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ABSTRACT Foreign object debris (FOD) is any undesired and unintended object placed or found in the
specific vicinity of an aircraft (runway/ taxiway) that can cause damage to aircraft or harm personnel on
board such as twisted metal strips, screws, nuts, and bolts, depleted concrete runway pieces, stones, pebbles
and stationery items. To avoid FOD damages, all airport/ aviation organizations have deployed some sort
of FOD prevention procedure. However, automatic FOD detection systems are still scarce owing to the
inevitable reliance on human experts that lead to unavoidable human errors. Around 60% of FOD consists
of metal which is the most deteriorating for an aircraft. Therefore, the implementation of material recognition
techniques for FOD classification through Deep Convolutional Neural Networks (DCNN) is more important
than FOD object detection as FOD could be of any shape, size or color. This paper developed a DCNN
algorithm for FOD material classification with high accuracy for all included material classes (i.e., metal,
concrete, plastic) in general and metal in particular. For this, a new dataset is introduced that consists of
2481 images taken on an operational airport runway in varying illumination and weather conditions. Through
extensive testing, it was found that InceptionV3 is the best performing model with 18% improvement in metal
recognition, and 11% improvement in average accuracy for all included classes.

INDEX TERMS Deep convolutional neural network (DCNN), FOD, material classification.

I. INTRODUCTION

Foreign object debris (FOD) is an undesired and unintended
object placed or found in the specific vicinity of an aircraft
(runway/ taxiway), which can cause damage to aircraft or
harm personnel on board by getting sucked into the engine
or hitting other parts of the aircraft. Therefore, FOD detection
and prevention can play an important role in avoiding damage
to aircraft or human lives. For effective prevention of FOD,
airports use visual inspections and the use of sweepers, vac-
uums and magnet bars to collect debris. In the same context,
some sophisticated equipment has been developed by cer-
tain companies for FOD detection. These include FODetect,
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Tarsier and iFerret [1]. All these systems work on the princi-
ple of using cameras to capture the image for FOD detection,
where the final verification is carried out by a human expert.
These automatic

FOD detection systems can only be seen at a few airports
around the globe. There are a few reasons for this scarce
deployment, and the main reason is the last verification step
which has two distinct disadvantages. First, a well-trained
and experienced person is required which puts a burden on
the airport authority to manage manpower overhead costs.
The second disadvantage is the natural tendency of every
human to cause an error, irrespective of his/her experience
and expertise. Therefore, a better solution in such a sce-
nario is the automatic recognition of FOD with sophisticated
and cost-effective implementations through computer vision.
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Deep Learning applications are vastly used in automatic
recognition/ detection problems worldwide mostly in medical
applications [2], [3], [4].

The field of computer vision can be explored in various
ways to develop an efficient FOD recognition and classifi-
cation system where object detection is a common problem
in computer vision. Material recognition, on the other hand,
is a relatively new but fundamental domain of computer
vision. As FOD items could be of any type, color, or size, the
object recognition approach for FOD classification would not
be an effective choice. However, material recognition seems
like a more promising domain for FOD classification [2] as
segregating FOD items into material categories like metal,
plastic, concrete, etc. is easier and covers almost all FOD
types. Furthermore, in contrast to the decades of research
on object recognition, material recognition is a flourishing
and challenging field. The two main approaches followed
by scientists for material recognition are handcrafted and
automatic feature extraction as shown in Fig 1. Hand-crafted
feature extraction further divides into surface reflectance [3],
3D texture [4], and feature fusion [5] approaches. All these
approaches involve the collection of features from images
through approaches like bidirectional reflectance distribu-
tion function Bidirectional Reflectance Distribution Function
(BRDF) [6], Scale Invariant Feature Transform (SIFT) [7],
Histogram of Gradient (HOG) [8], interest points [9], optical
pyramids or optical flow [10]. These are computationally
expensive and slow processes, especially for sensitive appli-
cations like airport security. Automatic feature extraction
approaches, on the other hand, refer to those that involve
acquiring image features using deep neural network tech-
niques. These are desirable due to their fast recognition and
higher precision.

Deep neural networks, used for automatic feature extrac-
tion in the material recognition domain, need huge datasets
on the scale of millions of images to train the network for
acceptable performance. Although huge datasets of 3 million
images have also been used to train neural networks for
material recognition [11], the images involved had materials
photographed either indoors or in environments with light
conditions significantly different from the actual FOD detec-
tion locations such as runways and taxiways.

Surface
Reflectance
Hand Crafted 3D Texture
Material Feature
Recognition Fusion
Auto feature
Extraction D-CNN

FIGURE 1. Material recognition approaches.

Moreover, metal recognition is important as more than
60% of FOD constitutes metals [12]. However, the results
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of material classification in general and metal classification,
in particular, were quite poor when these networks were used
for material classification from FOD images [13]. Although
material recognition for FOD detection is a new favorite yet
its popularity in commercial airports is low due to the low
accuracy of recognition [14].

The remainder of the paper is organized as follows: the
literature survey is presented in Section II whereas Section III
explains in detail, the methodology followed for the research
work. Section IV presents the experimental results and
finally, Section V concludes this research work. The major
contributions of this work have been summarized below:

e A robust feature-based approach is proposed to effec-
tively classify material categories of FOD items with
an average accuracy of 92%.

e The shortcomings of the most recent related approach
presented in [13] are highlighted and resolved using
simple but effective techniques (Ref Section III).

e FOD dataset of real FOD items (found by safety per-
sonnel on an operational runway) in three material
categories has been introduced. A dataset of 2010 train
images, 336 validation images and 126 test images has
been introduced with an almost equal number of images
in each category. Moreover, the images have been taken
in the morning, afternoon, evening and night with an
almost equal number of images for each scenario (Ref
Section II Part C).

e The theoretical foundation behind the developed algo-
rithm for improved classification accuracies is estab-
lished in order to show coherence between theory and
achieved results.

e Our proposed approach outperformed the existing
state-of-the-art algorithm by achieving the highest clas-
sification accuracy achieved so far in the field of FOD
classification through image processing using DCNNSs.

Il. LITERATURE SURVEY

This section discusses in detail the previous research related
to material recognition, FOD detection/ recognition, and
computer vision with deep neural networks to address the
FOD classification problem taken up in this paper.

A. FOD DETECTION

FOD detection has been the focus of a lot of research due to
the unavailability of an efficient and cost-effective solution.
Besides FOD walks and other such observation mechanisms
involving humans, detection systems for continuous monitor-
ing on runways and other aircraft movement areas are now
available for improved FOD detection, including capabilities
to work in supplement with the airport staff. FAA has issued a
summary of the detection system categories applying sensors
and advanced methods to efficiently detect FOD as per the
standard [12]. The involvement of human verification has
always been a part of FOD prevention schemes. Even in
today’s technology-driven world, FOD detection procedures
involving humans are the primary tool of any FOD prevention
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routine. However, aviation safety setups worldwide have real-
ized the need, effectiveness and efficiency of automated FOD
prevention. Due to the rise of FOD-related incidents, manual
methods have proven obsolete. Moreover, among the avail-
able techniques for FOD detection, millimeter wave radars
are the most popular [15] yet most costly. However, the cost of
optical camera systems is the lowest and therefore considered
suitable for automatic FOD detection [16].

When optical systems are involved, image processing
and computer vision are the most suitable approaches. For
efficient and fast FOD recognition/ detection, the use of
neural networks/Artificial Intelligence (AI) is the future
as full real-time detection has gained much attention in
recent years [17]. In computer vision, object detection is
a well-established and constantly optimized task involving
deep Convolutional Neural Networks (CNNs) [18], however,
itis not quite suitable for efficient FOD prevention due to vast
variations in object types. Even in FOD detection research,
object detection has been used mostly for classifying FOD
items [19]. However, the number of types of FOD that may
be found on runways/ taxiways is almost infinite. On the other
hand, it is well established that the most harmful FOD items
are metal FOD. Hence, a more useful approach may be to use
material recognition for FOD classification.

B. MATERIAL RECOGNITION FOR FOD DETECTION

Using material recognition for FOD classification becomes
challenging as the features required for material properties
of the items are not shape-dependent but depend on other
properties like reflection properties, transparency, brightness,
texture etc. The two main approaches to feature extraction for
material recognition are handcrafted features and automatic
feature extraction [5]. Most of the earlier works [20] involve
handcrafted approaches but they are computationally expen-
sive and slow processes, especially for sensitive applications
like airport security. On the other hand, automatic feature
extraction approaches involve acquiring image features using
CNN techniques. These are desirable due to their fast recog-
nition and higher precision. These CNN-based approaches
attained state-of-the-art results on CUReT, KTHTIPS, and
FMD datasets. However, these datasets were not suitable for
training a CNN for FOD detection as these were mainly
acquired from customized apparatus or in an indoor environ-
ment. The illumination conditions as well as environments of
these datasets including materials in context (MINC) dataset,
did not fit for FOD detection tasks.

C. RELEVANT IMAGE DATASET

The Columbia—Utrecht Reflectance and Texture Database
(CUReT) [21], the KTH-TIPS [22], the Flickr Material
Database (FMD) [23], and the Material-in-context Database
(MINC) [11] are the popular datasets widely used for material
recognition. The CUReT dataset caters to illuminations as
well as angles on the scale of 205 varieties for 61 texture
images. KTH-TIPS has four samples for each category with a
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total of 11 material categories. Each sample is imaged under
various conditions to add diversity. The Flicker Materials
Dataset includes 10 material categories with 100 images of
each category. MINC has approximately 3 million image
patches of 23 material categories tailored from ImageNet.
Though a lot of diversity is included in all these datasets,
these are improper for FOD material recognition as these are
mostly taken indoors and do not match the FOD emergence
conditions or illuminations. Therefore, the main hurdle in
achieving good accuracy for FOD detection is the absence of
a suitable dataset under real illumination and weather diver-
sity. In this context, Xu et al prepared the FOD dataset with
three categories having 1000 images each of metal, plastic,
and concrete [13]. Though this was a huge contribution to
the non-availability of FOD-related datasets, still this dataset
had the following drawbacks that became the reason for low
recognition accuracy:

« Absence of real background environment due to security
reasons and unapproachable airport runways.

« Images do not have FOD placed in the center hence the
network cannot learn the edges and curves efficiently
through scale invariance.

o Most images in the dataset (90%) consist of large
items like wrenches, long bolts, plastic bottles, laptop
chargers, electric sockets, large pieces of concrete, etc.
Whereas almost all of the real FOD items found on the
runway/ taxiway of considered airfield consist of small
items like rusted nuts/ bolts, small screws, broken metal
strips, bullet shells, plastic blanks, small pebbles, etc.

A recent addition to the relevant datasets for FOD classi-
fication/ detection is the FOD-A dataset [24]. This dataset
has 31 object categories with 30000 instances along with
their bounding boxes. This dataset varies from the material
classification dataset of this work and the previous work [13]
in the following ways:

« The dataset has been prepared to target the object detec-
tion tasks for FOD categories. However, the list of
FOD types/ objects is endless. On the contrary, many
object categories like hammers, bolts, screws, nails,
tools, metal strips, etc can be covered by just one cate-
gory i.e. metal. Moreover, as some materials are more
damaging due to their natural characteristics such as
metal causing the most damage and consisting of more
than 60 % FOD [12], it is more feasible and beneficial to
work on material categories rather than object categories
when it comes to FOD classification.

o In Machine Learning Computer Vision (MLCV) tasks,
image variations of the slightest nature make a huge
difference in classification/ detection accuracies. This
introduced the image augmentation techniques widely
used now to handle overfitting issues. FOD background
is one such feature of FOD datasets that plays a key
role in predicting the applicability concerning the prac-
tical implementation of an algorithm trained on relevant
images in an airfield environment. Although the authors
of the FOD-A dataset considered the varying light and
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weather conditions, they have not mentioned the back-
ground in which the FOD objects of their dataset were
placed. Both the material classification works for FOD
(this work and [13]) prove that images with airport run-
way backgrounds are necessary for the practical imple-
mentation of FOD datasets in real airport environments.

o For any machine learning algorithm, the object cate-

gories should almost be equal in the number of instances/
images per category for the algorithm to be unbiased
and more reliable in prediction. However, the number of
instances per category of the FOD-A dataset varies from
less than 400 instances to around 3200 instances. This
is a huge variation for any algorithm as the algorithm
would be inclined towards the category with greater
instances. Therefore, both the material classification
datasets (this work and [13]) have the same or almost
the same number of images per category. This ensures
the reliability/ robustness of the designed algorithm in
practical applications for prediction.

Hence, from the above discussion, it can be inferred that
the dataset introduced in this work has been carefully crafted
to best match the real-world application of FOD classification
through material recognition and the algorithms designed in
this work are more robust and reliable for real airport appli-
cations. Moreover, transfer learning and data augmentation
techniques have been used to address the smaller size of the
dataset.

ill. METHODOLOGY

This section explains the implementation of the existing FOD
material classification techniques. Moreover, the section also
explains the proposed methodology in terms of development,
implementation and improvement in accuracy along with the
details of the new dataset.

A. IMPLEMENTATION OF ALEXNET ARCHITECTURE

Xu et al. [13] used transfer learning in which Alex Net pre-
trained on MINC was fine-tuned completely on the FOD
dataset. Although this was the first work of its kind, the
resulting accuracies were quite low. Details of the approach
followed by Xu et al in comparison with the approach applied
in this work are as follows:

e Choice of the network: Xu et al chose Alex Net as
their network of choice for FOD recognition through
material recognition. It was also assumed that the
deeper the network the poorer the performance would
be on FOD recognition accuracy. However, keeping in
view the complexity of the material recognition task,
the deeper the net the better should be the recognition
accuracy [25] provided the other factors like correct
choice of TL dataset, correct training methodology, and
exploitation of techniques for handling overfitting are
ensured. In this paper, InceptionV3 and ResNet archi-
tectures are selected as the evolution of CNNs and the
work in [26] highlights that these two are the best per-
forming networks for computer vision tasks in general
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and material recognition tasks in particular. However,
Alex Net was also implemented with different choices
and much better results were achieved on previously
available as well as newly developed FOD datasets.

TABLE 1. Confusion matrix of the algorithm proposed by Xu et al.

Predicted Label
Label Metal (%) Plastic Concrete
(%) (%)
Metal 66.67 11.43 21.90
Plastic 22.13 67.66 10.21
Concrete 1.00 0.00 99.00

o Choice of TL weights dataset: Xu et al used
Alex Net pre-trained on MINC which is a dataset
for material recognition. However, the weights
of this pre-trained network were optimized for
materials recognition and localization in the con-
text of the image surroundings. In this paper,
we used AlexNet pre-trained on ImageNet with
thousand categories of object recognition. The net-
work already optimized to classify the item in the
center of the image was trained with the object
category named on the material of the object.

o Training methodology: Xu et al used a pre-trained
Alex Net and fine-tuned the complete network on
the FOD dataset. The strategy for TL is used in
combination with the training of a few last layers
where complex features are learned by the net-
work. On the other hand, in this research, only
fully-connected layers of Alex Net have been
trained on both datasets (Chinese [13] and newly
developed in this work) and the results have shown
remarkable improvement for both datasets.

« Dataset type and size: FOD dataset developed by
Xu et al has all training images with the general
items of the relevant material category. Dataset
developed in this paper was completely collected
with the FOD items found on the actual airfield’s
runway/ taxiway and was equally distributed in
morning, afternoon, evening, and night timings for
the diversity of illumination conditions. Further-
more, all the FOD items found by the flight safety
set up at the airfield were small items like nuts,
bolts, screws, broken metal strips, stationery items,
plastic blanks, pebbles, etc.

B. DEVELOPMENT OF ALGORITHM FOR FOD
CLASSIFICATION

Keras applications have pre-trained models of most state-
of-the-art D-CNNs. The basic concept behind the algorithm
development was to use pre-trained networks on ImageNet as
these models performed outstandingly on object recognition
tasks and also in Shang et al.’s work [26]. Also, all these
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algorithms were optimized for recognition tasks and hence
it was expected to work better on datasets having FOD items
in the center of the image with a runway in the background.
It was proven by results that the networks performed better
with ImageNet as it is so far the largest data set available
for feature learning and hence resulted in better training of
the network. The prediction accuracy on all networks pre-
trained on ImageNet was better than the results achieved by
Xu et al in their work shown in TABLE 1. Pre-processing
as per the model in use was used to make the input images as
per the size and form expected by the model. ResNet expected
images of size (224 x 224) or (299 x 299) while InceptionV3
expected input image size to be (299 x 299). Stochastic
gradient descent (SGD), Adam and RMS Prop were the three
different optimizers used in this work. It was observed that on
the newly developed dataset, the Adam optimizer performed
best for ResNet50 and ResNet101. On the other hand, the
best model optimization was achieved with the RMSprop
optimizer for InceptionV3. Details of the results would be
discussed in section IV.

C. IMPROVED METAL RECOGNITION ACCURACY

Along with the development of an algorithm with better
test accuracy in general, the main focus of this work was
to improve metal recognition accuracy in particular. It was
already expected that the overfitting issue would be faced
as the collected dataset was on the scale of a few thousand
training images. For improvement of the metal accuracy, the
following measures were taken which proved very effective.

1) SELECTION OF D-CNNS

Keeping in view the earlier work by Shang et al. [26], Incep-
tionV3 was selected as the main D-CNN for achieving
improved metal recognition accuracy. Among many avail-
able D-CNNs, InceptionV3 and InceptionV4 are the best-
performing networks [26]. However, pre-trained inceptionV4
was not available in the Keras API applications, so Incep-
tionV3 was implemented. As expected, the results of Incep-
tionV3 were the best whereas ResNet50 and ResNet101 were
used in this work to verify if the conjecture of a deeper
network for FOD classification made by Xuetal. [13] in
their work was correct. However, their conjecture was proven
wrong as the results proved that with the right choices made,
as explained further, ResNet performed better than AlexNet
on the FOD dataset.

2) SELECTION OF PRE-TRAINED WEIGHTS

As explained earlier, the use of transfer learning becomes
inevitable for most machine learning tasks as collecting
datasets on the scale of millions of images is not always prac-
tically possible. Moreover, training a network from scratch
is quite cumbersome and requires high-end processing hard-
ware that ultimately makes the overall application of such
an algorithm inefficient and questionable. In most cases, the
demand is for lesser computation with faster results and
higher accuracy. This calls for the new hallmark of deep
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learning to be used for most applications, and transfer learn-
ing comes to the rescue in such cases. However, the selection
of a source domain in light of the specific task domain is nec-
essary. For example, image classification cannot be achieved
from a network trained for Natural Language Processing.
Hence, the first rule is to use a network trained for image
classification. Where MINC is a compatible dataset when
it comes to numbers, yet, ImageNet has the edge of being
used in ILSVRC and the deep learning models have been
optimized for ImageNet. Furthermore, MINC has only 23 cat-
egories while ImageNet has 1000 categories which make it
more robust for related tasks as it trains the deepest layers for
general features in a better way to adapt the later layers for
any new dataset of computer vision. Hence, it was expected
that the results of FOD classification even in the material
categories would be better following this methodology. The
results proved that with models pre-trained on ImageNet
instead of MINC, all networks performed better than the
published work [13].

3) SELECTION OF OPTIMIZERS

In both the works of Xuetal. [13] and Shang et al. [26],
stochastic gradient descent is the optimizer used; how-
ever, Yaqub et al. in their work [27] found that among any
tested optimizers, Adaptive momentum (Adam) optimizer
performed best. Keeping this in view, SGD, as well as Adam
optimizers were used for training all the models in this paper.
The results proved that in all the models, Adam produced the
best convergence and resulted in the best accuracies.

4) TECHNIQUES TO RESOLVE OVERFITTING
Owing to the small size of the collected FOD dataset in this
work, it was evident that the algorithms would face overfitting
issues. Overfitting is the term used to represent that the model
fits too well on the training data and hence fails to generalize
so the performance on unseen data is poorly affected. The
following techniques were used to handle overfitting:

1. Reduced Complexity

2. Early Stopping [28]

3. Data Augmentation [29]

4. Dropout

D. NEWLY COLLECTED FOD DATASET

For effective training of CNNs, a relevant dataset is very
crucial and plays a major role in defining the performance
of the algorithm. For FOD classification, only one published
dataset [13] is currently available. That too mostly has a
concrete background of the university campus that does not
properly emulate the runway background. Also, the types of
FOD used in the dataset in each of the classification cate-
gories do not include the real FOD items found on runways
by flight safety setups. In this context, a new dataset has
been collected in this work where metal, plastic, and concrete
were the three typical FOD materials constituting the dataset.
According to Federal Aviation Administration (FAA), these
materials appear most frequently on runways and taxiways.
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For this dataset, a camera was held two meters from the
ground and the FOD was placed approximately five meters
from the camera. This setting had been selected according
to the already available FOD dataset. The dataset includes
an almost equal number of images for each category in the
morning, afternoon, evening, and night illuminations and
various weather conditions. A sample of the FOD dataset
collected in this work is shown in Fig 2. The details of the
images are shown in TABLE 2.

TABLE 2. New FOD dataset details.

No. of Images
Category . .
Training Validation Test
Metal 600 100 40
Concrete 760 112 40
Plastic 650 124 46
Total 2010 336 126

Hence, the dataset collected in this work has the following

improvements as compared to the already published dataset:

1. Used real runway background of an operational
airfield.

2. Used real FOD items are frequently found by the Flight
Safety Team deployed at the airfield.

3. Diverse illumination conditions of morning, afternoon,
evening, and night with equal proportions for each
category.

4. Images have FOD placed in the center hence the
network can learn the edges and curves efficiently
through scale invariance (zooming due to convolution
operations).

IV. EXPERIMENTAL RESULTS

This section presents the results from FOD classification
algorithm predictions based on the methods developed in
Section III.

A. ALEX NET ALGORITHM

AlexNet was implemented in two ways. First, AlexNet pre-
trained on ImageNet was fine-tuned on the Chinese FOD
dataset [13]. Second, AlexNet pre-trained on ImageNet was
fine-tuned on the new FOD dataset of this work. This was
done on the Pytorch framework as pre-trained AlexNet was
not available in Keras applications.

1) ALEX NET ON CHINESE DATASET

Chinese dataset [13] was first used for training, validation and
predictions on AlexNet. All images were transformed in

the following ways:

Resize to 256 x 256.

Centre crop to 224 x 224.

Random horizontal flip.

Random vertical flip.

Random rotation of 10°.

Dk e =
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6. To tensor.

7. Normalization
After the above-mentioned transforms were applied to the
images, Alex Net was prepared and trained in the following
steps:

TABLE 3. AlexNet training steps.

STEP # ACTION
1 Download AlexNet pre-trained on ImageNet (Five
convolution layers and three fully connected layers).
2 Freeze the whole network except fully connected layers.
3 Adjust the last softmax layer for three outputs (metal,
concrete, plastic) instead of 1000 (ImageNet classes).
4 Instantiate Cuda device, move input and Alex Net to GPU

for speed.

5 Train Alex Net over 20 epochs with SGD optimizer
(learning rate 0.001, momentum 0.9, and weight decay 0.5).

6 Save model with best validation accuracy in *.pth file.
7 Load saved model to predict test images of the Chinese
dataset.

The result, as shown in TABLE 4, proved that the results
of the ImageNet pre-trained model with the same parameters
were far better than the model trained on MINC. However,
it was observed that most FOD items in the Chinese dataset
were large objects whereas those found on a real runway
are small objects like nuts, bolts, and small metal strips.
It was also noted that although metal and concrete accuracies
improved drastically, plastic recognition had shown a consid-
erable decline. Hence, it was decided to train AlexNet on the
New dataset and compare performance for cross-validation of
both datasets. Furthermore, the developed algorithm should
be robust as it would be expected to perform well in real
applications for real FOD items.

TABLE 4. Confusion matrix of chinese dataset with AlexNet pre-trained
on imagenet.

Predicted Class Average
True Cl Metal Concrete Plastic (%)
rue Class
(%) (%) (%)
Metal 94 0 0
81
Concrete 0 100 0
Plastic 52 0 48

2) ALEX NET ON NEW DATASET

After appropriate labelling of the new dataset into train
and validation folders, it was uploaded to Google Drive and
accessed in Colab for algorithm training, validation, and
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prediction. The same transformations were applied to the
images and the same steps for preparation and training of
AlexNet were performed as mentioned in section IV sub-
section I. However, it was observed throughout the research
and experiments on all models (except InceptionV3) that the
new dataset performed much better with Adam optimizer as
compared to SGD.

Evening Night

Morning  Afternoon

Concrete

Metal

Plastic

FIGURE 2. Sample images of new fod dataset.

It was inferred that the better performance of the Adam
optimizer was due to the self-reducing capability of its learn-
ing rate. Due to small FOD items, the network required
greater iterations and a systematic reduction in learning rate.
Hence, the model achieved optimized validation accuracy on
the Adam optimizer with a learning rate of 0.01, beta_1 0.9,
beta_2 0.999, epsilon 0.6, and 128 epochs. The optimized
model with the best validation accuracy was saved in .pth
format and the same saved model was uploaded to predict test
images of the new dataset. The prediction results are shown
in TABLE 5.

TABLE 5. Confusion matrix of the new dataset with AlexNet pre-trained
on imagenet.

Predicted Class Average
True Class Metal Concrete Plastic (%)
(%) (%) (%)
Metal 70 20 10
82
Concrete 0 100 0
Plastic 8 16 76

It was observed that though the performance of metal
recognition was not as high as AlexNet on the Chinese
dataset, the model seems more reasonable as all classes have
comparative recognition accuracy with average true positive
accuracy almost the same as that of the Chinese dataset. Still,
these results were better than the state-of-the-art results for
all classes.
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3) CROSS MODEL VALIDATION

To check the robustness of both the models trained on the
Chinese dataset and the new dataset, test images of the new
dataset were predicted by the AlexNet model trained and
validated on the Chinese dataset, and test images of the
Chinese dataset were predicted using AlexNet model trained
and validated on the new dataset. The result as shown in
TABLE 6 validates that Alex Net trained on the new dataset
seems to be more robust to unseen images as compared to the
one trained on the Chinese dataset.

The matrix in TABLE 6 clearly shows that the model
trained on the new dataset performed much better on Chinese
test images. Furthermore, the model trained on the Chinese
dataset predicted all test images of the new dataset as metal
which itself is quite erratic behavior. In contrast, the model
trained on the new dataset had the representation of all classes
in predictions but with lower accuracy. Hence, the new dataset
is more robust and reliable for further deep learning of differ-
ent architectures.

TABLE 6. Cross model validation matrix for AlexNet.

Test
Train Chinese Dataset New Dataset
(%) (%)
Chinese dataset 81 33
New dataset 44.7 82
ResNet50
120 100 100 100 100
100 g 26 81ggso
5 80 o 75870
5 60
£ 40
0
SGD 1 SGD 2 Adam 1 Adam 2
Dense Dense Dense Dense

m Metal ®Concrete M Plastic

FIGURE 3. Graph showing recognition accuracy of each class with SGD
and Adam optimizers with one or two dense layers on top of base
ResNet50 model.

B. RES NET ALGORITHM

The first step in the development of the new algorithm was
to check the new FOD dataset on ResNet50. The residual
blocks in ResNet architecture help avoid blown-out gradients.
Hence, its performance was much better even though being
deeper than previous architectures. Xu et al. [13] did not work
on ResNet assuming that deeper architectures would not work
well on FOD classification. However, the evolution of deep
nets [30] shows that ResNet architectures are the best after
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InceptionV3 and V4. It was hence planned to test ResNet50
and ResNet101 architectures on the new dataset.

1) RESNET50 ON NEW DATASET

The already uploaded new dataset on Google Drive was
accessed through Colab. The preparation and training of
ResNet50 were done in the following steps:

STEP # ACTION

1 Resize images to 224 x 224

2 Import ResNet50 (pre-trained on ImageNet) from Keras
applications

3 Add new dense layer(s) on top of the base ResNet50 model.
(Include top layer set to false)

4 Freeze the base model to train only the top fully connected
layer(s)

5 Optimize the model with both SGD (Ir 0.0001, decay le-
6, momentum 0.9, nesterov True) and Adam (learning rate
0.01, betas (0.9, 0.999), epsilon 0.6) optimizers.

6 Save model with best validation accuracy in pth file

7 Load saved model to predict test images of the Chinese

dataset

The results with one (added) dense layer optimized with
Adam optimizer were state-of-the-art. The results (see Fig 3)
with two dense layers were also better than the published test
accuracies for all classes but slightly lower than those with
one dense layer.

2) RESNET101 ON NEW DATASET

All the steps followed for ResNet50 were also followed
for ResNet101. However, the following changes were made
keeping in view the results achieved for ResNet50:

1. ResNet101 was only optimized with Adam optimizer,

owing to its poor performance with ResNet50.

2. ResNetl01 was only optimized with one dense layer

added, as two layers did not perform well for ResNet50.

3. The results achieved with ResNet101 were also state-

of-the-art as shown in TABLE 7.

Hence, it was proven that with the methods developed in
this work, AlexNet and ResNet architectures had comparable
average performance. However, as the main focus of this
work is metal recognition accuracy, the second to best per-
forming network was ResNet50 with almost 81% accuracy.

C. INCEPTIONV3 ALGORITHM
As explained in the previous sections, the selection of Incep-
tionV3 was due to the following facts:

1. Inception architectures are proven to be among the
best-performing architectures in terms of recognition
accuracy.

2. Inception performed the best for material recognition
tasks in Shang et al.’s works [26] in comparison with
ResNet-18, ResNet-34, Google Net, and VGG16.
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TABLE 7. Confusion matrix of the new dataset with resnet101 with ADAM
optimizer and one dense layer added on top.

Predicted Class
Average
True Class .
Metal Concrete Plastic (%)
(%) (%) (%)
Metal 75 10 15
Concrete 0 100 0 82
Plastic 20 8 72

Hence, the same steps as followed for ResNet50 and
ResNet101 were taken for the development of the Incep-
tionV3 algorithm. However, the following changes were
made to this algorithm to achieve optimization:

Performance Summary

93 92
87
100 20 82 81 75 82

0

AlexNet  ResNet50 ResNetl01 InceptionV3

H Metal ® Average

FIGURE 4. Graph showing metal and average recognition accuracies of
each D-CNN.

1. All the images were resized to 299 x 299.

2. InceptionV3 demonstrated poor performance on SGD
as well as Adam optimizers hence RMS Prop (Ir 2e-5)
was used and gave state-of-the-art results for the new
dataset.

3. It was inferred that InceptionV3 was pre-trained on
ImageNet using RMS Prop [31], hence, it would give
better results with the same optimizer used to fine-tune
fully connected layers.

4. Two dense layers were added on top of the model after
excluding the top of the pre-trained architecture.

5. Prediction results of InceptionV3 achieved on the new
dataset test images are shown in TABLE 8 and along
with confusion matrix shown in TABLE 9.

The performance parameters of InceptionV3 were noted as

follows:

The proposed method outperforms the existing schemes for
FOD classification. However, the limitations of the proposed
method are as follows:

e A comparatively small number of training images
(i.e. 2010 images) limits the performance. A larger
dataset can provide even better performance.

e The consideration of only one runway background lim-
its the generalization of the algorithm.

e Inference time of 16ms/image may also be reduced by
using MobileNet or SqueezeNet in future work.
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TABLE 8. Performance parameters for inceptionv3.

Performance InceptionV3
Measure

Average Accuracy 92
Precision 0.91

Recall 0.91
F-Score 0.92

Train Time 13.44 min
Inference Time 16ms/image
Epoch Time 6.3s (avg)

TABLE 9. Confusion matrix of the new dataset for inceptionv3 with
RMSPROP optimizer and two dense layers added on top.

Predicted Class A
verage
True Class Metal Concrete Plastic (%)
(%) (%) (%)
Metal 93 3 4
Concrete 0 100 0 92
Plastic 10 7 83

D. SUMMARY OF RESULTS

Hence, a new FOD dataset was developed and used to opti-
mize AlexNet, ResNet50, ResNet101, and InceptionV3 algo-
rithms. All architectures gave state-of-the-art results with
InceptionV3 proved to be the best for metal accuracy as well
as average accuracy. The summary of results of all architec-
tures for metal and average recognition is shown in Fig 4.

V. CONCLUSION
From this research, it was concluded that FOD classifica-
tion through material recognition can be achieved with high
recognition accuracy with different architectures provided the
models are pre-trained on ImageNet and a suitable dataset of
real FOD with real runway background is used. In this con-
text, a new FOD dataset of almost 2500 images of real FOD
found on the considered airfield was collected with a real
Runway as background. Furthermore, AlexNet, ResNet50,
ResNet101, and InceptionV3 algorithms pre-trained on Ima-
geNet were optimized on the new dataset. All the models
demonstrated more than 80% accuracy outperforming state-
of-the-art work for metal recognition. The results also demon-
strated that the InceptionV3 is the best performing network
with 93% metal recognition and 92% average recognition for
all three classes i.e. metal, concrete, and plastic. Moreover,
ResNet50 was the second best with 81% metal recognition
and 87% average recognition. The use of real FOD items and
real Runway background in the dataset makes the algorithm
more reliable for subsequent deployment for real-time appli-
cations on operational Runways.

The current research work was done on a few selected mod-
els due to availability and probability of good performance.

VOLUME 11, 2023

However, the results prove that almost all networks had com-
parable average accuracies. Hence, the following recommen-
dations are made for future work:

1. Dataset extension through the inclusion of new images

taken on various Runways may be studied to improve
robustness and generalization.

A combination of Chinese and the new datasets may be
studied for performance and more generalization of the
models.

Mobile Net may be used as a base model for its
application in cost-effective solutions. Furthermore,
other models like Xception, InceptionV4, Squeeze Net,
etc may be used to get even better results for FOD
classification.

Availability of data and material

The FOD material dataset can be downloaded from Google
Drive.

https://drive.google.com/drive/folders/1 X A73Gr4d6kYn
Cc2_PZrr6GHWzzSPpZ_S?usp=sharing
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