone‘ mode already uses YARN as
part of its main components. This was actually the case
for Samza until recently and some other frameworks
such as Tez, Hadoop, Apex and Dryad.

We are not aware of any framework that is RMS-
native that uses any RMS other than YARN. For exam-
ple, we are not aware of Mesos-native frameworks or
Omega-native framework. So it will make sense to
choose YARN as the main RMS since it will benefit
both standalone frameworks and RMS-native frame-
works.

Itis noteworthy that Flink used to be YARN-native until
Flink version 1.4.0 where Flink‘s developers added a
standalone option. In general, we noticed a tendency
for many Big Data frameworks that are still in incubat-
ing phase or in its early stages to start with YARN as
its main resource scheduler, then move on to provide a
standalone option in later stages of development after
the framework is mature enough.

2) Not all RMSs are open source. The fact that YARN is
open source make it one of the few open source options
out there to choose from. For example, Alibaba Fuxi [7]
and Google Omega [6] are not open source although
they have competitive properties to YARN.

3) The resource request system in YARN makes it attrac-
tive and appealing for us compared to some other
resource management systems such as Mesos in which
the resources are actually distributed in the form of
resource offers to the frameworks JobManagers.

In simple terms, the general sequence of operations in
Warden is as follows: Tasks process input data, tasks send
the data processed to the verifier instead of next stage tasks
(as it normally would) then the verifier send the verified
data to next stage tasks to continue the normal flow of the
application.

To achieve this, we introduce a Multi-Phase protocol where
each phase is explained in details in each of the following
subsections. Figure 3 shows these phases in sequence from
left to right (the connected dotted region in the bottom and
center of the figure represents the verification logic).

A. MULTI-PHASE PROTOCOL
The communication between the frameworks tasks and the
verifier can be described in a 5-phase protocol:

Phase-1: Initialization

Users submit their jobs to Warden normally as they do with
vanilla YARN. Warden reads the Warden‘s configuration file
to know more about the properties of the submitted job.

VOLUME 11, 2023

Fault Tolerance Mode
Byzantine Crash
5 g Exactly Once Byzantine Crash Exactly
SIS Exactly Once Once
RIS
N
§ S| At Most Once Byzantine At Crash At
0O Most Once Most Once

FIGURE 2. Verification modes (optimistic byzantine not shown).

In this configuration file Warden knows how many replicas
are desired by the user, and other job properties like Exactly
Once guarantees or At Most Once guarantees, . . . etc.

Warden then launches r AMs in different machines as if the
user actually submitted r different jobs to YARN‘s RM. It is
important here to launch the AMs in different machines so
that if one of these machines fail with the AM in it, the other
AM will continue working normally and it won‘t be affected
by the first AM failure. If we leave this job to vanilla YARNs
RM, then all AMs could end up running on the same machine.
If that machine crashes or gets disconnected from the network
then all AMs have to restart which affects recovery time
drastically. This same modification is also done in later stages
of execution, where Warden ensures that each task replica is
launched on a different machine to avoid having replicas of
the same task running on the same machine.

Phase-2: Handshake

Once a framework task launches, the task communicates
with the verifier to inform the verifier about some of this
task’s information such as: which replica from which stage
from which application from which framework does this task
belong to, the hostname of the machine that this task is run-
ning on and the port that this task will be sending or receiving
data from. The verifier stores each task information locally
and use the tasks IDs to compare tuples received from tasks
streams with their corresponding tuples from other replicas
of the same task that belongs to the same application and the
same framework.

Phase-3: Start-Sending Signal

Frameworks tasks shouldn‘t be allowed to send their tuples
to the verifier until the tasks receive Start-Sending signal from
the verifier. This means the tasks won‘t start processing data
until they receive this signal. The verifier sends this signal
when it has made successful handshakes with r task replicas,
so all replicas of the same task has launched and ready to
send tuples to the verifier. Otherwise, if each task replica
start right away without synchronising with other tasks, then
this could lead to a situation where some replicas of the task
has already started sending tuples whereas other replicas of
the same task are still initiating and maybe didn‘t finish the
Handshake phase.

Phase-4: Multimodal Verification

This is the most important phase where the verification is
actually done. The process of verifying the tuples is different

10767



IEEE Access

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

Phase 1

Phase4 Phase 5

Phases 2 & 3
v » - - -
TR R
Pty =1 - :
o m i
(O/A 3 (is 2’&: --—"="=1
Application 'P%/;Q;% ; %&Q"‘Eg 90//0‘% H _:_:_:_:
%% BEmEE 9 L
= 2 AN S

.... - ...l .g..

.‘.._- 3 I A °
- . 1 - . - LI:]

.‘. - Ll .’-. B .4{7;.-

I=I=I==N 0%

B = —..>| — A /.

__>_ > a-w—r .

: —— .“ﬁ“. .. -

L. JByzantine vt v Crash o Crash ottt et e

. Exdcitly Once . . " Exactly Once 'At Most Once. " . ™.

FIGURE 3. Multi-phase protocol (byzantine at most once and optimistic byzantine are not shown).

according to which mode (discussed in Subsection II-C) the
tuples wish to be verified against. Figure 2 shows the Fault
Tolerance Mode vs Consistency Guarantees grid. The details
of each mode are as follows:

1) BYZANTINE EXACTLY ONCE

This is the most time consuming mode where each single
tuple is verified against other tuples from replicas of the same
task to form a majority (3f + 1). Once a majority is formed,
the agreed-on tuple will be sent to its corresponding next stage
tasks.

The verification in this mode is done according to the
following: once the verifier receives a first-seen tuple from
the sending task, the verifier will save this tuple in a hashtable
where the key is the counter (sequence number) of the tuple
and the value is the actual tuple itself. Then the verifier will
receive tuples with the same sequence number from streams
of other replicas of the same task and it will save each
tuple from each stream in its corresponding hashtable. Once
a tuple forms a majority between the hashtables, the tuple
will be pushed to its corresponding linked blocking queue
from which it will be send to next stage tasks which will be
discussed in Phase-5.

2) BYZANTINE AT MOST ONCE

In Byzantine At Most Once, the verifier waits until the current
tuple forms a majority from the four replicas streams then
send it to next stage tasks. During that time, many tuples
could have arrived from different streams. These tuples will
be dropped in favor of sending a more recent tuple to the
next stage. After sending the current tuple (after it forms
a majority), the verifier will ‘grab‘ the next tuple with the
highest sequence number (most recent tuple) at the current
time interval, wait for it to form a majority then send it, and
so on. Note that there is no queueing in Byzantine At Most
Once but the values of the tuples will be compared with each
other from at least 3 different streams.

3) OPTIMISTIC BYZANTINE
In this mode, data is not sent from the sending tasks to the
verifier then from the verifier to the receiving tasks; instead

10768

sending tasks send the tuples directly to the receiving tasks
but every few tuples (10 tuples, 100 tuples, . .. etc.) they send
sample of the data (1 tuple) to the verifier so the verifier
makes sure that the computation is correct up to that point.
Users of this mode have high confidence in their data compu-
tations, but between time to time they still want to make sure
that the computation is correct up to that point bur without
the overhead of sending the tuples to the verifier then to the
receiving tasks as in Byzantine Exactly Once and At Most
Once modes.

4) CRASH EXACTLY ONCE

In Crash Exactly Once there is one major queue where tuples
from both streams write into. Once a tuple with sequence
number x is received, it will be put right into its position in the
queue. It is possible to check whether there is already a tuple
on that position or not but to speed up the process the tuple
will be put into its position even if it overwrites the current
value since both of them supposed to have the same value.
In Crash mode the verifier doesn‘t compare the values of the
tuples as in Byzantine mode, instead it assumes that the tuples
values are correct and the verifier main concern is to place
the tuples into their correct position in the queue according to
their sequence number.

5) CRASH AT MOST ONCE

As stated in Subsection II-C there are some cases where
users are more interested in receiving the fastest most recent
update in the stream and are willing to sacrifice dropping
some previous tuples to do that. In Crash At Most Once
there is no queueing (buffering), instead everytime the verifier
wants to send a tuple to both replicas of the following stage
tasks, the verifier will take the most recent tuple from both
streams without checking its value or its sequence number.
In most cases, the verifier won‘t drop any tuple and the system
will actually achieve Exactly Once guarantees although it
is running as At Most Once. But the verifier is not doing
any queueing for the tuples so if a group of tuples arrives
quickly in a very short time interval (burst), these tuples won‘t
be queued, instead the last tuple (most updated value) will
overwrite the tuple value that will be sent to next stage.

VOLUME 11, 2023



B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

IEEE Access

Phase-5: Send to Next Stage

After the tuples have been processed/verified in Phase-4,
they will be sent to next stage tasks according to which mode
they were processed in. For example, in Byzantine mode,
after a tuple is verified and is part of a majority (3 out of 4 in
case r = 4), the tuple will be pushed into its linked blocking
queue. The threads which are responsible for sending the
tuple will keep checking these queues for any new verified
tuples to send them to their corresponding tasks in the next
stage.

The reason behind using a linked blocking queue data
structure is it is a FIFO data structure (so order is reserved)
and it is unbounded because the number of tuples to be held in
the queue is unknown prior to the queue start, and blocking
queues in general have the advantage of the fake operation:
this take operation blocks temporarily until data is available
in the queue which is much more efficient than a busy wait
in which the queue will be repeatedly pulled until a tuple is
available.

Another example is the Crash At Most Once mode where
tuples are sent right away to next stage tasks without putting
them in queues and without comparing them to other tuples
from other replicas of the same task. So sending to next stage
is different according to which mode the tuples are being
verified with.

B. GRANULARITY

As mentioned in Subsection II-C one of the main objectives
of Warden is to achieve flexibility and customizability. This
customizability is achieved not only by giving the users an
option to choose between the five verification modes stated
above but also by giving users the options to choose what
to verify. Some users prefer to have a very fine granularity
verfication model in which the output of each single task
from each stage is verified, others may prefer to skip the
verification of some tasks in favor of reducing the verification
time overhead, other optimistic users are satisfied with a
coarse grained granularity where it suffices to verify the very
last output of the whole application. There is no way to predict
the level of granularity preferred by different users of Warden.
Hence we decided to give the users the option to choose what
to verify by providing them a set of APIs to interact with
Warden according to the level of granularity they see fit for
their applications.

Due to these reasons we introduce a set of API calls
detailed in Table 1 to help developers achieve the best
level of granularity for their frameworks and take the
most out of Warden. In the table, the handShake and
startSending APIs correspond to phases 2 and 3 respec-
tively. sendToVerifier is called after receiving the
startSending signal from the verifier, so it is done
between phases 3 and 4. receiveFromV is called in next
stage tasks after the verification is done so after phase 5.
There are more details about these APIs not shown in the table
for conciseness.

VOLUME 11, 2023

Furthermore, one of Warden’s objective is to target multi-
ple Big Data frameworks (Subsection II-A). Each framework
developer knows the best place to insert the API for each
phase of Warden inside their framework. For example, the
handShake API can be inserted in the launching code of
the framework ‘s task. Since the framework developer is the
one who wrote this booting code, he/she is the one most
knowledgeable to know where to insert the handShake API
inside their framework.

C. MULTITHREADING & SCALABILITY

We have implemented the verifier in a multi threaded fashion
where each phase in each task has its own independent thread.
The reason why there is a new thread for each phase in
each task is to prevent blocking the task execution sequence
between different phases in the same task. For example; the
Handshaking phase is done as soon as the task has started
running in its assigned machine, whereas the Start-Sending
phase is done later in the same task after all the task built-
in initialization and running code have been processed. If we
block the task code in the Handshaking phase then the task
has to wait for the verifier response before the task contin-
ues running its built-in initialization code which will cause
unnecessary delay.

Also having a multi threaded design help in setting up
the pace for receiving and sending threads in the verifier.
For example, in the case of Byzantine Exactly Once mode,
received data are written to linked blocking queues after they
get verified, then sending threads send verified tuples from
these queues as soon as they are ready. This is helpful in cases
where sending and receiving threads are not working at the
same speed.

The scalability of the verifier depends on the available
resources of the machine that the verifier is running on. For
example, the size of the queues that will hold the tuples until
they get sent to next stage tasks can increase as long as the
verifier can use more memory from the machine (until these
tuples get sent to next stage, at which point they will be
removed from the queues). Similarly, the number of threads
the verifier can spawn depends on how many CPU cores the
machine has and how do the operating system and the JVM
deal with them. It is out of the scope of the paper to optimize
how does the JVM or the operating system schedule or pin
threads between different CPUs, or how to optimize queues
and hashtables memory allocations.

IV. EVALUATION

In this section we will go through the evaluation details of
Warden and the applications that we ran to evaluate it, along
with the details of the cluster used to run the evaluations.
We focused our evaluations on Warden while the verifier is
running in the centralized mode to show the worst latency
case for our verifier since in the centralized mode the tuples
have to travel to the verifier machine then to next stages
machines whereas in the distributed mode the tuples are sent
directly to next stage tasks as will be discussed in section V.

10769



IEEE Access

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

TABLE 1. Warden'’s API.

API

Optional<int> portNumberFromV
handShake

(string taskDetails, string
hostName,

int portNumber)

int portNumberToV startSending()

Description

portNumberFromV: Optional return value that could later be used if this task is going to receive data from the
verifier. It is Opt ional because not all tasks are receiving data, like first level tasks. This port number will be used
later in receiveFromV API call.

taskDetails: is space separated: “TaskUniquelD TaskLevel ReplicaNumber ApplicationUniquelD Framework™
There is no particular reason for this order other than an ordered convention to help Warden parse the string according
to a certain order.

hostName and portNumber: are for the current sending task. We are assuming all tasks are sending tasks, if this is
not the case then these values will be Optional as it is the case of receiving tasks.

portNumberToV: is a port in the verifier machine assigned for that task to send tuples to the verifier through. This is
a blocking call that will only exit once the task receive a start-sending signal from the verifier as described in Phase 3.

It is not Optional because the framework developer will not use this API call unless this is actually a sending task.

void sendToVerifier
(string tupleAsString,
int sequenceNumber,
string taskIDOfNextLevel)

string tupleAsString: there is no restriction on tuples to be strings, they could be changed to byte [].
sequenceNumber: local counter value of the tuple.

taskIDOfNextLevel: The verifier already know which port in which machine to send this tuple to by only
knowing the taskIDOfNextLevel, because all tasks give the verifier all their details in the handShake phase.

The return value is void but the API can be changed if there is a need to get a value back from the verifier.

string tupleAsString
receiveFromV ()

If this is a receiving task then Warden has already saved the Optional<int> portNumberFromV locally from
the handShake API call. Framework developers will place this API call exactly where the framework expects to

receive tuples as if the framework is vanilla without Warden.

A. CASE STUDIES

We ran two frameworks (Flink and Samza) on top of War-
den to evaluate it. For conciseness,we removed many details
about these frameworks and the way they deal with fail-
ures when they‘re running in standalone mode and on top
of YARN mode. It suffices to say that Flink has Exactly
Once guarantees whereas Samza has At Least Once guaran-
tees. Flink can run as standalone and on top of YARN but
Samza(until recently) couldn’t run standalone, instead Samza
required two things to function: an execution engine to run
Samza‘s tasks on (such as YARN), and a message passing
pipleline to carry the streams of data for Samza‘s tasks (such
as Kafka). From now on, when we say Samza, we actually
mean Samza running on top of YARN using Kafka as the
message passing system. In both Flink and Samza, when a
machine fails, the framework works with YARN‘s RM to
restart the containers in a new machine, which is an expensive
procedure especially for streaming frameworks because it
will cause a long failover delay overhead. For more details
about Flink and Samza please refer to their papers [8] and [9]
respectively.

B. TESTBED & SYNOPSIS

We have deployed Warden on a cluster of 21 machines,
each of which has 20 CPUs and 120GB memory. 20 (slave)
machines are treated as a cluster that is running on an
untrusted tier (in the cloud). One machine is treated as the
master machine (trusted tier), on which Warden’s verifier
(centralized) is running on. Each container in the slaves
machine is limited to 1 CPU and 3 GB memory, which
totals to 16 container per slave machine (we left 4 CPUs
idle to prevent resources contention). The input size for all
applications is ~27B. Each measurement in Figure 4 has been
run three times where error bars show the difference between
runs. We used YARN (Hadoop) version 3.3.4, Flink version
1.16.0 and Samza version 1.5.0.

10770

To evaluate our applications deterministically, we made the
input streams bounded. The main criterion that we measured
for our applications is the arrival time of the last tuple in the
stream. Another possible way for evaluation is to make the
streams unbounded and measure the arrival time of the nth
tuple in different modes. Either way will show the effective-
ness of our approach in the presence and absence of failures.
Similar to other works [10], [11], [12], [13], [14], [15], we
used basic fault injection to study the effects of task fail-
ures. The host failures were emulated by stopping all JVMs
running in a given machine (Byzantine failures don’t affect
application finish time since corrupted results are compared
and ignored in Byzantine mode. Hence the evaluation figures
focus on failures that affect latency).

C. APPLICATIONS
To test Warden we ran it with an application from Flink and
another from Samza.

1) FLINK APPLICATION

To evaluate Flink on Warden we use a Twitter application
where it reads real time tweets from certain users and does
some processing on the tweets (edits, merges, collect statis-
tics,...etc). To make the evaluation accurate, the input was
changed from real time tweets to a predefined size input
stream of tweets and use this input across different evaluation
runs. Otherwise the evaluations won‘t be accurate since the
number of real time tweets by a certain user in a certain time
window is different from one run to another. We changed the
tweets size and the processing done on the tweets to simulate
larger checkpoints (~100MB to ~500MB). All Flink evalu-
ations have been done while Flink running streaming mode.
Flink can run in batch mode where it will work as a batch
processing framework but Flink‘s batch processing mode
doesn’t have any built-in fault tolerance technique (neither
replication nor checkpointing). In other words if a task fails

VOLUME 11, 2023



B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

IEEE Access

in batch processing mode it will restart from the beginning.
Since the focus of the paper is on streaming frameworks, the
evaluations are done on Flink streaming mode.

2) SAMZA APPLICATION

This application merges real time edits streams from
three wikipedia edits streams (wikipedia, wiktionary, and
wikinews) into one major edits stream, parse these edits for
further processing, get some statistics out of the information
parsed from the streams and finally output these statistics to
the end user. Both the input and output streams are Kafka
streams. Instead of processing real time edits from real time
streams, the input stream was changed to be a limited pre-
defined input stream of edits to the application just to make
the input deterministic for all evaluation runs. Otherwise the
evaluations won‘t be accurate since the number of real time
wikipedia edits in a certain time window is different from
one run to another. We generated a json file of wikipedia
edits that Kafka reads and inputs into the Samza application.
We create a synthetic checkpoint inside the statistics task.
The checkpoint consists of the actual edits that have been
done to a certain article within a time period. To change the
checkpoint size we change the input file to have larger size
edits (e.g multiple paragraphs added to the same wikipedia
article) or smaller size edits (e.g one sentence added to dif-
ferent wikipedia articles) to simulate different checkpoint
sizes (~100MB to ~500MB).

D. APPLICATIONS FINISH TIMES &

CHECKPOINTING OVERHEAD

Note that the overhead of saving frequent checkpoints (state
stores) in both Flink and Samza consists of two things: One to
save the checkpoint locally then another one to save a check-
point replica to another machine (distributed file system).
In the runs that uses Warden we disabled checkpointing to
see the pure overhead of Warden. Moreover, there is another
overhead after loading the latest state-store checkpoint which
is redoing the work from the latest checkpoint in the stream
itself. In case a task fails in Samza, it will restart from
latest Kafka offset that was recorded. This offset may not
be accurate because the task could have processed some data
after the latest offset checkpoint. Recall that Samza (until very
recently) had only At Least Once consistency, so if a task
fails in this application, the number of wikipedia edits and
the statistics collected by the application could be inaccurate
because some partitions have been processed twice due to
the At Least Once policy. For example, in one of the test
runs that finished without any failure, the output consisted
of a total of 800000 tokens. Repeating the same run and
crashing a machine with 10 seconds checkpointing interval
ended up delivering 803809 tokens to the end user. So a total
of 3809 tokens were delivered twice. As mentioned before,
Warden can overcome this problem with two modes: Crash
Exactly Once and Byzantine Exactly Once. On the other
hand, the evaluations we ran on Flink was when Flink was

VOLUME 11, 2023

running in Exactly Once mode which prevents sending redun-
dant data but in the cost of higher checkpointing overhead.

Figure 4 shows the application finish time in different runs
for both Flink and Samza with and without Warden. Samza
numbers were normalized to fit in the figure. Note that the
y-axis in the figure starts from 4000 seconds. From the figure:

1) Crash Exactly Once finish time (with checkpointing
disabled) is faster than Samza with checkpointing enabled
when the checkpoint size is ~500MB/sec and almost as fast as
the finish time when the checkpoint size is ~100MB/sec. And
it is faster than both in Flink (discussed later). The overhead of
Crash Exactly Once is due to the buffering that occurs inside
the verifier. There is no buffering in Crash At Most Once that
is why it’s overhead is lower.

2) Increasing the checkpoint size will induce more time
overhead. Even though both Flink and Samza strives to opti-
mize their checkpointing strategies, yet the overhead will be
noticable for large size checkpoints over long periods of time.
The problem is both Flink and Samza has to save the large
checkpoint locally and send it to another machine for backup
for each single task. So the overhead includes both saving
the checkpoint to disk (twice) and sending the checkpoint
through the network. These overheads won‘t be noticeable
for small runs or for checkpoints of small size (~1KB/sec).

3) As expected, increasing the timeout will increase the
recovery time. One may naively conclude that reducing the
timeout will fix the problem, but the fact of the matter is,
some timeouts are part of YARN’s configurations and it is
out of the control of Flink or Samza users. For example,
most frameworks run their tasks inside YARN containers.
The timeout for these containers is set in the NodeManager
configs which is shared between all frameworks running
on top of YARN. Changing this timeout may affect other
applications from other frameworks running on top of YARN
and most likely it is out of the control of the framework’s
users. In fact, most of these configs are editable only by the
admins of the cluster.

Moreover, there is a good reason why most frameworks
and RMS systems have default timeouts of 5 or 10 minutes
but not all the way down to few seconds. The reason for
this is to reduce false positives by mistakenly marking a
task as a failed task where the actual reason for the delay in
heartbeat signals is due to some other unrelated reason such
as resource congestion. For example, memory overload, busy
CPU, slow disk or network congestion can cause delays for
task heartbeats to reach to the master machine. Please refer to
Subsection I-A1 for more details about the timeout problem.

4) Note also that in case of failures, the overhead doesn‘t
only include waiting for the timeout and then loading the
remote checkpoint but also it includes the work that wasn‘t
saved in the latest checkpoint and has to be redone after the
latest checkpoint is loaded.

5) Byzantine Exactly Once has the highest overhead
between all the models. The reason for that is in this model,
amajority of 3 out of 4 (assuming f = 1inr = 3f +1) values
have to match before sending it to next stage. As mentioned

10771



IEEE Access

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

5600

= Flink

“ Samza (normalized)

«
£
o
5}

«
N
o
5}

@
a
o
5}

L

4800

;///

IS
@
=}
5}

IS
=
o
5}

4200

Last tuple arrival time (in seconds)

2

&

"

4000
Vanilla
No CF i

Vanilla

Vanilla
Cl inting

Vanilla

Vanilla

o

No Failures

Ch
(~100MB/1 sec)
No Failures

(~500MB/1 sec)
No Failures

(el ing
(~100MB/1 sec)
Crash Failure
1 min Timeout

(~100MB/1 sec)
Crash Failure
5 mins Timeout

Crash
At Most Once
(Checkpointing
disabled)

Crash
Exactly Once
(c inti

Byzantine
At Most Once
(cl intil

Byzantine
Exactly Once
(c inti

disabled)

n
disabled)

disabled)

Optimistic
Byzantine (1 tuple
per 100 tuples)
(Checkpointing
disabled)

FIGURE 4. Flink and Samza applications on Warden (merged into one figure due to large caption per column).

before, we are saving the values in hash tables then after the
values are verified they are saved again in sending queues to
be sent by the sending threads. Note that in Crash Exactly
Once mode there is no verification of values, instead it sends
the tuples sequentially to next stage replicas without saving
the tuples in hash tables for verification as in Byzantine mode.
That is why Crash Exactly Once overhead is lower.

6) Crash At Most Once, Byzantine At Most Once and
Optimistic Byzantine are almost as fast as vanilla since there
is no buffering in the verifier and some tuples being dropped
to keep the stream updated to the most recent tuples. As dis-
cussed before, these three modes may not be suitable for
some critical applications such as financial transactions or
stock market trades, but they could be useful in some other
applications like reading the most recent correct values of
field sensors, security cameras or fire alarm systems.

7) One noticeable difference of the application finish times
between Flink and Samza (without Warden) is that it takes
Flink relatively slightly longer time to make checkpoints
in both 100MB and 500MB checkpoint sizes compared to
Samza. One possible reason behind this is Flink is running
in Exactly Once mode, there could be some delay added to
the application finish time due to the overhead of injecting
barriers in the stream and the overhead of the alignment steps
that Flink does to ensure Exactly Once semantics. Apart from
that, both Flink and Samza have relatively similar application
finish times (compared to their vanillas) in all the five modes
(Crash/Byzantine Exactly Once/At Most Once, Optimistic
Byzantine) since checkpointing is disabled in both of them
once Warden is running.

E. REPLICATION OVERHEAD

It is expected that running replicas of the same applica-
tion will require twice the resources in case of tolerating
Crash, and four times the resources in case of tolerating
Byzantine. This is inherited from replication itself. However,
as mentioned in Subsection I-AS5, hardware is getting cheap,

10772

including decent memory and CPU chips. Moreover, many
datacenters have idle commodotiy machines that can be uti-
lized to run replicas of the applications; particularly stream-
ing applications where fast delivery is crucial for end user.

Nevertheless, as mentioned before in the objectives of
Warden in Subsection II-C, flexibitliy and customizability
is one of the primary motivations behind designing Warden.
Users of Warden are not forced to use 4 replicas of the
application to tolerate Byzantine, instead they can reduce
the number of replicas to tolerate Crash. In fact, users can
disable Warden all together in case the cluster is congested
(during daytime busy hours) then enable Warden when the
machines in the clusters are mostly idle (during midnight,
early morning hours). In general, the more resources used the
better guarantees the system can achieve.

Compared to other reliability techniques, such flexibility
doesn’t exist in any other fault tolerance method in the liter-
ature. For example, checkpointing is already built-in almost
all streaming (and batch) processing frameworks. If any user
who is using a framework that has checkpionting as the main
fault tolerance technique wishes to enhance the speed of their
applications (whether there were failures or not) they won’t
have any option to do so, even though they could have twice
or even 4 times the resources of the cluster sitting idle, they
won’t have any option to utilize these idle resources in any
way to enhance their fault tolerance guarantee, for example
from At Least Once to Exactly Once in Samza, or to achieve
faster recovery time.

F. PROBLEMS WITH EVALUATIONS

While running some evaluations, we noticed some unex-
pected behaviour from some applications, particularly those
that run on top of Flink. One of these unexpected behaviours
is how different versions of Flink deal with YARN‘s AM
failure. For instance, in some runs we noticed that the Flink ‘s
AM failed to restart. Figure 5 shows this case when Flink was
tested on YARN, Flink version 1.6.0 failed to timeout and

VOLUME 11, 2023



B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

IEEE Access

8

N

u

o
1

8

8
7

< h
Vanilla Crash Flink Flink

Flink Exactly version: version:
Once 1.6.0 1.16.0

u
o
1

Last tuple arrival time (in seconds)
Failed To Recover
G I0007000,

o

FIGURE 5. Unexpected behaviour from failing the AM of the same
application running on different versions of the same framework.

restart the job when the machine that has Flink‘s AM crashed.
Although this was fixed in later versions of Flink, yet it shows
the importance of Warden for unstable frameworks or frame-
works that are still in incubating phase (under development).

It is also worth mentioning that while evaluating some
fault injection scenarios we noticed that Flink reports that the
application finished correctly and the web interface shows
that the application completed successfully. Where in fact,
after checking the tasks logs, it turns out that the tasks actually
failed due to some exceptions/errors related to the machine
crash. This is a perfect example of Byzantine failure in which
an application informs the user that the application finished
correctly where actually it failed.

What makes such Byzantine failures hard to detect is the
difficulty of finding the root cause of the problem. Since this
problem happens sometimes when Flink runs on YARN, the
root cause could be related to either Flink itself, or YARN
itself or both of them.

In general, running different versions of systems on top of
different versions of other systems introduces unpredictable
problems and sometimes Byzantine failures. For example,
in our case, running the same version of Flink or Samza on
top of different versions of YARN gives different behaviours
when the machine that has the AM container fails: In YARN
versions earlier than 2.4.0: all running containers will be
killed if the AM container fails and the new AM has to restart
the containers that were running once the old AM failed. But
this behavior is different for YARN versions 2.4.0 and above.
In such versions, YARN tries to keep running containers alive
once the AM failed and will try to connect the new AM to the
old running container in an attempt to minimize the damage
of AM container failures. Furthermore, in more recent ver-
sions of YARN (version 2.6.0 and above), they changed the
method used to measure the ‘attempt failure validity interval®
in YARN. This interval indicates when should YARN kill
a failed application after the failed application exceeds the
maximum number of application attempts it is allowed to
have within a certain time window.

This is another advantage of replication compared to
checkpointing. Checkpointing depends on the actual imple-
mentation of checkpointing inside the framework itself.

VOLUME 11, 2023

‘
s
s

a) Centralized
(trusted tier)

b) Replicated Verifier ¢) All-to-All

Verification Logic Next Stage Tasks

FIGURE 6. Replicating the verification logic.

This implementation may not be effective when running dif-
ferent versions of systems on top of each other. Replication,
on the other hand, runs another replica of the application. This
replica is completely independent of the version of the under-
lying system (YARN) or the version of the system running on
top of it (Flink or Samza or Kafka) and how different versions
of these systems interact with each others.

V. DISCUSSION
So far, in all our implementations and evaluations, there is
a centralized component that all traffic goes into, this com-
ponent is the verifier. The verifier so far is a single point
of failure. We assume that there is a single verifier running
in a ‘trusted tier’. There have been some discussions on
replicating the verifier itself.

Figure 6 shows some suggested designs to replicate the
verifier in case it is moved out of the trusted tier:

o Figure 6-a shows the design that we used in this paper
which a centralized verifier running in a trusted layer.

o Figure 6-b shows a design of a replicated verifier where
four replicas of the verifier communicate with each other
to reach a consensus on the data that will be pushed to
the next layer.

o Figure 6-c shows a design of Warden where the verifica-
tion is done inside the tasks themselves (i.e the verifier is
inside Warden’s library that is attached to the task code).
There is a ‘mini’ verifier inside each consuming task that
is working as a ‘gatekeeper’ where the verification logic
is applied. In this mode, the tasks will communicate with
each other before they begin working on the input data
received from previous stages.

There are several reasons why we didn’t consider imple-
menting and evaluating these options:

1) Network communication overhead: The network over-
head of sending tuples between the four replicas of
the verifier will be much higher than processing the
tuples locally. In Figure 6-b(Replicated Verifier), each
tuple will be sent to its corresponding verfier then
each the four verifier replicas have to communicate
between each other to reach a consensus. A similar

10773



IEEE Access

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

overhead occurs in Figure 6-c(All-to-All) where the
number of messages sent through the network is much
higher than the number of messages sent in Figure 6-a
(Centralized). This network communication overhead
can be mitigated if all traffic are sent through a central-
ized component which has a global vision of all data
coming from all tasks replicas and making consensus
decisions without the need to communicate with exter-
nal verifiers to reach a consensus.

2) Decoupling verification from processing: In Figure 6-c
(All-to-All), the verification logic has to be loaded into
every replica of every task in the application. This may
cause some issues:

o Resource provisioning will become more complex
since the client has to count for both its appli-
cation resource requirements and the processing
power needed for loading and executing the verifi-
cation logic in the background of the execution unit
(virtual machine/container).

o The verification logic has to be loaded into the
memory of each replica of each task at every stage
of the application execution. Whereas, in case of a
centralized verifier, the verification logic is already
loaded into memory (and cache) and there is no
need to re-execute any init scripts related to the
verification. In other words, the centralized verifier
is more optimized to execute the verification logic
than in the task itself.

o It may not be suitable for some applications
where developers prefer to decouple verification
logic from the tasks processing logic completely
(e.g. to reduce resource consumption in the pro-
cessing machines).

3) Paper scope: The focus of this paper is on providing
fault tolerance and reliability at the applications and
tasks levels, not at the level of system components.
We can investigate other approaches for providing sys-
tem level reliability not only to the verifier but also to
YARN components such as the Resource Manager and
the Node Manager, or to HDFS components such as
the Name Node and the Data Node. In fact there are
some research papers that focuses on replicating system
level components in particular such as Upright [13] and
ZooKeeper [12].

Due to the above reasons we decided to stick with a central-
ized verifier that is placed in a trusted machine. A feasibility
study can be made to quantify the pros and cons of the
different approaches in Figure 6 but this can be done as part
of the future work.

VI. RELATED WORK

Warden can work on streaming frameworks other than Flink
and Samza. There are no particular reasons for choosing
Flink, Samza and Kafka in this project as the streaming
frameworks in our case studies. But it is worth mentioning
few notes about other streaming systems such as Apex [16]

10774

and Spark [17]. We started this project with Apache Apex
because it is the most recent streaming framework at that
time. Unfortunately, the company behind Apex announced
its shutdown [18] and hence Apex will not release any new
updates or versions and may actually stop supporting current
releases. We tried to avoid Spark, although its popular, due
to the fact that Spark has the RDD model [17] in which
Spark deals with ‘streams® of data as ‘mini-batches‘ of RDDs.
So its streaming system is more of a mini-batching system
rather than actual tuple-streaming system as in Flink. Hence,
we prefered a more abstract streaming system such as Flink
where data streams consists actually of streams of tuples
instead of mini-batches of RDDs. Nevertheless, Warden can
still integrate with Spark but it will be more like providing
Warden services to a batch processing framework rather than
an actual streaming framework.

Some active projects such as Mesos Marathon [19] and
Google Kubernetes [20] has container replication but here
‘replication’ is stateless which means it can start a second
container the same way the first was started. There is no
state carried forward or verification and neither have any
mechanisms to ensure the correctness of the streams.

Papers like Medusa [21], Arora [22], Borialis [23] are not
comparable to our system since they don‘t target multiple
frameworks (i.e. not at the RMS level). They do however
use replication for fault tolerance. Dryad [24] from Microsoft
is more of a graph processing framework than a stream-
ing framework. It combines computational ‘vertices’ with
communication ‘channels’ to form a dataflow graph. In case
of failures, Dryad restart the failed vertex/task. It is worth
mentioning that Dryad works on YARN out of the box, i.e.
it is YARN-native, similar to Samza. StreamCloud [25] is
a streaming framework but as the authors mention in their
paper, fault tolerance is beyond the scope of there paper and
they plan to investigate fault tolerance in their future work.
Timestream [26] fault tolerance approach doesn’t cover the
full spectrum of failures (Crash to Byzantine) as active repli-
cation does. Also application finish time in active replication
is shorter since another active replica is running simultane-
ously. Moreover, the system that they propose in Timestream
doesn’t work on top of any such as YARN which prevents
it from sharing a cluster with other Big Data frameworks
such as Spark or Storm. Finally, their approach doesn’t target
genericity as we do, i.e their fault tolerance approach can’t be
shared with Samza, Flink. . .etc.

This is also the case for Hwang et al. [27] where they pro-
posed a new checkpointing approach for stream processing
but as mentioned earlier, checkpointing is not as effective as
replication in terms of application finish time and the scope
of failures that it can cover. Moreover, their approach doesn’t
target more than one framework at a time similar to our work.
Kwon et al. [28] proposed a checkpointing mechanism where
the checkpoints are saved and distributed in a replicated file
system like HDFS. Guardian [29] proposed an active replica-
tion approach that targets batch processing frameworks only.
Our approach on the other hand targets multiple streaming

VOLUME 11, 2023



B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

IEEE Access

frameworks which is much more challenging, since providing
reliability for several online real time data streams is more
difficult than dealing with offline batches of processed data.
Zhang et al. 2010 paper [30] was released before YARN,
Kafka, Storm and many other Big Data frameworks were
released. The paper proposes an interesting approach for
switching between active/passive replication. However, the
paper doesn’t target any genericity or how to target multiple
frameworks at a time since most of the frameworks were
released after the paper was published, but their approach
can be integrated with our work to be used instead of active
replication.

We also investigated other systems such as Apex, Spark,
Storm, Heron, Kafka Streams, Mesos Marathon and Google
Kubernetes. We still have an edge over all of the related work
due to three main reasons: First, none of the related work
targets multiple streaming frameworks as we do. Second,
task and application finish time will always be faster than
most of the other fault tolerance techniques proposed since
there will always be another active replica running simul-
taneously in the system. Third: The customizability that we
give to the users is unmatched with any other fault tolerance
approach; not only we give users to choose from the five
modes discussed before (Crash Exactly Once, Byzantine At
Most Once, ... etc.) but also we give users the ability to
choose what to verify through a set of APIs that the users can
insert any place in the task, after the task or even at the very
end of the application. To the best of our knowledge, none
of the related work targets the three objectives that Warden
has. One may find some systems that achieve two out of three
objectives but not the three objectives together. For instance,
it is possible to find a customizable reliable approach that
targets one particular framework at a time, but doesn‘t achieve
reliability for any other framework other than that particular
framework.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented Warden, a generic, multi-
framework, flexible, customizable, low overhead protocol
that strives to achieve different levels of fault tolerance guar-
antees in streaming frameworks with the lowest overhead
possible. We described the mulit-phased design and the multi-
threaded implementation of Warden. We ran our evalua-
tions on two instantiations (Flink/Samza(with Kafka)) and
our results show the effectiveness of our approach in the
presence of failures and without failures compared to other
fault tolerance techniques. In the future, we plan to build a
trust management component that plugs into the verifier and
computes a per node trust metric based on multiple system
parameters (job completion time, CPU usage, etc.). Trust
values can then be used by the scheduler to flag suspicious
nodes or schedule time sensitive tasks.

REFERENCES

[1] Flink Checkpointing Constraints. Accessed: Feb. 3, 2022. [Online].
Available: https://ci.apache.org/projects/flink/flink-docs-release-1.7/ops/
state/state_backends.html/

VOLUME 11, 2023

[2]

[3]

[4

=

[5

—

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
(20]

[21]

[22]

(23]

[24]

[25]

[26]

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, and
R. Evans, “Apache Hadoop yarn: Yet another resource negotiator,” in Proc.
4th Annu. Symp. Cloud Comput., 2013, pp. 1-6.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. 8th USENIX Symp. Netw. Syst. Design
Implement., 2011, pp. 1-4.

D. Bernstein, “Containers and cloud: From LXC to Docker to kubernetes,”
IEEE Cloud Comput., vol. 1, no. 3, pp. 81-84, Sep. 2014.
Docker Swarms. Accessed: Dec. 17, 2022. [Online].
https://docs.docker.com/engine/swarm/

M. Schwarzkopf and A. Konwinski, ““Omega: Flexible, scalable schedulers
for large compute clusters,” in Proc. Eurosys, 2013, pp. 351-364.
Z.Zhang, C.Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: A fault-tolerant
resource management and job scheduling system at internet scale,” Proc.
VLDB Endowment, vol. 7, no. 13, pp. 1393-1404, 2014.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” in Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering. IEEE Computer Society, 2015.

S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
1. Gupta, and R. H. Campbell, “SamZa: Stateful scalable stream processing
at LinkedIn,” Proc. VLDB Endowment, vol. 10, no. 12, pp. 1634-1645,
2017.

P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish, “Depot: Cloud storage with minimal trust,” ACM Trans.
Comput. Syst., vol. 29, no. 4, p. 12, 2011.

Y. Wang, L. Alvisi, and M. Dahlin, “Gnothi: Separating data and metadata
for efficient and available storage replication,” in Proc. 2012 USENIX
Annu. Tech. Conf., 2012, pp. 413-424.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for internet-scale systems,” in Proc. USENIX Annu. Tech.
Conf., 2010, p. 9.

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “Upright cluster services,” in Proc. ACM SIGOPS 22nd Symp.
Operating Syst. Princ., 2009, pp. 277-290.

L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, ‘‘Physical disentanglement in a container-based file
system,” in Proc. 11th USENIX Symp. Operating Syst. Design Implement.,
2014, pp. 81-96.

F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, “Hadoop high availabil-
ity through metadata replication,” in Proc. Ist Int. Workshop Cloud Data
Manage., 2009, pp. 37-44.

Apache Apex. Accessed: Feb. 3, 2022. [Online]. Available: https://apex.
apache.org/

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Proc.
9th USENIX Symp. Netw. Syst. Design Implement., 2012, pp. 15-28.
Apache Apex Shutdown. Accessed: Feb. 3, 2022. [Online]. Available:
https://www.datanami.com/2018/05/08/datatorrent-stream-processing-
startup-folds/

Marathon. Accessed: Dec. 17, 2022.
mesosphere.github.io/marathon/
Kubernetes. Accessed: Dec. 17, 2022. [Online]. Available: http://
kubernetes.io//

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, and S. B. Zdonik, “‘Scalable distributed stream processing,” in
Proc. CIDR, vol. 3, 2003, pp. 257-268.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model
and architecture for data stream management,” VLDB J., vol. 12, no. 2,
pp. 120-139, 2003.

D. J. Abadi, “The design of the borealis stream processing engine,” in
Proc. CIDR, vol. 5, 2005, pp. 277-289.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar, G. Jon,
P. K. Gunda, and J. Currey, “DryadLINQ: A system for general-purpose
distributed data-parallel computing using a high-level language,” in Proc.
LSDS-IR, 2008, pp. 1-14.

V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez,
“StreamCloud: A large scale data streaming system,” in Proc. IEEE 30th
Int. Conf. Distrib. Comput. Syst., Jun. 2010, pp. 126-137.

Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “Timestream: Reliable stream computation in the cloud,” in
Proc. 8th ACM Eur. Conf. Comput. Syst., 2013, pp. 1-14.

Available:

[Online]. Available: https:/

10775



IEEE Access

B. Abusalah et al.: Interminable Flows: A Generic, Joint, Customizable Resiliency Model

[27]

[28]

[29]

[30]

J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik, “A cooperative,
self-configuring high-availability solution for stream processing,” in Proc.
IEEE 23rd Int. Conf. Data Eng., Apr. 2007, pp. 176-185.

Y. Kwon, M. Balazinska, and A. Greenberg, ‘Fault-tolerant stream pro-
cessing using a distributed, replicated file system,” Proc. VLDB Endow-
ment, vol. 1, no. 1, pp. 574-585, Aug. 2008.

B. Abusalah, D. Schatzlein, J. J. Stephen, M. S. Ardekani, and P. Eugster,
“Dependable cloud resources with guardian,” in Proc. IEEE 37th Int.
Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017, pp. 1543-1554.
Z.Zhang, Y. Gu, E. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu, “A hybrid
approach to high availability in stream processing systems,” in Proc. IEEE
30th Int. Conf. Distrib. Comput. Syst., Jun. 2010, pp. 138-148.

BARA ABUSALAH received the master’s and
Ph.D. degrees from the Electrical and Com-
puter Engineering Department, Purdue University
During his Ph.D. degree, he did two research
internships—one at the NEC Laboratories, NJ,
USA, and the other at the HP Laboratories, CA,
USA. His research interests include fault toler-
ance techniques applied to big data frameworks
(Hadoop, Spark, Storm, and Tez) and cluster
management systems (YARN, Mesos, Omega,
and Fuxi).

THAMIR M. QADAH (Member, IEEE) received
the Ph.D. degree from Purdue University,
West Lafayette, IN, USA, in 2021. He is cur-
rently an Assistant Professor with the Com-
puter Science Department, College of Computer
and Information Systems, Umm Al-Qura Univer-
sity, Makkah, Saudi Arabia. His research inter-
ests include designing and implementing secure,
dependable, and high-performance software sys-
tems that exploit modern hardware technologies

and cloud infrastructures. His research on queue-oriented transaction pro-
cessing was recognized with the Best Paper Award in Middleware’18. Since
2015, he has been serving the research community as a Reviewer for top-
tier conferences, such as SIGMOD, VLDB, ICDE, ICDCS, ATC, EDBT,
Middleware, and CIKM, and a Reviewer for the IEEE Acckss journal.
Moreover, he served as a Committee Member of the Artifact Evaluation
Committee for ASPLOS, OSDI, and SOSP.

10776

JULIAN JAMES STEPHEN received the Ph.D.
degree in computer science from Purdue Univer-
sity, IN, USA. He is currently a Scientist work-
ing as a part of the Security Department at IBM
T. J. Watson Research Center, NY, USA. His work
also involves improving security policies for cloud
native applications. His research interests include
building systems and models that solve real world
problems without compromising security and pri-
vacy of data.

PATRICK EUGSTER received the M.S. and Ph.D.
degrees from EPFL, in 1998 and 2001, respec-
tively. He has been a Full Professor at the Uni-
versitadella Svizzera Italiana (USI), since 2017.
Prior to that, he was a Faculty Member of Purdue
University (2005-2016) and TU Darmstadt (2014—
2017) and still an Adjunct Faculty Member and a
Researcher in those institutes. He has also been a
Visiting Faculty Member of MIT (2012 and 2013).
He is also the Co-Founder and the Chief Scientist
of SensorHound Inc.

VOLUME 11, 2023



