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ABSTRACT Reputation management systems are essential for establishing trust among network users.
They are tools for reinforcing cooperation and sanctioning malicious behavior. This importance becomes
a requirement in decentralized environments such as mobile ad-hoc networks (MANETs), peer-to-peer
systems (P2P), wireless sensor networks (WSNs), or decentralized social networks (DSNs) where there
is no trusted third party to monitor and enforce good behavior among users. In this paper, we propose a
dynamic decentralized reputation system that fits such network characteristics, namely decentralization,
dynamism, and openness, without conceding on security. The novel system is a general-purpose system
that uses blockchain to gather and supply global reputation information while remaining fully decentralized.
Unlike previous works on decentralized reputation systems where reputation information is inconsistent
and limited to users’ direct experience and recommendations from peers (neighbors), our system gathers
feedback from all over the network and stores reputation information on a distributed ledger fully accessible
to all users. In terms of security, the proposed method achieves privacy utilizing secure multiparty compu-
tation, a cryptographic primitive that preserves feedback privacy even with a dishonest majority reaching
n − 2 malicious parties while requiring only O(n) messages. The employed techniques enable the system
to achieve unique characteristics like consistency, conservation, and verifiability in addition to privacy. The
security analysis we provide confirms these properties, and the performed simulation shows the protocol’s
effectiveness.

INDEX TERMS Blockchain, privacy, reputation, secure multiparty computation.

I. INTRODUCTION
In a world increasingly interconnected, with sustained
progress of services and people interacting online, the need
for reputation systems is gaining momentum. Indeed, reputa-
tion systems help establish trust between users in situations
where most online parties are strangers. They enable them
to predict who is likely trustworthy even without knowing
them. Based on feedback from past transactions, a reputation
system typically collects, aggregates, and distributes data
about a party, to characterize and predict its future behav-
ior. Consequently, it facilitates community interaction and
improves online services efficiency [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tiago Cruz .

Measuring a user’s reputation amounts to estimating the
community’s confidence in him. Depending on the context,
he is expected to behave in a specific manner or perform par-
ticular actions. In return, other users give their appreciation
of the quality of those actions. If aggregated properly, those
appreciations will provide a global score at the community
level.

In e-commerce, for example, there are many marketplaces
equipped with reputation systems. They collect feedback on
products and sellers to help customers decide which product
to purchase and from whom. They are good examples of
centralized reputation systems. Such systems are possible
because of the trust both vendors and consumers put in the
marketplace operator.

In many contexts, however, such a trusted party does
not exist. Examples include MANETs, Vehicular Ad hoc
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Networks (VANETs), DSNs, P2P systems, and WSNs; This
is the reason why decentralized reputation systems (DRS)
like [2], [3], and [4] exist.

In MANETs, for example, a party uses his neighbors to
route messages. It can collect reputation information on them
by observing whether they forward the messages sent through
them or not. However, when a new party joins the network,
it has no reputation information on others. So in traditional
decentralized reputation systems, the new party can ask its
peers for their reputation information on a target party and
use this as the basis to decide whether or not to interact
with it.

One of the major concerns about this approach is feedback
privacy. If feedback from some users is exposed eventually
when their identities are public, they might be subject to
retaliation or attacks andmay receive low ratings as a reprisal.

To remedy this situation, several privacy-preserving DRS
(PDRS) have been proposed by researchers [5], [6], [7], [8],
[9]. In such systems, parties avoid providing their reputation
information directly to the requesting party. Instead, they use
a protocol that allows them to jointly compute a function
based on their rating values (typically the sum or the average).
They then send the outcome to the party who made the
request. This way, they can keep their ratings private while
getting desired results.

However, privacy is not the only concern with traditional
DRS. Other problems negatively impact the core functions of
these systems, making them ineffective.

1) Availibility: when the reputation information is not
evenly available over the network, and thus the system
is not fair to all users;

2) Consistency: The reputation information is not the
same everywhere and thus inconsistent over the net-
work since users are likely to get different reputation
scores for the same target user at the same time based
on their relationships and acquaintances;

3) Conservation: The reputation information is likely to
be lost with users quitting the network since they store
their ratings locally;

4) Efficiency: Another inherent drawback is efficiency,
which relates to the fact that the reputation score has to
be recalculated from scratch every time a user queries
for it, which comes with a consequent cost in compu-
tation power and communication.

Motivated by these issues, the present work proposes using
blockchain as a distributed database for reputation storage
and update, jointly with secure multiparty computation for
privacy. Unlike the previous works on the subject, the pro-
posed system achieves some important and unique properties.
Namely, Availibility, Consistency, Conservation, and Verifia-
bility in addition to Correctness and Privacy.
Some of these properties can seem straightforward if

looked at in the context of centralized reputation systems.
Nevertheless, in the present context of dynamic decentral-
ized reputation systems, they are challenging. Above that,
our protocol is a fully decentralized general-purpose global

reputation system, which to our best knowledge, was not
achieved before in related works.

The proposed system is distinguished from previous ones
by its non-reliance on a querying party to initiate reputation
computation since source parties in our system calculate and
submit their feedback directly to the blockchain rather than
providing it on demand. This solution ensures that the effort
is not repeated at each request and saves to a significant extent
communication bandwidth and computation power.

This paper’s contributions can be summarized as follows
(see also Fig. 1):
• Wepropose an efficient and dynamic decentralized repu-
tation system by combining secure multiparty computa-
tion [10] and non-interactive zero-knowledge proof [11]
with blockchain technology [12]. Individual rating
statistics are kept private, and only the aggregated rep-
utation is made public under the proposed system.
Furthermore, the blockchain architecture ensures that
reputation data is consistent and available throughout the
network.

• We design a blockchain-based architecture that
implements the proposed reputation system to guarantee
system transparency and verifiability. The proposed
architecture reduces the on-chain storage and computa-
tion overhead with an off-chain phase. Security analysis
demonstrates the reliability of the proposed system;

• After exploring different models used to represent and
aggregate reputation in standard scenarios from the lit-
erature, we achieve a general-purpose reputation sys-
tem that complies with the existing models. A system
that is not limited, for example, to buyers/sellers or
providers/clients settings where nodes are either raters
or ratees. Instead, each party in the network has to act
simultaneously as a rater and a ratee.

The rest of the paper is organized as follows. In Section II,
we present some related works. Next, the problem and secu-
rity definitions are provided in Section III. Section IV intro-
duces the essential building blocks, while a review of the
reputation representation and aggregation models in standard
scenarios is presented in Section V. The sixth section details
the proposed protocol phases, whereas the security analysis
and performance tests, insights, and discussions, are provided
in Section VII. Lastly, we conclude the work in Section VIII.

II. RELATED WORKS
There are two approaches to privacy-preserving decentralized
reputation systems: The first approach concentrates on pro-
tecting user anonymity without guarding feedback. Whereas
the second focuses on maintaining feedback confidentiality
without necessarily hiding identities. Concretely, the distinc-
tion between the two is as follows:
• User anonymity systems assign to each user one or more
pseudonyms that cannot be linked to his true identity so
that feedback providers are kept anonymous by having
their identities hidden in the system. These systems
allow users to issue transactions and provide feedback
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FIGURE 1. System contributions.

without concealing it, as it cannot be linked to their
identities.

• Feedback confidentiality systems, on the other hand,
assign to each user a single pseudonym and keep feed-
back confidential. They do not conceal who is providing
feedback; Instead, they hide the feedback value. These
systems, in theory, should not reveal information other
than the aggregated reputation score.

The present work follows the second approach as it
considers it more realistic and practical because complete
anonymity is not always possible to achieve in real-world
scenarios. For example, on e-commerce sites, even if we can
preserve anonymity online, the exchange of physical items
sold on them would likely reveal identities. From this per-
spective, feedback-confidentiality systems are a better alter-
native to enable users to submit truthful feedback without fear
of retaliation.

The major part of traditional works in PDRS (e.g. [5],
[7], [8], [9]) consider the setting where a querying party Pq
wants to interact with a target party Pt , but is not sure that
Pt is trustworthy. Either Pq lacks information about Pt past
behavior, or its experience with Pt is too limited or outdated.
Let {P(t)1 ,P(t)2 , . . . ,P(t)N } be the set of parties having reputation
information on Pt called witnesses or source parties. In this
case, Pq can consult a selected subgroup of source parties,
namely {P(t)i1 ,P(t)i2 , . . . ,P(t)in } (n ≤ N ) that will run a protocol
to compute the reputation score of Pt securely and send the
result to Pq.
Following this setting, authors in [5] presented one of the

earliest works in the field, with a protocol based on random
witness selection and additive secret sharing. The protocol
came with three different security strengths and proved the
existence of witness selection schemes that guarantee at least
two honest witnesses with a high probability. Although the
protocol is fully decentralized and designed for general use,
it cannot compute and store global reputation scores. Indeed,
each party in the system has to store its gathered information

locally, and reputation is based only on neighbors’ feedback.
In addition, the system requires exchanging O(n2) messages
at each request for reputation.

Authors in [6] and [8] built upon the work of [5] with the
k-shares reputation protocol, respectively for the semi-honest
and malicious adversarial model. Their protocol improves
communication costs by requiring only O(n) messages.
In addition, it maximizes the probability of keeping repu-
tation information private by allowing users to select only
witnesses with good reputation scores avoiding those they do
not trust.

The prior protocols [5], [6], [8] are not suitable for dynamic
networks, and several issues arise when attempting to use
them. In such networks, the number of available source par-
ties, i.e., currently part of the network, could be much smaller
than if the network was entirely static. Indeed, once a party
leaves, all its reputation information is no longer accessible
since each party stores its information locally. Also, reputa-
tion is likely to be computed with a different set of present
parties each time a party requests it. This leads reputation
information to get inconsistent and changes at each request.

To alleviate the issue in dynamic networks where parties
can enter and quit the network at will, authors in [9] proposed
a protocol that allows parties leaving the network to delegate
their reputation information to prevent its loss. For privacy
reasons, the leaving user has to split the entrusted informa-
tion over a group of users (secret-sharing) before leaving.
Of course, this operation does not go without an increase in
computation and communication costs, and if a delegation
group member leaves, its information has to be re-delegated.
Naturally, recovering and reconstructing the delegated infor-
mation becomes more challenging with the number of parties
involved in inflating and the data becoming fragmented.

However, even if the issue of reputation information loss
was partially resolved, it is clear that all the proposed solu-
tions above are incapable of computing and storing global
reputation scores.
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We can say the same about the work in [13] proposing
a decentralized reputation model for VANETs that aims to
enable nodes to detect malicious vehicles and avoid interact-
ing with them based on their trust scores. It uses a different
model based on the Bayesian filter to measure trust scores
accurately, although the reputation information gathered is
partial and mostly shared locally.

To structure this section better, we assess and classify
related works by the following criteria:

1) Full Decentralization: where reputation systems do not
use central entities to collect, compute or serve reputa-
tion scores; instead, the information is distributed over
parties that share it to evaluate the trustworthiness of
potential transaction partners.

2) General-Purpose Reputation Systems are those
designed for usage in various network environ-
ments. They are not restricted to settings like ser-
vice providers/consumers in online marketplaces or
servers/clients in IoT. Instead, they must fit various
networks, including P2P, MANETs, or WSN.

3) Global Reputation Systems are systems that collect
ratings from all over the network and aggregate them
into global reputation scores accessible to all users.

It is worth mentioning that many proposed systems in the
literature are not general-purpose systems like the ones men-
tioned above. They are rather tailored for specific contexts
such as online marketplaces [14], [15], [16], or internet of
things (IoT) [17], [18], [19], [20] where the network is split
into two distinct groups: ratees and raters. Indeed, users in
online marketplaces are either consumers, thus raters, or ser-
vice providers, thus ratees, while in IoT, they are either server
nodes or clients. However, in different contexts such as P2P,
MANETs, VANETs, DSNs, and WSNs, users have to play
both the role of a rater and a ratee.

We highlight that such proposed systems are too specific
or incompatible with a fully distributed setting like P2P,
MANETs, or WSN.

Among them, we find:
PrivBox [21], a verifiable reputation system for online

marketplaces. A system designed so consumers can rate
retailers and submit their feedback in an encrypted form using
homomorphic encryption to a public bulletin board (PBB):
a sort of central database. The system makes the reputation
information publicly accessible and verifiable without dis-
closing individual ratings due to the possibility of computing
on ciphertexts with homomorphic encryption. However, the
protocol leaves the reputation computation task to anyone
(seller or buyer) who wants to compute the reputation of
a particular retailer. The system employs zero-knowledge
proofs to prove that ratings are well-formed.

Another system from [22] called PrivRep and built on [21]
uses a similar PBB in addition to a Reputation Engine (RE),
responsible for computing reputation from the homomorphi-
cally encrypted feedback. The RE is an entity controlled and
run by the marketplace that supports the task instead of rele-
gating it to regular users. It reserves the right to reject some

of the feedback if judged untrustworthy. PrivRep assumes
two central entities: RE for computation and PBB for storage,
which undermines its decentralized aspect.

Same for [23] where authors proposed a similar system
for the Social Internet of things with a PBB mentioning the
possibility of implementing it as a blockchain or as a mirrored
server.

In [15], authors proposed a blockchain-based cross-
platform reputation system for e-commerce namedRepChain;
the system interconnects e-commerce platforms and enables
them to share their users’ reputations through a consortium
blockchain. Even though the system is not entirely decen-
tralized, as each platform relies on its centralized entity, the
top layer interconnecting platforms is decentralized thanks to
blockchain.

Authors in [19] propose a solution to Blockchain usage
limitations in the Internet of Things (IoT) reputation sys-
tems, especially their lack of scalability. They introduce a
distributed ledger combining Tangle and Blockchain as a
reputation framework. Combining Tangle with Blockchain
is destined to provide maintainability of the former and
scalability of the latter. Consequently, the proposed ledger
could handle a more significant number of IoT devices and
transactions.

In the same direction, authors in [24] proposed a two-
layered blockchain-based reputation system for VANETs
consisting of a local one-day message blockchain and a
global vehicle reputation blockchain. The proposed model
efficiently manages local traffic information through the local
one-day blockchain, reducing the memory overhead of vehi-
cles. According to the vehicle’s actions, its reputation score
is updated and stored permanently in the global reputation
blockchain.

Blockchain has had a wide range of applications due to
its outstanding features like security and reliability, espe-
cially in distributed settings [20], [23], [24], [25]. Among
other applications is Fog computing, where blockchain may
achieve secure decentralized reputation systems and identity
management [26].

Authors in [20] proposed a system for the Internet of
Things (IoT) that considers geospatial information in rep-
utation management as the trustworthiness of a device can
be affected by many factors, including its geographical loca-
tion. The proposed solution has a cloud-fog-edge architec-
ture where the fog layer employs a blockchain to form a
decentralized network among fog nodes allowing decentral-
ized and transparent management. The location-based system
part stores geographical information in Smart Contracts and
enables reputation values to vary according to geographical
location.

To our best knowledge, From literature assessment and
classification of related works according to five criteria,
namely: Full Decentralization, General-Purpose, Global Rep-
utation, Privacy, and employed Technologies (The compar-
ative study is summarized in Table 1), we can confidently
say that part of the related works are fully decentralized
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reputation systems that are general-purpose but do not main-
tain global reputation scores and rely on locally stored
information. Their reputation information is partial and
inconsistent over the network because it is limited to users’
direct experience and recommendations from neighbors and
acquaintances. The other part of related works is proposed
in specific settings that achieve global reputation and some
form of decentralization but are not general-purpose systems.
Our objective in this work is naturally to fill the gap in
global reputation systems that are general-purpose and fully
decentralized.

III. PROBLEM FORMULATION
In this section, we formulate a model for our system and
present the security and adversarial model.

A. SYSTEM MODEL
In our system, there are two entities, namely users and the
blockchain. Users have two roles to play:
• Regular User uniquely identified by its public key pk
or its address a can interact with other peers and leave
a rating score for whom he interacted. He maintains a
lightweight copy of the ledger locally;

• Validator or Miner is a regular user with a higher repu-
tation score that enables it to contribute to maintaining
the public ledger with other miners based on a consensus
protocol (see IV-A).

At a high level, the system works as follows. Parties join
the network by generating a pair of keys associating the
public key to a unique identifier like a Media Access Con-
trol address, an IP, or a hash. All communication between
parties is done via secure channels. The latter are emulated
by employing signature and encryption. Specifically, we use
ECDSA signature [27], and ECIES encryption schemes [28].

Parties can perform actions specific to the network and
interact with each other. At the end of the interaction between,
for example, two parties A and B, B will get an authenticated
piece of data from A attesting to the exchange. It can then rate
A accordingly by joining its source parties list, computing a
joint rating with other peers in the list, and submitting it to
the blockchain. Finally, rating transactions for the same party
aggregate as a reputation score on the blockchain.

B. ADVERSARIAL MODEL
In the semi-honest adversarial model, users always follow
the protocol. They execute the protocol according to the
specifications and do not deviate from them. However, they
may passively attempt to learn the inputs of honest users by
using intermediate information received during the protocol
execution or any other information they can gain through
legitimate means.

Under themaliciousmodel, things are different. Users may
deviate from the protocol and attempt actively to achieve
their objectives through arbitrary behavior and extra-protocol
activities following diverse strategies.

A dishonest user may act alone or in agreement with other
malicious users to achieve his goals. When multiple users of

the same type work together, we refer to them as collusion.
We call an adversary any coalition of dishonest users.

The present system is secure in the semi-honest and mali-
cious adversarial model. For the on-chain phase, i.e., executed
on the blockchain, the system is safe from any adversary with
computation power/stake below 51% of the network. For the
off-chain phase, it is secure with a dishonest majority up to
n− 2.

C. SECURITY OBJECTIVES/REQUIREMENTS
The main security objectives of the proposed system are
privacy and integrity. Privacy consists of preserving the confi-
dentiality of feedback and any information related to it, while
integrity aims to maintain the functionalities of the reputa-
tion system unaltered. It includes, for example, preventing a
malicious user from manipulating the reputation aggregation
function to forge an unmerited good reputation. In the fol-
lowing, we enumerate privacy and integrity sub-objectives in
detail, as well as some properties essential to the system:

• Privacy This property guarantees feedback confidential-
ity protection so that it is neither disclosed explicitly
nor derived from any public or intermediate information
gained by the adversary during the interaction. Even
more, the adversary is unable to learn any additional
information beyond the final reputation score;

• Correctness As the reputation system relies on regular
users and validators to perform some computation. Cor-
rectness property requires that the adversary is unable to
mislead the system to erroneous results;

• Authorizability. The requirement is that only users who
have had an interaction with the ratee can rate him.
This property prevents users who had not transacted
with a ratee from assigning him unjustified feedback for
somemotive, whether for tarnishing his reputation or for
false promotion ( attacks such as bad-mouthing and self-
promotion);

• Verifiability The requirement that any user should be
able to identify all published feedback linked to some
identity and verify its basis on authentic transactions
from real partners. Moreover, he could verify that
the reputation score was computed correctly from the
related feedback;

• Availibility guarantees that every party on the network
can access all reputation scores at will. For example,
malicious users can attempt to take down the system by
different means and attack or prevent honest users from
accessing it. The system has to grant all legitimate users
equitable access to public reputation scores at any time;

• Consistency is the requirement that if different parties
request a reputation score at the same time, they get the
same reputation score everywhere in the network until
new ratings come into the system if we take into account
the propagation time;

• Conservation This property requires that even if a party
leaves the network, its ratings have to remain part of the
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TABLE 1. A Comparative study of privacy-preserving decentralized reputation systems (FD: Fully Decentralized; GP: General-Purpose; GR: Global
Reputation).

system and that the reputation score is a function of all
the previously submitted ratings in the network.

IV. BUILDING BLOCKS
In the following, F denotes the finite field Fp with p a suffi-
ciently large prime number.

A. BLOCKCHAIN
Ablockchain is similar to a distributed public database. Every
user can read from this database, but it takes more to write to
it. For that, users have to reach a majority consensus over the
network before the writing is accepted [29]. Any action that
modifies this database is called a transaction. Transactions
are typically gathered and recorded in the form of blocks and
then broadcast among all users. Once the network reaches a
consensus over a block and accepts it, it becomes difficult
to alter it. Blockchain is reputed for recording transactions
efficiently in a verifiable and permanent way. For this reason,
it is considered an append-only database.

Blockchain can also be seen as an ordered list of blocks
(B)(0≤i<l) (see Fig. 2) chronologically constructed from the
first block B(0) called genesis block to the last block B(l)
which is the current valid block. Other blocks will add to
this list in regular periods. The result of all transactions in
all blocks at a given moment constitutes the state of the
blockchain.

Blockchain is resistant to modification by design. It is
typically managed by a P2P network adhering to a communi-
cation protocol.

A transaction T is a single instruction used typically to
transfer a sum of coins (virtual money) securely. Each block
B(i) is composed of the header H(i) and the body that com-
prises a series of transactions T(i) = (T1, . . . ,Tn) in the form
of a Merkle tree. The header H(i) includes a collection of
relevant pieces of information.

B(i) = (H(i), (T1, . . . ,Tn)).

As mentioned above, the state is the resultant of all trans-
actions in all blocks at a specified time. It is an auxiliary

FIGURE 2. Blockchain structure.

database that summarizes the blockchain state at a given
moment. The state database introduced with Ethereum [27],
[30] is a modified Merkle tree implemented as a mapping
between parties’ addresses and their account states. It is
maintained, updated, and linked to every new valid block
(see Fig. 3). Unlike Ethereum, Bitcoin does not implement
an equivalent structure [31].

We denote the state database σ and use a party address a
to reference its account denoted by σ a. In our context, the
account statewill include, among others, the following fields
relevant to our system:
• Nonce: The number of transactions sent from this
address so far, denoted σ

(a)
n .

• Reputation: The reputation score, denoted σ
(a)
r .

• Weight: The number of feedback received so far,
denoted σ

(a)
w .

• Source Parties List: The list of source parties addresses,
denoted σ

(a)
l [ ].

One can implement these additional fields easily using Smart
Contracts on existing blockchains that support them. How-
ever, they can also be implemented as standard state account
fields and integrated directly into the blockchain framework.
In the present work, we adopt the latter approach throughout
the paper, except for the performance evaluation section,
where we use smart contracts, as they lend themselves easily
to experimentation.

1) CONSENSUS
Creating new blocks is controlled by a mechanism that varies
between blockchain technologies. The Proof-of-Work was
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FIGURE 3. Blocks-state diagram.

the first mechanism used to reach consensus [32] on newly
created blocks. A concept introduced with Bitcoin [12] and
followed by several alternative coins launched using similar
ideas.

The mechanism of Proof-of-Work allows miners to write
to the blockchain only if they prove that they did a certain
amount of work. The work consists of an extensive search
for partial collision using hash functions. This mining process
demands a lot of computing energy [33].

With the advent of PPCoin [34] further developed by
BlackCoin [35], NXT [36] and NeuCoin [37], a new family
of systems was born replacing the Proof-of-Work with the
concept of ‘‘Proof-of-Stake’’

From its side, Proof-of-Stake enables every participant to
randomly gain the right to write to the public database with a
probability proportional to his stake, i.e., the number of coins
he owns. This approach cancels the extra computing cost of
mining and leads to a much faster block-creation process.
It seems perfectly reasonable today to maintain distributed
consensus using Proof-of-Stake. The thing we consider more
appropriate in our context than using Proof-of-Work.

During the block creation process, the validators perform
various tasks. Among them the verification and recording of
new transactions. A new block typically contains transactions
that have occurred since the last block, and when effec-
tively added to the blockchain, the underlying transactions are
definitive. Subsequently, all the concerned accounts states are
updated to reflect the changes.

B. MESSAGE AUTHENTICATION CODE
Loosely speaking, a message authentication code (MAC) is a
piece of data used to authenticate a message. Like digital sig-
natures, its purpose is to confirm that the message came from
the stated sender (authenticity) and has not been changed
(integrity). It allows the receiver to detect any change to the
message content. However, unlike digital signatures, MAC
values are generated and verified using the same secret key,
which implies that the sender and receiver must agree on a
key before initiating communications.

Formally, a MAC scheme is a triple of polynomial-time
algorithms (Gen, Mac, Verif) such that:
• Gen(1λ) is the key generation algorithm that takes λ the
security parameter as input and samples a key k ∈ K
from the key space uniformly at random k ← Gen(1λ);

• Mack (m), the Mac algorithm returns a tag t = Mack (m)
on input key k ∈ K and message m ∈ M ;

• Verif(k,m, t) is the verifying algorithm that takes an
input k ∈ K ,m ∈ M , and t ∈ T , verifies the authenticity
of the message and returns accepted when the message
and the tag match t = Mack (m) and rejected otherwise;

• The following equality

Pr
[

k ← Gen(1λ),
Verif(k, x,Mack (x)) = accepted

]
= 1

holds.
A MAC scheme is said to be secure (unforgeable) if for

every polynomial time adversary A:

Pr


k ← Gen(1λ),

(x, t)← AMack (·)(1λ),
x ̸∈ Query(AMack (·), 1λ),
Verif(k, x, t) = accepted

 < ϵ(λ)

where AMack(·) denotes that A has access to the oracle
Mack(·), and Query(AMack(·), 1λ) denotes the set of the
queries made byA on Mac() knowing λ. The function ϵ(λ) is
negligible in the security parameter λ, i.e., for every nonzero
polynomial function poly() there exists λ0 such that |ϵ(λ)| <∣∣∣ 1
poly(λ)

∣∣∣ for all λ > λ0.

1) ONE-TIME MAC
We refer to a MAC as a one-time MAC if it uses the key
at most once. It can be built from primitives like universal
hashing and pairwise independent hash functions.

The simplest one-time MAC from pairwise independent
hash functions is defined by a random key k = (a, b), and
a MAC tag Mack(m) = (am+ b) mod p, where p is prime.

It is shown that one-timeMACs are unconditionally secure
and that even quantum resources do not offer any advantage
over them [38].

C. SEMI-HOMOMORPHIC ENCRYPTION
In this subsection, we introduce the Semi-Homomorphic
Encryption Scheme (SHE). A cryptographic primitive that
satisfies our system needs in terms of homomorphic encryp-
tion while being lighter and more efficient than other homo-
morphic primitives. SHE [39] is a public-key cryptosystem
that satisfies a relaxed version of the additive homomorphic
property. SHE is a tuple of algorithms (Gen, Enc, Dec)
where:
• Gen(1λ, p) is a randomized algorithm that takes as input
a security parameter λ and a modulus p. It outputs a pub-
lic/secret key pair (pk, sk) and a set of parameters P =
(p,M ,R,Dd

σ , G) where, M and R are integers, and Dd
σ

is a randomized algorithm producing always d-vectors
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r of random integers such that ||r||∞ ≤ σ for some
σ < R except with negligible probability. Finally, G is
the domain of ciphertexts, an additive abelian group;

• Encpk (x, r) is a deterministic algorithm that takes as
input an integer x ∈ Zp and a vector r ∈ Zd and outputs
a ciphertext C ∈ G. We sometimes write Encpk (x) when
it is not important to specify the randomness explicitly;

• Decsk (C) is a deterministic algorithm that takes as input
a ciphertext C ∈ G and outputs x ′ ∈ Zp ∪ {⊥};

• Encpk (x, r)+ Encpk (x ′, r) = Encpk (x + x ′, r + r ′).
A semi-homomorphic encryption scheme SHE is correct

if:

Pr


(pk, sk, P)← Gen(1λ, p),

x ∈ Zp, |x| ≤ M;
r ∈ Zd , ||r||∞ ≤ R :

Decsk (Encpk (x, r)) ̸= x mod p

 < ε(λ)

with probabilities taken over randomness in Gen and Enc, and
ϵ(λ) a negligible function.

SHE is IND-CPA-Secure (i.e. achieves indistinguishability
under chosen plaintext attack) if for all probabilistic polyno-
mial time adversary A = (A1,A2), the advantage of A on
the following experiment verifies:

AdvCPA(A, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr


(pk, sk, P)←Gen(1λ, p);
(m0,m1, state)←A1(1λ, pk)

m0,m1∈Zp;

b←{0, 1};C←Encpk (mb);
b′←A2(1λ, state,C):

b=b′

-1/2

∣∣∣∣∣∣∣∣∣∣∣∣
< ε(λ)

with the probability taken over randomness in Gen, Enc,
and A.
Paillier Cryptosystem: We obtain a semi-homomorphic

scheme straightforward from Paillier’s cryptosystem [40] by
setting the adequate parameters:
• The secret key as two large primes sk=(p1, p2), and
the public key as pk=N=p1p2, and M=(N − 1)/2,R=
∞, d=1, Dd

σ=UZ∗
N2

(Uniform distribution), σ=∞ and
G=Z∗

N 2 ;
• Encpk (x, r)=(N+1)xrN mod N 3 where x∈ZN and r is
random in Z∗

N 2 ;
• The decryption function is simply redefined as Dec′(c)=
Dec(c) mod p to get the reconstructed plaintexts mod-
ulo p.

We highlight that the Paillier cryptosystem is written a bit
differently from the above SHE definition, which writes G
additively, while Z∗

N 2 is written with multiplicative nota-
tion. Also for Paillier we have Encpk (x, r) + Encpk (x ′, r)=
Encpk (x+x ′, r · r ′) instead of Encpk (x+x ′, r+ r ′). However,
this makes no difference.

Several other candidates like the lattice-based scheme
Brakerski-Gentry-Vaikuntanathan (BGV) [41], Regev’s cryp-
tosystem [42], [43] or the Subset Sum Cryptosystem [44] can

be used interchangeably with the Paillier scheme suggested
here.

D. COMMITMENT
Commitment schemes are common ingredients in crypto-
graphic protocols. As their name suggests, they are used to
enable a party to commit itself to a value while keeping it
secret [45]. Once a party has committed to someone, it cannot
change it later when the commitment is ‘‘opened,’’ and other
parties cannot gain knowledge about it before the opening.
Commitment schemes are the digital form of non-transparent
sealed envelopes.

A commitment scheme is a two-phase protocol with two
players: a sender S and a receiver R. It must satisfy two
requirements to be secure:
(1). Hiding (or Secrecy): At the end of the Commit phase,

the receiver R does not gain any knowledge of the secret.
(2). Binding: Given the commitment from the Commit

phase, there exists at most one value that the receiver
can accept in the Open phase as a legal opening of the
commitment.

The commitment scheme presented below for the present
system uses a hash functionH (a Random Oracle) and some
randomness:

Protocol 1: Commitment Protocol 5Commit
Commit:1) In order to commit to x, S sets y←x||r , where

r is chosen at random uniformly in a deter-
mined domain, and queries the Random Ora-
cleH to get c←H(y).

2) S then sends c to R.
Open: 1) In order to open a commitment c, where c=

H(x||r), player S sends y=x||r .
2) R calls H on y and check whether H(y)=c.

He accepts if and only if this check passes.

E. SECRET SHARING
Secret sharing is amethod for splitting a secret among a group
of parties such that they cannot reconstruct the secret unless a
sufficient number of them unite. A dealer in a secret sharing
scheme gives each party a share. But a single one is of no
use on its own. For example, a t-out-of-n (t, n)-secret sharing
scheme is secure if it distributes n shares so that any subset of
parties with less than t shares cannot reconstruct the secret.
Moreover, it cannot gain more information about it.

In our context, parties use the secret sharing technique
to make joint computations on their private ratings without
revealing them. Particularly two techniques are used further
in SMC (see IV-G):
• The first one is an authenticated version (see IV-B) of
the trivial (n, n)-additive secret sharing scheme defined
as follows:
For a secret x, the dealer D samples randomly x(i)

$
←−F

for 1≤i≤n − 1 and sets the nth share x(n) such that∑n
i=1 x

(i)
=x. The result is an (n,n)-additive secret
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sharing of x:

[x]=(x(1), . . . , x(n)) /

n∑
i=1

x(i)=x.

• The second technique used in our system based on
a semi-homomorphic encryption scheme (see IV-C)
allows two parties to secret-share the product of their
inputs without revealing them. It works as follows:
One party P1 sends an encryption Encpk1 (a) of its input a
under its own public key to another party P2, which
replies byC=b·Encpk1 (a)−Encpk1 (x2), where b denotes
party’s P2 input, and x2 is chosen at random. Since
a semi-homomorphic encryption scheme supports the
multiplication of a known value with a ciphertext, hence
the decryption of C is x1=b · a − x2, which makes
[a · b]=(x1, x2) an additive secret sharing of a · b.

1) AN AUTHENTICATED SECRET SHARING
The idea behind authenticated secret sharing is to use
one-time MACs to prevent parties from lying about their
shares when they are supposed to generate them correctly.
In this regard a random key κ∈F is issued, and a MAC for
a∈F defined byMacκ (a)=κ · a mod p is used.

For some parties P1, . . . ,Pn, if κ is the MAC key and
[κ]=(κ (1), . . . , κ (n)) its secret sharing, we assume that every
party Pj 1≤j≤n keeps its share κ (j) secret and that κ the global
key is unknown to all parties. They can easily achieve this
result by generating their random shares independently and
committing to them so that κ results naturally as the sum.
The protocol 5Rand does exactly that: [κ]←5Rand.

Protocol 2: The Protocol 5Rand

1) Every party Pi samples r (i)
$
←−F commit to it and keeps

it private.
2) Take r=

∑n
i=1 r

(i) such that [r]=(r (1), . . . , r (n)) and r is
random and unknown to all parties until the shares are
opened.

Definition 0.1: We call an authenticated secret sharing of
x∈F under a global key κ the ordered set:

[[x]]=(x(1), ..., x(n), m(x)(1), ..., m(x)(n), κ (1), ..., κ (n))

Each player Pi holds its authenticated share tuple [[x]](i)=
(x(i), m(x)(i), κ (i)) such that: x=

∑n
i=1x

(i), m(x)=Macκ (x)=∑n
i=1m(x)

(i), and κ=
∑n

i=1κ
(i).

If a party Pi, for example, wants to generate the authenticated
shares for its private input x, then it has to share x, m(x)
under κ:
• For κ , nothing needs to be done. It is already shared
since every party Pj has its private key share κj. If not
[κ]←5Rand is executed.

• Sharing x is also straighforward like explained above
[x]=(x(1), . . . , x(n)) such that

∑n
i=1 x

(i)
=x.

• For m(x)=Macκ (x)=κ · x, we know for sure that Pi
cannot share it on its own since it does not know κ .

So it needs some interaction and the semi-homomorphic
technique mentioned above:
For that each party Pj sends an encryption Encpkj (κj) of
its key share under its own public key pkj to Pi, which
replies by cj=x · Encpkj (κj) − Encpkj (ej), where ej is
chosen at random. Since semi-homomorphic encryption
schemes allow the addition of ciphertexts and multipli-
cation of ciphertexts by cleartext, hence if Pj decrypts cj,
it gets Decskj (cj)=x · κj − ej. Pj then sets its share to
m(x)(j)=x · κj − ej. Pi takes m(x)(i)=x · κi +

∑
j̸=i ej

so that
∑n

j=1m(x)
(j)
=x · κ . This leads to [m(x)]=

(m(x)(1), . . . , m(x)(n)) an additive secret sharing of
m(x)=x · κ .

F. ZERO-KNOWLEDGE PROOFS
A Zero-knowledge (ZK) proof allows a verifier V to check
the validity of a statement claimed by a prover P without
revealing anything other than the claim being true.

An example of ZK proof of knowledge is the Schnorr-like
protocol based on the standard 3-move 6− protocol. Its goal
is to prove knowledge of x in a field F , such that f (x)=y
without revealing x. The protocol works as follows:

1) The prover P samples a random s
$
←−F and sends a

commitment a=f (s) for s to the verifier.

2) The verifier V then samples a random c
$
←−F and sends

it to P .
3) P replies with z=s + c · x. Finally V checks whether

f (z)=a+ c · y.
where f is homomorphic for the field operations.
• Correctness the protocol is correct if f is homomorphic
for the field operations.

• Honest-Verifier Zero-Knowledge or Security of the
Prover is achieved by simulating (a, c, z) from any c

by sampling z
$
←−F and computing a=f (z)− c · y.

• Special Soundness or Security for theVerifier is obtained
by extracting the secret from two different transcripts
(z, c), (z′, c′) with c̸=c′ which can be done by comput-
ing x=(z− z′) · (c− c′)−1 (the operations are possible in
a field).

The Non-interactive Zero-Knowledge (NIZK) [11] ver-
sion of this scheme is achieved through Fiat-Shamir trans-
formation [46] using a secure cryptographic hash function
(Random Oracle Model). Instead of the verifier issuing the
challenge c, It is simply redefined as c=H(pp||y||a), where
pp is some public parameter. The hash function H should be
a secure cryptographic hash function, e.g., SHA or SHA3,
with a bitlength at least equal to the order of the considered
subgroup.

Protocol 3: Non-Interactive Zero-knowledge Proof of
knowledge 5NIZKPoK

1) The prover P samples a random s
$
←−F compute a com-

mitment a=f (s) to s, and the challenge c=H(pp||y||a)
then sends (a, c, z) where z=s+ c · x.
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2) The verifier V computes c=H(pp||y||a) and checks
whether f (z)=a+ c · y.

5NIZKPoK is used extensively in our system with func-
tion f set to the Encpk (), the encryption algorithm of a SHE
protocol.

G. SECURE MULTIPARTY COMPUTATION
SecureMultiparty Computation (SMC) allows a group of par-
ties to compute a function jointly over their private inputs. For
some parties P1, . . . ,Pn, each party Pi holding a secret input
xi and f an agreed-on function that takes n inputs, An SMC
protocol 5 enables P1,. . . ,Pn to compute y=f (x1, . . . , xn)
while satisfying the following conditions:
• Correctness: the protocol 5 computes the correct value
of y;

• Privacy: The parties P1, . . . ,Pn cannot learn additional
information from the protocol but y.

Usually, the desired function f is represented by the equiva-
lent boolean or arithmetic circuit.

Currently, to realize SMC one has two paradigms to
choose from, secret sharing [47], [48], [49], [50] and garbled
circuits [51], [52], [53]. Both paradigms come with their
strengths, and both have their lines of development. Since
secret sharing is currently the most suitable to evaluate arith-
metic circuits, we adopt it for our protocol.

The proposed system uses a general SMC protocol in the
preprocessing model [47], [48], [49], [54] built upon the
blocks presented above. It is a two-phase protocol inspired
by the Overdrive protocol [49], an efficient improvement of
SPDZ protocols [47], [48]. The preprocessing phase executed
individually precedes the online phase that involves inter-
action. From its side, the online phase where players share
inputs via additive secret sharing uses cheap information-
theoretic primitives. While in the other side, the prepro-
cessing phase uses a homomorphic encryption technique to
generate random triples independently from inputs for further
use in the online phase.

The SMC protocol guarantees privacy and correctness by
using commitment and zero-knowledge proofs and authen-
ticating shared values with information-theoretic MACs as
presented in subsection IV-E1.
Formally, every Pi executes 5[[·]]·Input (see protocol 5)

on its private input xi∈F, to generate and share [[xi]]=
(x(1)i , . . . , x(n)i , m(xi)(1), . . . , m(xi)(n), κ (1), . . . , κ (n)) the
authenticated secret sharing of xi, where each playerPj s.t. 1≤
j≤n holds a share tuple [[xi]](j)=(x

(j)
i , m(xi)(j), κ (j)) verifying:

xi=
∑n

j=1 x
(j)
i , κ·xi=

∑n
j=1m(xi)

(j), and κ=
∑n

j=1 κ (j).
In the online phase, the main task is to evaluate a circuit

over secret inputs, which the parties do by performing opera-
tions like addition and multiplication on authenticated shared
values, c.f., protocol 6.

To open the result [[y]] at the end of calculations, all
players Pi broadcast their shares y(i), commit and then
open m(y)(i) − κ (i)y. Afterward, they check if the sum of the
latter is equal to zero, as shown in the 5MACCheck protocol 4.

Since the addition is linear, it can be done via local
computation. However, multiplying two private values [[x]],
[[y]] requires some interaction between parties. To compute
[[x · y]] a fresh random triple [[a]], [[b]], [[c]] has to be avail-
able to execute Beaver’s trick [55]. This is the goal of
the pre-processing phase which prepare independent random
tuples ([[a]], [[b]], [[c]]) with c=a · b and a, b for the purpose.

Once parties have a fresh tuple ([[a]], [[b]], [[c]]) they follow
Beaver’s method by opening α=[[x − a]] and β=[[y− b]] and
then get the authenticated product by setting [[x · y]]←[[c]]+
α[[b]]+ β[[a]]+ α · β.

Protocol 4: 5MACCheck
Each party in {Pi}1≤i≤n uses y,m(y)(i), κ (i) in the following

way:
1) Computes δ(i)←m(y)(i) − κ (i)y;
2) Execute 5Commit·Commit on δ(i) to receive and broad-

cast ci;
3) Broadcast δ(i) to all parties by executing5Commit.Open

on (δ(i), ci);
4) If

∑n
i=1 δ(i) ̸=0 then abort and output ⊥; otherwise

continue.

1) ONLINE PHASE

Protocol 5: 5[[.]]

- Initialize: Each party Pi does the following:

1) Sample a MAC key κ (i) $
←−F;

2) Initialize two instances of 5NIZKPoK with every
other party Pj (one as prover, one as verifier),
receiving ( pki, ski) and pkj;

3) Using 5NIZKPoK, send an encryption Encκ (κ (i)) to
every other party.

- Input: On input xj from Pj:

1) For the input xj, Pj samples randomly x(i)j
$
←−F for

each party Pi. Then Pj sets its corresponding share

x(j)j accordingly such that
n∑
i=1

x(i)j =xj;

2) For every party Pi:
a) Pj computes C (i)

j =xj ·Encpki (κ
(i))−Encpki (e

(i)
j )

for random e(i)j ;

b) Pj sends {x
(i)
j ,C (i)

j } to Pi;

c) Pi decrypts d
(i)
j =Decski (C

(i)
j ).

3) Pj sets its MAC share associated to xj as m(xj)(j)←∑
i̸=j

e(i)j + xj · κ (j) and each party Pi does so for

m(xj)(i)←d (i)j ;
4) All parties store their authenticated shares

(x(i)j ,m(xj)(i), κ (i)) of [[xj]].
- Compute: To compute [[y]]=f ([[x1]], · · · , [[xn]]), every
party Pi computes from its authenticated shares
(x(i)j ,m(xj)(i), κ (i)) of [[xj]], 1≤j≤n:
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1) y(i)=f (x(i)1 , · · · , x(i)n );
2) m(y)(i)=f (m(x1)(i), · · · ,m(xn)(i)).

Elementary operations are detailed in Protocol 6, [[·]]-
operations.
- Open: To open [[y]], from all parties, eachPi broadcasts

the share y(i). Then each party reconstructs y=
n∑
i=1

y(i);

- Check: All parties run 5MACCheck protocol with y,
m(y)(i), κ (i).

There is a clear distinction in SMC operations between
public and private operands. We can always perform calcu-
lations on public operands the usual way. However, private
operands need to be shared and authenticated before any oper-
ation. After secret-sharing private operands between parties,
a party can perform calculations only on the shares it got and
thus cannot get the global result. Instead, it gets a partial result
that is meaningless on its own, but if gathered with others,
it serves to reconstruct (open) the global one acting as a share
for it.

Protocol 6: [[·]]-operations
- Addition: Given two private inputs [[a]] and [[b]] returns:
[[a]] + [[b]]=(a(1) + b(1), . . . , a(n) + b(n); m(a)(1) +
m(b)(1), . . . , m(a)(n) + m(b)(n); κ (1), . . . , κ (n)). ( can
be computed only by local operations);
- Add a public value: Given a private inputs [[a]] and
a public one δ, returns [[a]] + δ=[[a + δ]]=(a(1) +
δ, a(2), . . . , a(n); m(a)(1) + δ · κ (1), . . . , m(a)(n) + δ ·

κ (n)
; κ (1), . . . , κ (n));

- Multiply by a public value: Given a private inputs [[a]]
and a public one λ, returns λ · [[a]]=(λ · a(1), . . . , λ ·

a(n); λ · m(a)(1), . . . , λ · m(a)(n); κ (1), . . . , κ (n));
- Multiply: To multiply [[x]] and [[y]] the parties do the
following, namely:
1) They take a triple ([[a]], [[b]], [[c]]) from the pre-

processing phase,
2) α=[[x]]− [[a]] and β=[[y]]− [[b]] are opened,
3) They set [[x]] · [[y]]=[[c]]+ α[[b]]+ β[[a]]+ α · β.

We demonstrate further in subsection VII-A when dis-
cussing the proposed system correctness that:
Theorem 1: The operations presented in protocol 6 are

fully compatible with the authenticated secret sharing repre-
sentation, namely:

[[a]]+ [[b]] = [[a+ b]]

[[a]]+ δ = [[a+ δ]]

λ · [[a]] = [[λa]]

[[x]] · [[y]] = [[x · y]].

Also, we highlight that all operations above can be performed
locally without interaction except for the multiplication of

two private inputs. This operation requires the preprocessing
phase. Likely in all known reputation systems so far, aggrega-
tion functions do not need it (c.f. V). Despite this, we included
this phase in the appendix for generality’s sake and eventual
use in the future.

As mentioned above, operations with only public operands
do not require special treatment. Only calculations that
involve private operands are relevant for SMC. We concen-
trate on the following section on this type of operation when
reviewing reputation aggregation functionalities by identify-
ing relevant parts and leaving others as is.

V. REPUTATION REPRESENTATION AND COMPUTATION
IN USUAL SCENARIOS
In the following, we investigate formats and models used
to represent and compute reputation from ratings in typi-
cal scenarios. We aim to determine precisely the types of
functionalities a reputation system in such scenarios has to
calculate over ratings and present how the proposed protocol
implements them.

From the SMCviewpoint, ratings are inputs, and reputation
is output. However, the SMC protocol is more costly than
regular computation. For this reason, we prefer isolating parts
of these functionalities that must be securely computed using
SMC to preserve privacy from parts that can be computed
publicly (in clear) without compromising privacy.

Regarding rating representation, several formats are
employed in the literature to describe and exchange rating
information. The following types are used traditionally to
represent them:
• The Binary format is used in the case ratings are either
positive or negative regardless of their values, and they
are stored using boolean values [56], [57], [58].

• Discrete is employed when ratings take several values
on a scale. They are usually stored using discrete integer
values [58].

• Continuous, where the information is stored as a floating
point number [57], [58].

• String: The information is stored in textual form, allow-
ing a wide range of data to be maintained [56], [59].

Regarding reputation computation, there are several
approaches to aggregating ratings into a reputation score. The
simplest way consists of counting the number of positive and
negative ratings for an entity and summing the two num-
bers [60]. The final score serves to rank all entities in the
system.

A slightly better way is to average all ratings to get a
single score for each entity. Furthermore, weighting ratings
can enhance this approach by providing more importance
to, for example, recent ratings or those from more reputable
sources [61]. Additionally, normalization can be used to eval-
uate reputation on a specific scale.

In the following, we sum up the different approaches in the
literature and specify how our protocol applies to each one:
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A. COUNTING
Counting, as introduced above, relies on standard techniques
like summation, averaging, and weighting to compute rep-
utation. Some authors [62] adopt a more natural way for
humans to represent ratings [60] like Very Trustworthy, Trust-
worthy, Untrustworthy, and Very Untrustworthy. Such repre-
sentations are hard to work with before converting them to
numerical values. If converted, the counting method is then
applied (average, for example), and the result is converted
back using look-up tables.

According to the adopted counting method, applying SMC
to compute either the sum, the average, or the weighted
average of parties’ private ratings is straightforward. It does
not need any adaptation or change. It suffices to run 5[[.]]
(protocol 5) on ratings as inputs.
Example:Let us say partiesP1,P2, andP3 want to compute

the reputation score of a target party Pt from their ratings
x1, x2, and x3 respectively, and that the reputation function is
the average weighted by the raters’ actual reputation scores,
namely w1, w2, and w3. In this case the reputation of Pt will
be:

wt=f (x1, x2, x3)=
w1 · x1 + w2 · x2 + w3 · x3

3

However, P1, P2, and P3 do not want to reveal their ratings,
and there is no trusted party to do the computation for them.
So, they run [[·]] · Input() on their private ratings so that each
party Pi gets a share of the three ratings, namely:

• P1 gets (x(1)1 ,m(x1)(1), κ (1)), (x(1)2 ,m(x2)(1), κ (1)), and
(x(1)3 ,m(x3)(1), κ (1)).

• P2 gets (x(2)1 ,m(x1)(2), κ (2)), (x(2)2 ,m(x2)(2), κ (2)), and
(x(2)3 ,m(x3)(2), κ (2)),

• and P3 gets (x(3)1 ,m(x1)(3), κ (3)), (x(3)2 ,m(x2)(3), κ (3)),
and (x(3)3 ,m(x3)(3), κ (3)).

The shares (x(j)i ,m(xi)(j), κ (j)), 1≤i, j≤3 are randomly gener-
ated and shared using Beaver’s method and SHE according
to protocol [[·]] · Input() and they verify by construction:

• x1=x
(1)
1 + x

(2)
1 + x

(3)
1 and m(x1)=m(x1)(1) +m(x1)(2) +

m(x1)(3);
• x2=x

(1)
2 + x

(2)
2 + x

(3)
2 and m(x2)=m(x2)(1) + m(x2)(2) +

m(x2)(3);
• x3=x

(1)
3 + x

(2)
3 + x

(3)
3 and m(x3)=m(x3)(1) + m(x3)(2) +

m(x3)(3);
• κ=κ (1)

+ κ (2)
+ κ (3) and m(xi)=κ · xi for 1≤i≤3 where

κ is the MAC key.
The next step is [[·]] · Compute() where each party Pi for

1≤i≤3 computes locally:

w(i)
t =

w1 · x
(i)
1 + w2 · x

(i)
2 + w3 · x

(i)
3

3
,

and

m(wt )(i)=
w1 · m(x1)(i) + w2 · x

(i)
2 + w3 · m(x3)(i)

3
.

Wecan verify easily thatwt=w
(1)
t +w

(2)
t +w

(3)
t . For the general

correctness demonstration, the reader can refer to section VII.
Next, all Pi for 1≤i≤3 commit and broadcast w(i)

t , and
compute wt by executing [[·]] ·Open(), which calculates wt=
w(1)
t + w(2)

t + w(3)
t after requiring parties to commit to their

shares w(i)
t before broadcasting them. As w(i)

t does not reveal
any information about xi for 1≤i≤3, it is safe to broadcast
them. However, to prevent parties from changing w(i)

t values
according to others’ values during the protocol execution
commitment is required.

The last step for parties before accepting wt as the correct
reputation score is to verify that no party has sent false
shares or wrong values to manipulate results or induce other
parties in error. For that every party Pi calls 5MACCheck on
wt ,m(wt )(i), κ (i). If the check is positive, they are sure that
the computation is correct.

The Counting scenario is summarized in table 2.

TABLE 2. Counting scenario summary.

B. PROBABILISTIC
Another aggregation method involves using a probability
model to predict future behavior from the knowledge of
prior events by fitting the latter as input and computing the
likelihood of a hypothesis to hold like ‘‘a party x will behave
correctly’’ [58], [61], [68], [69], [70], [71]. Probabilistic sys-
tems are generally based on the Bayesian model. They take
binary ratings as input (i.e., positive or negative) and compute
reputation scores by statistically updating a beta probability
density function (PDF). The beta distribution takes two free
parameters, α, and β, respectively, the number of positive and
negative feedback. The reputation score is the tuple of Beta
PDF parameters (α;β), or the Expectation value of the beta
PDF, and optionally accompanied by the Variance or a Confi-
dence parameter. Besides, the tuple (α;β) must be stored and
updated with new rating occurrences. Otherwise, we cannot
update the Expectation value or the Variance without the
two parameters. The Beta PDF denoted by Beta(p|α;β) is
expressed using the gamma function 0 as:

Beta(p|α;β)=
0(α + β)
0(α)0(β)

pα−1(1− p)β−1,

where 0≤p≤1 and α;β>0. The probability expectation of
the beta distribution is given by: E(p)=α/(α + β).

From the above, we can represent and store the reputation
score as the tuple (α;β) without deviating from the adopted
approach or losing privacy. Since the tuple (α;β) does not
reveal any of the individual ratings, the Beta PDF can be
applied to it by the system in a second step as convenient.
On the contrary, if we store just the beta PDF value without
the tuple (α;β), it will be impossible to recalculate its value
when new ratings enter the system.
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Let us encode ratings as vectors in F2, namely, the positive
rating as (1, 0) and the negative as (0, 1), and then take (α;β)
as the sum of previous ratings; therefore α and β correspond
to the number of positive and negative feedback respectively.
The aggregation function here is simply the sum.

For example, adding a negative rating to the reputation
tuple translates literally to (α;β) + (0, 1)=(α + 0;β + 1)=
(α;β+1) according to the usual operations in vector spaceF2.
We also highlight that the SMC protocol applies to vec-

tor inputs without any change. The only exception is for
randomly generated shares that now have the form: x(i)=

(a(i), b(i)), 1≤i≤n for an input x=(a, b) with a=
n∑
i=1

a(i), b=

n∑
i=1

b(i), and x=
n∑
i=1

x(i) respecting the operations in F2:

• (a, b)+ (c, d)=(a+ c, b+ d)
• λ · (a, b)=(λa, λb)
A summary of the probabilistic scenario is presented in

table 3.

TABLE 3. Probabilistic scenario summary.

C. FUZZY
Some authors [74], [75], [76] also explored Fuzzy logic for
aggregating reputation, using fuzzy rules to combine sev-
eral criteria in the reputation score. Fuzzy logic is used to
process ratings while allowing these systems to work with
uncertainty [60], [61]. For example, the FuzzyTrust [74]
system aggregates local trust scores collected from all peers
to produce a global reputation for each peer. The system
uses fuzzy inference to get the reputation aggregation weights
from three variables: the peer reputation, the transaction date,
and the transaction amount. It calculates the global reputation

according the following formula:Ri=
∑

j∈S wjtji∑
j∈S wj

whereRi is the
global reputation of peer i, S the set of peers with whom peer i
has transacted, tji the local score of peer i rated by peer j, and
wj the aggregation weight of tji.
We note that the aggregation function, in this case, isRi, the

weighted average of {tji}j∈S . The system infers aggregation
weights {wj}j∈S using fuzzy logic from three public variables,
which makes them also public, unlike the local scores tji
meant to stay private.

Based on the above, SMC can be applied without change.
The Fuzzy scenario is summarized in table 4.

D. FLOW
Flow computes reputation by processing the flow of transitive
trust [3], [60], [61], [78], [79], [80]. For instance, in [3], each
peer i can store the number of satisfactory transactions it has

TABLE 4. Fuzzy scenario summary.

had with peer j as sat(i, j), and the number of unsatisfac-
tory ones as unsat(i, j). Then sij is defined as sij=sat(i, j) −
unsat(i, j). The local trust value sij, is then normalized as cij=
max(sij, 0)∑
jmax(sij, 0)

to ensures, all values are between 0 and 1. The

peer i then aggregates the normalized local trust values of his
friends towards j, tij=

∑
k cikckj, by asking for their opinions

and weighting their opinions by the trust he places in them.
The system enables a peer i to extend from his acquaintances
to his friends’ friends and beyond. At each circle of friends,
the local trust scores they give are weighted by the trust scores
their intermediate friends put on them. The Eigentrust system
has modeled this transitive process elegantly using matrix
calculation.

Of course, this is not a global reputation score in the proper
sense of the word, but the more the circles of friends are large,
the more accurate and stable the score obtained.

The very reason for the existence of this system is the
inability to aggregate local scores directly into a global score
and the absence of the necessary infrastructure for that. Oth-
erwise, it would be more than enough to take tj=

∑
k tkckj if

the system allowed it. Therefore, the reputation aggregation
function of such a system reduces to a weighted average, and
even the transitive aspect will disappear if the system supports
global aggregation. Also, the approach for SMC remains the
same in this case.

We present a summary of the Flow scenario in table 5.

TABLE 5. Flow scenario summary.

E. OUR APPROACH FOR REPUTATION AGGREGATION
Let us assume in the beginning that a party a has formed
an opinion on the behavior and quality of action of a target
party t .

We state that whatever the approach adopted for the repu-
tation aggregation and the type used to represent the rating
of t by party a, we can always convert it to a numerical
form like shown above and consequently encode it as a
string of bits with adequate precision, e.g., 32bits or 64bits.
This form lends itself easily to operations like summation,
averaging, weighting, normalization, and other operations.
At this end, we choose p big enough to encode all possible
ratings and a wide range of shares values as elements of Zp
(take p>232, p>264).
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Let ρ
(a)
t ∈Zp denote party’s a rating on party t . A party a

is said to be a source party for party t if a has feedback on t .
The set of all source parties of a party t is given as St .
Definition 1.1 (Reputation): . Let St={a1...an} be the set

of source parties t . Let Rep denote the reputation function,
such that Rep:(Zp)n→R. The reputation of party t is given
as:

Rt=Rep(ρ
(a1)
t , . . . , ρ

(an)
t ).

VI. THE REPUTATION PROTOCOL
A. PROTOCOL OUTLINE
The protocol assumes that after the target party performs
some action, the interacting parties will get a piece of data
denoted Trace as proof of interaction. They can join the
list of source parties and compute reputation jointly based
on their ratings based on the quality of that action. After-
ward, they submit the resulting score to the blockchain for
integration.

If a party is new or has a bad reputation, it cannot join
the list of source parties and thus cannot rate other par-
ties. Of course, it can continually improve its reputation by
behaving well and receiving positive feedback from its peers.
However, only parties with reputation scores exceeding a
predefined threshold Tr can rate others.

The protocol comprises three phases presented below; see
also, Fig. 4:
1) Joining the list of source parties, and subgroups for-

mation: It is mostly an on-chain phase where the list
of source parties is updated in the target party’s state
account;
a) Interacting parties join the list of source parties;
b) Joining parties are placed in a queue and then

assigned to subgroups of k where the first coming
is the first served;

c) Each party gets a corresponding subgroup U of k
parties from the list;

2) Running multiparty computation on private ratings:
It is an off-chain phase where each source party
in U :
a) generates shares for its private rating;
b) sends shares to peers and receives theirs;
c) evaluates the reputation function on its shares,

sign, and commits to the result;
d) All parties broadcast their signed results, open

them, and check the sum of their MACs;
e) lastly, they submit the signed results to the

blockchain as a joint transaction;
3) Reputation update on the blockchain: performed by

miners. The miner that gained the right to form the cur-
rent block according to the PoS performs the following
actions:
a) checks source parties membership;
b) verifies results authenticity;
c) Updates reputation data.

B. PROTOCOL SPECIFICATION
1) PHASE 1: JOIN THE TARGET SOURCE PARTIES’ LIST

Protocol 7: Phase 1:
1) Every interacting party issues a JOIN transaction to be

added to the list of t’s source parties σ
(t)
l [ ] in the form

<Nonce, t, Join,Trace, Signature>;
2) The miner adds the address of a party requesting to join

the list of t’s source parties to σ
(t)
l [ ] if:

a) the Trace it sent is valid and not used before in
previously recorded JOIN transactions;

b) and its reputation score is >Tr ;
3) Each party gets an assigned subgroup of source parties

according to its order in the queue.

2) PHASE 2: SECURE MULTIPARTY COMPUTATION
Any source party can initiate this phase by requesting inter-
action with other parties in U or issuing the transaction at the
end. Let us refer to that party by a1 for simplicity and to the
set of selected parties by U={a1, . . . , ak}.

Protocol 8: Phase 2:
1) a1 sends requests to selected participants in U to start

SMC computation;
2) All parties call [[·]] · Initialize() (see protocol 5);
3) Every party ai calls [[·]] · Input() on its private input

ρ
(ai)
t so that each party aj gets a share of it [[ρ

(ai)
t ]](j)=

((ρ(ai)
t )(j),m(ρ(ai)

t )(j), κ (j));
4) Each ai evaluates [[y]](i)=Rep([[ρ

(a1)
t ]](i), . . . , [[ρ(ak )

t ]](i))
5) All ai broadcast [[y]](i) and compute y by calling [[·]] ·

Open();
6) Call 5MACCheck on y,m(y)(i), κ (i);
7) If the 5MACCheck was successful, then a1 issues a

RATE transaction in the form

TxU=<(σ (a1)
n , . . . , σ (ak )

n ), t,Rate, ([[y]](1), . . . , [[y]](k)),

(Sig1, . . . , Sigk )>

where Sigi=Sign([[y]](i), ski) for 1≤i≤k .

3) PHASE 3: REPUTATION AGGREGATION ON-CHAIN
(PERFORMED BY MINERS)

Protocol 9: Phase 3: The miner that gained the right to
form the current block performs the following actions:

1) Verify the Transaction:
a) Verifies the transaction signatures are valid;
b) Recovers signers’ addresses from their signa-

tures;
c) Checks the source parties are in σ

(t)
l [ ];

d) Verify that the nonces in the transaction match the
ones in each party account.

2) Include the transaction in the current mined block;
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FIGURE 4. System overview diagram.

3) Reconstructs the reputation score from the received
resultsRt=

∑
aj∈U [[y]]

(j);
4) Update the reputation score and nonces in the account

state of t and {ai}1≤i≤k respectively:
a) σ

(ai)
n =σ

(ai)
n + 1 for all ai∈U ;

b) σ
(t)
r =

σ
(t)
r × σ

(t)
w +Rt × k

σ
(t)
w + k

;

c) σ
(t)
w =σ

(t)
w + k .

5) Remove the participating parties from the source par-
ties list σ (t)

l [ ].

VII. SECURITY ANALYSIS
A. CORRECTNESS
To demonstrate the protocol’s correctness, we check that it
precisely computes the desired reputation aggregation func-
tion Rep. More specifically, we examine the function equiva-
lent arithmetic circuit gate by gate. Also, because addition and
multiplication form a complete basis for arithmetic circuits,
checking that their respective gates compute the proper values
is sufficient.

For simplicity reason, we distinguish between operations
that involve two, one, or no private inputs, which leads us to
four cases:
• Addition with one private input: Given a private inputs
[[a]] and a public one δ, the sum was defined as:

[[a]]+ δ = (a(1) + δ, a(2), . . . , a(k);m(a)(1) + δ · κ (1)

, . . . , m(a)(k) + δ · κ (k)
; κ (1), . . . , κ (k))

We verify that,

a(1) + δ + a(2) + . . .+ a(k) =
n∑
i=1

a(i) + δ

= a+ δ

and

k∑
i=1

m(a)(i) + δ · κ (i)
=

k∑
i=1

m(a)(i) +
k∑
i=1

δ · κ (i)

= m(a)+ δ · κ

= κ · (a+ δ)

= m(a+ δ)

thus [[a]]+ δ=[[a+ δ]];
• Addition of two private inputs: Given two private inputs
[[a]] and [[b]] the protocol defines the sum as follows:

[[a]]+ [[b]] = (a(1) + b(1), . . . , a(k) + b(k); m(a)(1)

+m(b)(1), . . . , m(a)(k)

+m(b)(k); κ (1), . . . , κ (k)).

we verify that,

k∑
i=1

a(i) + b(i) =
k∑
i=1

a(i) +
k∑
i=1

b(i)

= a+ b

and

k∑
i=1

m(a)(i) + m(b)(i) =
k∑
i=1

m(a)(i) +
k∑
i=1

m(b)(i)

= m(a)+ m(b)

= κ · a+ κ · b

= κ · (a+ b)

= m(a+ b)

thus [[a+ b]]=[[a]]+ [[b]].

9382 VOLUME 11, 2023



K. Mrabet et al.: Generalized Secure and Dynamic Decentralized Reputation System With a Dishonest Majority

• Multiplication with one private input: Given a private
input [[a]] and a public one λ, their product is defined by

λ · [[a]] = (λ · a(1), . . . , λ · a(k); λ · m(a)(1), . . . ,

λ · m(a)(k); κ (1), . . . , κ (k))

We verify that,

λ · a(1) + . . .+ λ · a(k) = λ ·

n∑
i=1

a(i)

= λ · a

and

λ · m(a)(1) + . . .+ λ · m(a)(k) = λ ·

n∑
i=1

m(a)(i)

=λ · m(a)

= m(λ · a)

Thus λ · [[a]]=[[λa]].
• Multiplication of two private inputs: To multiply two
private inputs [[x]] and [[y]], given a triple ([[a]], [[b]], [[c]])
from the pre-processing phase, the product is defined by

[[x]] · [[y]]=[[c]]+ α[[b]]+ β[[a]]+ α · β.

where α=[[x]]− [[a]] and β=[[y]]− [[b]].
It is clear from the three operations verified above that,

α=[[x]]− [[a]]=[[x − a]]

and

β=[[y]]− [[b]]=[[y− b]

thus,

[[x]] · [[y]] = [[c]]+ α[[b]]+ β[[a]]+ α · β

= [[c]]+ [[α · b]]+ [[β · a]]+ α · β

= [[c+ α · b+ β · a+ α · β]]
= [[a · b+ (x − a) · b+ β · a+ α · β]]
= [[x · b+ β · a+ α · β]]
= [[x · b+ (y− b) · a+ (x − a) · (y− b)]]

= [[x · b+ x · (y− b)]]

= x · y.

B. PRIVACY
Suppose we have an adversary A, a coalition of dishonest
parties A={ai1 , . . . , aim} from the group of participating in
the protocol {a1, . . . , ak} and A is seeking to uncover the
private input xi of the honest party ai. During the execution
of the protocol till the end, every party aj∈A gets from ai the
following information: {x(j)i ,C (j)

i , y(i),m(y)(i) − κ (i)y} where
C (j)
i =xi · Encpkj (κ

(j)) − Encpkj (e
(j)
i ) and y=Rep(x1, . . . , xk ).

A question arises at this level. What can aj∈A learn from
this information either individually or as a coalition? It can of
course decrypt C (j)

i to get m(xi)(j)=xi · κ (j)
− e(j)i . At this stage

it is useful to highlight that x(j)i and e(j)i are uniform random

numbers from F that ai has generated independently from xi.
In addition e(j)i are unknown but to {aj}j̸=i.

Therefore we can say that:
It is not feasible to reconstruct xi from less than the k shares
{x(j)i }1≤j≤k which follows from the fact that the secret sharing
scheme is an k out of k scheme.
The adversary cannot recover xi fromm(xi)(j)=xi ·κ (j)

−e(j)i
despite the fact that he knows κ (j) because e(j)i is unknown to
him and it is blinding xi ·κ (j). The probability for him to make
the right guess is small ≃1/p.
There is a case where only one party of the k par-

ties is honest. Let us say it is a1. In this case the adver-
sary A={a2, . . . , ak} can deduce x1 just from his known
ratings {x2, . . . , xk} and the outcome of the computation
Rep(x1, . . . , xk ).

Therefore we can state:
Theorem 2: The Protocol grants feedback privacy in the

presence of at least two honest parties.

C. AUTHORIZABILITY
We enforce authorizability by requiring a valid receipt from
the rater, proving that an interaction occurred between him
and the ratee. We denoted it Trace. As mentioned above,
it contains interaction-specific data, a timestamp, and signa-
tures. The rater includes Trace in the JOIN transaction before
he can join the list of source parties. As a result, a party
that has not interacted with t cannot join its list or rate it.
Furthermore, it cannot use the same receipt multiple times
because it is registered on the blockchain the first time it
does. An advantage of the blockchain property of preventing
double-spending.

D. VERIFIABILITY
Verifiability is also a crucial property in a blockchain.
It allows any user to get the full copy and follow from the
genesis block to the last one, verifying that every transaction
is executed correctly and reflected in accounts. Another fact
is that each new block is invalid unless the network majority
(consensus) verifies and accepts it. This possibility remains
available, particularly for ratees and newcomers to the
network.

E. AVAILIBILITY
The blockchain relies on a P2P network. If a peer fails, it does
not affect others as the data is duplicated over the system, and
all validators have complete copies of it. On the other hand,
regular nodes maintain short copies comprising headers and
the state that contains the comprehensive list of accounts and
reputation scores.

F. CONSISTENCY
Every new block validatormust broadcast it to the community
for verification and acceptance. If the majority accepts it, then
it is considered valid. As a result, every party has the latest
copy of transactions and reputation information, observing a
propagation time.
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G. CONSERVATION
The property of conservation in the system is obtained
straightforwardly from a blockchain characteristic. It relies
on the property of immutability and the fact that all transac-
tions on valid blocks cannot be altered or deleted, including
rating transactions.

H. WHICH PARAMETER k FOR THE SYSTEM
Running secure multiparty computation simultaneously with
all the n source parties is demanding, especially if n is a large
number. Even more, in dynamic networks, where parties can
enter and leave for diverse reasons. Besides, the task requires
O(n2) message, which we reduce significantly by dividing
the source parties into subgroups that do not exceed a fixed
number of parties k with k a fixed parameter overall in the
system.

From the discussion above in theorem 2, we know that
privacy holds if there are at least two honest parties among the
k parties in each subgroup. The probability to have, at least
two honest parties participating in the subgroup is equal to
1 − [(n − b)

( b
k−1

)
+

(b
k

)
]/

(n
k

)
if the parties are selected in

a uniform random way. k is the number of participating
parties, n is the total number of source parties, and b is the
total number of corrupt parties. Let Pr(k) be this probability
according to the value of k:

Pr(k)=1−
(n− b)

( b
k−1

)
+

(b
k

)(n
k

)
In the following, we take the number of corrupt parties b as

a percentage of the total number of source parties n. Figure 5
shows how Pr(k) behaves according to k values with b set
to different percentages of n. In table 6 we vary b from
10% to 70% of the total number of source parties n. We set
some target values for Pr(k) to achieve and determine the
thresholds of k that ensure the probabilityPr(k) is higher than
the desired values:

FIGURE 5. The probability Pr (k) for different percentages of corrupt
parties according to k .

VIII. PERFORMANCE EVALUATION
This section evaluates our system to validate its effectiveness
in two ways. The first way estimates the system complexity

TABLE 6. Minimal values of k for desired Pr (k) according to b.

component by component and provides its overall complexity
(see Table 7).

The second way simulates the protocol and measures its
performance. Several simulations were conducted to assess
the system in different scenarios by varying parameters to
demonstrate its strengths and weaknesses. All simulations
were executed on an Intel(R) Core(TM) i7-8750H CPU lap-
top and repeated over 100 sessions. The results in this paper
retain the average of the 100 sessions.

To simulate the blockchain, we used Ganache [82],
an Ethereum simulator that enables application development
on Ethereum (called Smart Contracts). Ganache includes
all remote procedure call (RPC) functions and features and
can be used programmatically via Node.js [83]. We imple-
mented our on-chain logic using two Smart Contracts
written in Solidity language [84], an object-oriented pro-
gramming language used on various blockchain platforms,
notably Ethereum. Then, we deployed the Smart Contracts
to Ganache via Web3.js, the Ethereum JavaScript API [85],
which enables interaction with Ethereum nodes using inter-
process communication (IPC).

For the off-chain phase written in JavaScript, we used
Web3.Utils.randomHex for generating randomness, ECDSA
for authentication, and ECIES for encryption. We highlight
that the JavaScript code does not rely on HTTP or Web-
sockets. It is instead run on the Node.js runtime environment
as a stand-alone application. The parameters and settings
information for our simulation are shown in Table 8.

Firstly, by simulating the system, we verify that the pro-
duced reputation scores match the ratings’ weighted average.
This way, we demonstrate that the protocol is sound and
outputs accurate results. Then, we study the effect of varying
parameters like subgroups cardinality k , shares bitlength, and
Paillier modulo on performance.
Experiment 1: We know from subsection VII-H that the

minimal value of parameter k required to maintain targeted
privacy is proportional to the ratio of corrupt parties in
the system. Hence, to study the impact of increasing mali-
cious parties’ ratio, it is sufficient to raise k and moni-
tor the execution time. The experiment’s results illustrated
in Fig. 6, 7, 8, and 9 show a running time quasi-linear in k .
Experiment 2: The second parameter studied was the

shares bitlength, which depends solely on the finite field Fp
prime number p. The shares are primarily generated randomly
in Fp, and they have the same bitlength as the parameter p
regardless of the rating domain. The experiment consists of
changing shares’ bitlength by changing p accordingly and
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TABLE 7. System complexity estimation.

TABLE 8. Simulation parameters.

FIGURE 6. 5[[.]].Input cost/user according to shares bit length and k .

FIGURE 7. [[.]].Compute cost/user according to shares bit length and k .

checking any effect on the system performance/ execution
time. Namely, we set p’s bitlength to 64, 128, and 256 bits,

TABLE 9. Computation cost/user according to Paillier modulo bit length.

FIGURE 8. 5[[.]].Input cost/user according to Paillier key length and k .

FIGURE 9. Phase 3: Rate transaction cost for the miner according to k .

as shown in Figures 6 and 7. The results reveal a minimal
effect on performance.
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Experiment 3: Similarly, we look into the security of
the underlying SHE scheme and its impact on performance.
Specifically, we target different levels of security by setting
the Paillier modulo to 2048, 3072, and 4096 bits. Then we
evaluate the differences in performance between the three val-
ues. The results specific to the affected phases are illustrated
in Figure 8 and Table 9. They show how consequent the
impact of changing the security parameter on performance.
Although, the results remain reasonable even with 4096-bit
security (e.g., under 2.5s for k=25).

IX. CONCLUSION
So far, we have realized a new dynamic, decentralized,
and privacy-preserving reputation system. The proposed
approach uses blockchain to store and update reputation
information in a distributed manner and SMC to ensure feed-
back privacy. We got a system with better accessibility that
preserves reputation information from loss and delivers a
complete version of it. Moreover, it is secure in the malicious
adversarial model, even with a dishonest majority, which
is strong security. Using such techniques, we got a reliable
system that is not affected by parties leaving the network.

In future works, we would like to address the issue of
privacy alongside other challenges that reputation systems
encounter. These challenges include self-promotion, slander-
ing, whitewashing, and oscillation. To this end, we consider
exploring advanced cryptographic tools such as data obfusca-
tion, functional encryption, and homomorphic secret-sharing.

Another field of interest for prospective works is decentral-
ized reputation systems for location-sensitive networks such
as MANETs and VANETs. In such networks, feedback is
relayed by immediate neighbors that are present in the same
area as the sender party, and naturally, they know its location.
The situation being a clear violation of the sender’s privacy,
the challenge is to create a protocol that allows parties to
provide feedback while remaining anonymous.

Besides, for decentralized systems relying on the
blockchain, the issue of blockchain scalability requires spe-
cial attention. Indeed, blockchain has limitations on the
number of processed transactions, and we need to apply
additional techniques such as Sharding or Nested Blockchain
to overcome the problem and produce a compelling solution.

APPENDIX
PRE-PROCESSING PHASE

Protocol 10: 5Triple: Protocol for random triple genera-
tion

• Multiply:

1) Each party Pi samples a(i), b(i), b̂(i)
$
←−F.

2) Every unordered pair (Pi, Pj) executes the
following:

a) Pi uses 5NIZKPoK to send Pj the encryption
Encpki (a

(i)).

b) Pj computesC (ij)
=b(j). Encpki (a

(i))−Encpki (e
(ij))

for random e(ij)
$
←−F and sends it to Pi.

c) Pi decrypts d(ij)=Decskij (C
(ij)).

d) Repeat the last two steps with b̂(i) to get ê(ij) and
d̂(ij).

3) Each party Pi computes c(i)=a(i). b(i) +
∑
j̸=i

(e(ij) +

d(ij)) and ĉ(i) similarly.
• Authenticate:

1) Each Party Pi calls 5[[·]].lnput on (a(i), b(i), b̂(i),
c(i), ĉ(i)) so that every party Pj gets its MAC shares
m(a(i))(j), m(b(i))(j), m(b̂(i))(j), m(c(i))(j), m(ĉ(i))(j)

respectively.
2) Each party Pi sums its MAC shares of elements

in {a(j)}j=1...n to get a MAC share in a: m(a)(i)=∑n
j=1m(a

(j))(i). Similarly with [[b]], [[b̂]], [[c]], and
[[ĉ]].

• Sacrifice: The parties do the following:
1) Call r←5Rand.

2) Set and store [[ρ]]=r · [[b]]− [[b̂]].
3) Open ρ←5[[·]].Open ([[ρ]]).
4) Call 5[[·]].Open(·) on [[τ ]]←r · [[c]]− [[ĉ]]−ρ · [[a]].

If τ ̸=0 then abort; else continue.
5) Call5[[·]].Check an all opened values. If any check

fails, then abort; otherwise, continue the protocol.
• Output: ([[a]], [[b]], [[c]]) as a vector of valid triples.
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