
Received 30 December 2022, accepted 20 January 2023, date of publication 23 January 2023, date of current version 30 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3239403

NFTs for Open-Source and Commercial Software
Licensing and Royalties
MOHAMMAD MADINE 1, KHALED SALAH 1, (Senior Member, IEEE), RAJA JAYARAMAN 2,
AND JAMAL ZEMERLY 1, (Senior Member, IEEE)
1Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
2Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Corresponding author: Raja Jayaraman (raja.jayaraman@ku.ac.ae)

This work was supported by the Khalifa University of Science and Technology under Award CIRA-2019-001.

ABSTRACT Software licenses are legal agreements of sale and usage among software developers and
clients. Such legal agreements are crucial to effectively manage ownership and protect the rights of involved
parties. Today’s software licensingmechanisms are mostly centralized and do not address the ever-increasing
issues and complexities of modern software that may include multiple licenses, open-source distribution,
rewarding other contributors of external software libraries, and utilizing royalty payments for monetization.
As a result, developers have lost confidence in the existing software licensing models, and many software
projects are failing due to lack of funding and royalty payments. This paper addresses such issues and
complexities by proposing a novel decentralized software licensing system based on Non-Fungible Tokens
(NFTs) and blockchain. The proposed licensing system is applicable to both commercial and open-source
software. We use NFTs as digital tokens that encapsulate software code and their artifacts by minting them as
unique valuable assets that allow developers to store and manage them on a blockchain ledger. With NFTs,
developers can register and license their code, monetize it on NFT marketplaces, and earn royalties from
other software projects that use their code. We present system architecture, relevant sequence diagrams,
and develop aggregation algorithms for Ethereum smart contracts with ERC-1155 NFTs. Furthermore,
we perform functional validation of our system and analyze the cost of its adoption. We also analyze the
security of the solution and show how its applicability can be generalized and extended. We have made our
smart contract code and related testing scripts publicly available on GitHub.

INDEX TERMS Software licensing, software royalties, open-source software, NFTs, blockchain, Ethereum,
smart contracts.

I. INTRODUCTION
Computer software of all types, licensing models, and price
ranges, is ubiquitous across all countries, industries, and
devices. By default, copyright protection laws restrict access
to using any software [1]. Consequently, developers distribute
their software under a licensing model that defines the per-
missible and restricted uses based on factors such as the
territory and time, as well as the type of use, such as com-
mercial use, modification, and redistribution [2]. Licenses fall
into two categories, proprietary and open-source. Proprietary
licensing allows developers to distribute paid versions of

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inácio .

closed-source software commercially, making revenue gen-
eration straightforward [3], [4]. Open-source licensing pre-
serves what is known as the four essential freedoms that aim
to make the software more accessible [2], [5]. Developers
choose the licensing strategy for their software based onmany
factors, including the extent of contribution, competition in
the market, cost of distribution, and ability to leverage rev-
enue from integration and support services [6], [7], [8].

Even though developers are increasingly more aware of
the importance of effectively licensing their software, sub-
stantial limitations thwart the adoption and confidence in
licensing [1]. First, software licensing can become overcom-
plicated when it comes to multiple licenses. Multi-licensing
is beneficial to appease conflicting dependencies and satisfy

8734 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0556-2419
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2749-2688
https://orcid.org/0000-0003-1845-5946
https://orcid.org/0000-0001-8221-0666


M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

FIGURE 1. System overview of the proposed blockchain-based solution for software licensing and royalties.

a wide range of users in a way that balances profitability and
accessible software. Therefore, many developers, especially
in dependency-reliant languages such as JavaScript, employ
a multi-license model for their software and yet face license
incompatibility issues [9], [10]. Second, most open-source
projects are certain to fail, wasting contributions that oth-
erwise would flourish the software development. In the last
decade, open-source software has gotten more popular than
proprietary software, pushing community-driven contribu-
tions for high-quality monopoly-free software more than ever
before [2], [11]. Despite that, loss of interest and lack of
funding resources are the main reasons developers pull the
plug on more than 50 percent of open-source projects [12].

Blockchain is a technology that enables decentralized
ledgers that record transactions on peer-to-peer nodes, all
governed by a consensus mechanism. Cryptographic and
staking mechanisms ensure that no single entity can feasibly
alter any transaction without altering all subsequent records.
These features allow for building secure, transparent, and
resilient systems without the need for a central authority [13].
This technology can establish the groundwork for solutions
that address licensing issues. Such solutions also take advan-
tage of the more recent advancements in blockchain, namely
smart contracts and Non-Fungible Tokens (NFTs). Smart
contracts are externally-triggered methods that execute on
decentralized validator nodes. Ethereum formally introduced
the smart contracts concept into blockchain, alongwith Solid-
ity, which became the most popular language for writing
smart contracts [14], [15]. NFTs are unique assets managed
by special standardized smart contracts called ERC-721 and
ERC-1155. NFTs in an ERC-721 smart contract accommo-
date one type of asset per deployment, whereas those in an
ERC-1155 smart contract can have multiple types of assets
within the same deployment. In addition, ERC-1155 enables

batch transfer of NFTs and offers a more flexible alternative
to ERC-721 [16].

Blockchain is only suitable for a narrow set of applications
in its isolated form. Hence, it is common to integrate it with
supplementary technologies such as decentralized storage,
incentivized external processing nodes, and reputation sys-
tems. Decentralized storage alleviates the limited space for
blockchain transactions. InterPlanetary File System (IPFS)
is one of the most popular decentralized storage solutions,
providing means to upload and publish content-addressable
assets on a peer-to-peer network [17], [18]. External process-
ing nodes extend the functionality of smart contracts with
options to perform computationally-expensive tasks, retrieve
information from external sources and APIs, and commit
to timer actions. Since the external processes do not run
on Ethereum Virtual Machines (EVMs), they must receive
additional incentives from external parties such as the end-
user [19], [20]. A reputation system is a technique to keep
track of the behavior of entities in the blockchain network.
For example, the most common reputation system perfor-
mance measurement lets users rate each other after finalizing
a transaction [21].

Blockchain, along with other decentralization
technologies, has an outstanding potential to address software
licensing concerns. In this paper, we propose an NFT-based
software licensing solution with support for multi-licenses
to open a streamlined and profitable path for the developers
of open-source and proprietary software. Figure 1 highlights
a high-level overview of our proposed NFT-based solution.
Our contributions in this paper are summarized as follows:
• We investigate and propose a fully decentralized solu-

tion for managing software licenses and royalties using
blockchain and ERC-1155 NFTs, allowing developers to list
their software under multiple licensing models.

VOLUME 11, 2023 8735



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

• We design, illustrate and explain our proposal using
system architecture and sequence diagrams that cover the key
scenarios for how developers and clients may interact with
each other, including open-source and proprietary software
use cases.
• We present a solution that incorporates reputation, pay-

ments, and royalties into NFTs to increase confidence in
software projects, provide means to fund them with perpetual
and subscription licenses, and pay developers of low-level
dependencies automatically and transparently.
•We develop the key functionalities of our proposal using

Solidity smart contracts and deploy them on Ethereum testing
networks. We verify the correctness of the code and use it for
cost analysis. Our code is publicly available on GitHub .1

The remainder of this paper consists of six sections.
Section II investigates the state-of-the-art research concerned
with software licensing. In Section III we propose our NFT-
based approach, whereas in Section IV we demonstrate the
implementation details of our solution. Later in Section V,
we deploy our smart contracts for evaluation and analysis,
followed by discussing our findings in Section VI. Finally,
Section VII wraps up our proposed novel contributions and
results.

II. RELATED WORK
In this section, we delve into the previous literature that
discusses and proposes solutions for the software license con-
cerns, namely the multi-license management, open-source
funding, and distribution of royalties. To our knowledge,
no prior research has targeted software licensing using
blockchain and NFTs. Therefore, we explore the literature
pertaining to each concern independently.

A. MULTI-LICENSE MANAGEMENT
Moraes et al. [9] studied common incompatibilities among
open-source licenses, compared file-level and project-level
license options, and recommended that developers use a
file-level multi-licensing model for their code to overcome
compatibility issues and offer less restrictive access options.
As part of the license management and enforcement, other
research proposed using the Markov chain to flag abnormal
user behavior, binary analysis tools to detect code cloning,
and a Trusted Execution Environment (TEE) to ensure com-
pliance with license agreements [22], [23], [24]. Regarding
leveraging blockchain, Stepanova and Erinš [3] suggested
using the technology to maintain the history of the software
licenses and those who hold the legitimate license, whereas
Chiu et al. [25] proposed using Ethereum and IPFS for soft-
ware validation and integrity.

B. OPEN-SOURCE FUNDING
Gaetano [26] studied the potential profitability of open-
source software developers and concluded that contributions

1https://github.com/AnonGitter20221117/
nft-for-software-licensing

to open-source are profitable, especially for those who pro-
vide additional hardware products and support.

Multiple platforms for funding open-source projects have
been established over the past decade. The most notable
and prevalent among these is Liberapay [27], which relies
on indirect and recurring donation-based transactions among
the contributors and developers. The contributors donate
to the platform, and the platform periodically uses its
open-source algorithm to distribute the funds among its
registered accounts of developers and open-source projects.
GitHub Sponsors is a more recent commercial approach
to the problem, allowing sponsors to make recurring or
single-time contributions to open-source projects hosted on
GitHub [28]. Other funding platforms include Open Collec-
tive and Tidelift. One major drawback of the existing central-
ized solutions is their reliance on third-party payment proces-
sors such as Stripe and PayPal, undermining the confidence
in delivering the contributions in part or whole [27], [28].

Gitcoin is a decentralized and blockchain-based funding
platform for software projects and bug bounties. Gitcoin’s
Grants feature focused on crowdfunding open-source soft-
ware, providing means to support developers with direct
one-time or quarterly payments. The payments are collected
from a matching pool distributed among developers using the
quadratic funding algorithm [29], [30].

C. DISTRIBUTION OF ROYALTIES
Software distribution often takes the form of a sale or a
licensing agreement; however, considering that software is
also an intellectual property, it is valid to think about how the
developers can collect royalties for providing their original
binaries and source code. Furthermore, because of the nature
of software development, it is common for developers to
incorporate others’ software as libraries and dependencies.
Therefore, it is crucial to bear in mind to fairly distribute the
royalties among all the contributing pieces of codes [31].

The rise of NFTs has provided an attractive solution for
protecting intellectual property rights [16], [32]. Researchers
have also suggested leveraging NFTs to let creators earn
royalties on each successful sale, or resale of their intellectual
property [33], [34], [35].

III. NFT-BASED SOLUTION
Herein, we delineate the elements and architecture our pro-
posed solution comprises. In addition, we describe the mech-
anism under which the developers license their software,
clients obtain the software, and smart contracts distribute
payments among contributors.

A. COMPONENTS AND ENTITIES
The elements in the proposed system are of two types: 1)
Decentralized network components encompassing the smart
contracts and storage, and 2) Entities that interact with the
components. The foundational element in our solution is

8736 VOLUME 11, 2023



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

blockchain, as it is the primary destination all other elements
directly or indirectly integrate with.

1) BLOCKCHAIN AND SMART CONTRACTS
Blockchain is the decentralization station in our solution.
We leverage this technology to store data and transactions
related to the software distribution immutably and execute
lightweight processes in a trusted manner. We cluster the data
and processes into three Ethereum-based smart contracts:
ERC-1155, marketplace, and aggregator.

1) ERC-1155: This smart contract implements the
ERC-1155 multi-token standard and gets deployed by
the developer once per software. The smart contract
maintains all the software distribution options as dif-
ferent types of tokens and keeps track of the clients
who obtained each distribution. From the clients’ per-
spectives, they can rate the software distributions they
obtain.

2) Marketplace: This smart contract manages
software listings and tracks their hierarchy of depen-
dencies. In the marketplace, developers publish their
software and specify properties such as the price,
clients purchase a listed software, and contributors
withdraw their share of profits from the client’s pay-
ment.
3) Aggregator: This smart contract controls the

requests to and responses from off-chain processing
nodes. The smart contract announces requests to its
registered nodes and efficiently aggregates the nodes’
responses into a single numerical result. The requests
are initiated first by other smart contracts that wish to
execute infeasible processes on-chain.

2) DECENTRALIZED AND CENTRALIZED STORAGE
The employment of storage solutions in our design is twofold:
1) Store the ERC-1155’s metadata files, and 2) Store the
assets referenced in the metadata, such as the distribution
terms and conditions, the license text, the binaries, and the
open-source code.

The solution requires developers to maintain the metadata
files on a public content-addressable decentralized storage
network, such as IPFS, and to reference the files using a
name-addressable service, such as IPNS or DNSLink. As for
the assets, the developers may upload them to any storage
solution they consider the most suitable, such as a private
cloud solution or a public repository. However, it is in the
interest of the developers to upload the assets on a solution of
high quality-of-service. Otherwise, a negative experience by
the clients will reflect on the software rating.

3) ENTITIES AND DECENTRALIZED APPLICATIONS
The active entities in our solution are the developer, the client,
and the processors. All the entities eventually interact with
the smart contracts and therefore require a Decentralized
Application (DApp) to execute such interactions.

1)Developer: Developers are the authors of software
codes. They upload and maintain their software on

storage solutions, deploy ERC-1155 smart contracts,
mint various software distributions, publish their soft-
ware on the marketplace, and optionally provide
off-chain activation services to the clients.

2) Client: Clients are users and buyers of software.
They request and pay for the software listed on the
marketplace, own the software distribution NFT on the
ERC-1155 smart contract, and interact with the storage
solution to retrieve the software.

3) Processor: Processors are general-purpose com-
putation nodes. They register on the aggregator smart
contract, listen to and participate in requests, execute
the operation, and provide a response back to the
contract.

Paid entities, i.e., the developer and the processor, maintain
a reputation score to reflect their performance. Clients can
rate each developer’s software distribution once per update.
On the other hand, clients and developers can rate each
processor once per interaction. The processor’s score also
behaves as a requirement for the requests since they may
impose a minimum score for any processor willing to par-
ticipate. For this solution, we opt to use a lightweight rep-
utation system, diverging from the literature in which there
exists more sophisticated general-purpose and NFTs-specific
solutions [36], [37].

B. SOFTWARE PUBLISHING AND PURCHASING
MECHANISMS
We divide the typical sequence of interactions into two sets:
1) Software publishing and 2) Software purchasing. For each
of the two sets, we visualize the interactions in a sequence
diagram and describe the steps in detail.

1) SOFTWARE PUBLISHING INTERACTIONS
For this scenario of publishing software, we showcase two
developers: The first of which publishes an open-source code
(software A) on the IPFS network, and the second publishes a
commercial executable (software B) on private cloud storage.
The executable has a dependency on the open-source code.
We assume both developers have Ethereum addresses and
have established connections with the system’s networks.
Figure 2 displays the sequence of interactions among the
entities and the components.
Phase 1 (Upload Software A (Open-Source)):

1.1 - 1.2) Developer A adds the open-source code to
the IPFS storage, which returns the Content Identifier
(CID) of the asset. The developer then prepares the
metadata file and publishes it to the IPNS network, which
returns the path of the file.
1.3 - 1.4)Developer A deploys a new ERC-1155 smart

contract A on the public Ethereum network. After the
EVMs validate the contract, they send its address to the
developer.
1.5) Developer A adds a distribution model to ERC-

1155 smart contract A, declaring that softwareA is open-
source, and payments on using it are royalty-based.

VOLUME 11, 2023 8737



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

FIGURE 2. Sequence diagram showing interactions for uploading and minting software.

FIGURE 3. Sequence diagram showing interactions for obtaining software and distributing royalties.

Phase 2 (Estimate Weight of Software A):
2.1) Developer A lists the distribution model of software
A on Marketplace smart contract.
2.2)Marketplace smart contract requests estimating the
weight of software A from Aggregator smart contract.

2.3 - 2.4) Aggregator smart contract broadcasts the
weight request to all Processors. The Processors fetch
the software from the IPFS storage and estimate the
weight based on multiple factors, such as project size
(number of lines of code), and GitHub stars and forks.

8738 VOLUME 11, 2023



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

Then, they return their estimates to Aggregator smart
contract.
2.5) Aggregator smart contract filters out Processors of
low reputation score, updates the reputation scores of
accepted Processors, computes the weight, and returns
the weight toMarketplace smart contract.

Phase 3 (Upload Software B (Commercial)):
3.1) Developer B adds the executable and metadata file
to the private Cloud storage.
3.2 - 3.3) Developer B deploys a new ERC-1155 smart
contract B on the public Ethereum network, which
returns the contract address.
3.4) Developer B adds a distribution model to ERC-
1155 smart contract B, declaring that software B is
proprietary, and payments on using it are license-based.
3.5) Developer B lists the distribution model of software
B on Marketplace smart contract, and adds software A
as a direct dependency. Steps 2.2 to 2.5 repeat to estimate
the weight of software B.

2) SOFTWARE PURCHASING INTERACTIONS
This scenario builds up on the previous one, as it illustrates
a client purchasing software B, which results in both devel-
opers splitting the payment, considering that software B is
dependent on software A. Figure 3 depicts the interactions in
the scenario.
Phase 1 (Obtain and Pay for Software B):

1.1) Client purchases software B through Marketplace
smart contract.
1.2)Marketplace smart contract calculates the payment
share of software A as a dependency for software B.
1.3 - 1.4) Marketplace smart contract distributes and
sends the payments to ERC-1155 smart contract A and
ERC-1155 smart contract B.
1.5) ERC-1155 smart contract Bmints a new NFT of the
purchased distribution for Client.
1.6) ERC-1155 smart contract B transfers the received
payment share to Developer B.
1.7) ERC-1155 smart contract A transfers the received
payment share to Developer A.

Phase 2 (Access Software):
2.1 - 2.2) Client communicates with the Cloud storage
to request software B executable and other necessary
activation files. In return, theCloud storage validates the
request and supplies the files to Client.
2.3) Client submits a rating of software B distribution to
ERC-1155 smart contract B.
2.4) ERC-1155 smart contract B updates the score of the
distribution by aggregating the previous ratings and the
newly received ones.

IV. IMPLEMENTATION
Herein, we discuss the critical algorithms we use to imple-
ment the smart contract methods. In Figure 4 we break down
the algorithms into three contract classes, each comprising

Algorithm 1 rate: Update the Rating Score of a
Ratable Object

1 Input: ratableId← Identifier of a Ratable object
2 Input: rating← Signed integer rating value
3 Require ratableId exists
4 Require caller is allowed to rate ratableId
5 Require caller did not already rate ratableId
6 Require rating is within range

7 score←
score× ratings+ rating

ratings+ 1
, where:

8 score← The Ratable variable’s score
9 ratings← The number of previous ratings

10 ratings
+
← 1

11 Update ratableId’s properties to score and
ratings

12 Mark that the caller has rated ratableId

state variables and methods. The relations between state vari-
ables determine the overall organization of the class, and
the relations between classes determine the overall system
architecture.

The Software contract class implements the ERC-1155
standard, which includes methods to manage the NFT Uni-
form Resource Identifier (URI), NFT balances, and transfer
of NFT ownership. Besides, Software contains state variables
to keep track of the developer, distributions, and clients. The
contract houses three methods to handle its variables:
• createDist: Generates a new distribution identifier
(dist). Calling this method is exclusive to the devel-
oper.

• updateDist: Updates themodifiable properties of the
distributions, such as the distribution hash. Exclusive to
the developer.

• grantDist: Calls the ERC-1155 mint method to
grant a distribution NFT to a client. Exclusive to the
Marketplace contract.

Each distribution in the Software contract complies with a
library called Ratable, allowing the clients who obtained the
software to submit a rating via a rate method. Algorithm 1
details how ratings are added, where rating,score ∈
J−10 000, 10 000K and ratings ∈ Z≥0. From the perspec-
tive of the client, the rating ranges from -100.00 (dissatisfied)
to 100.00 (satisfied). However, since Solidity does not sup-
port float point operations, the 2 decimal places become part
of the integer value by multiplying it by a factor of 100.

The Marketplace contract class contains state variables to
keep track of its owner, an Aggregator smart contract, and
the listings of software distributions. There are five methods
in the contract to manage operations between the clients and
developers:
• configure: Specifies which Aggregator smart con-
tract this Marketplace integrates with. Exclusive to the
Marketplace owner.

VOLUME 11, 2023 8739



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

FIGURE 4. Class diagram showing the Software, Marketplace, and Aggregator contract classes and their corresponding data structures.

Algorithm 2 addListing: Create a New Software
Distribution Listing in the Marketplace

1 Input: software← Address of a Software contract
2 Input: dist← Identifier of a specific distribution
3 Input: deps← Array of other listings
4 Require software is a proper Software contract
5 Require caller is the developer of software
6 Require dist exists in software
7 Require listing does not already exist
8 Require all listings in deps exist and have weight
/* Define a listing identifier from the

keccak hash of software and dist */

9 listingId← keccak256(software,
dist)

10 Create new listing object, where:
11 software← The input software
12 dist← The input dist
13 deps← The dependencies deps
14 depsWeight

←
∑

d∈deps
(weight+ depsWeight)

15 Call initiate method of Aggregator, where:
16 paramId← The identifier listingId
17 callback← The Marketplace method

configure
18 minscore← The minimum processor score of 0
19 within← The request duration 1 hour
20 Event: Broadcast listingId to listening nodes

• addListing: Generates a new distribution listing and
returns a unique listing identifier (listingId). Han-
dles setting the distribution weight, in alliance with
the Aggregator initiate and finalize methods.

Algorithm 3 obtain: Obtain a Software Distribu-
tion
1 Input: listingId← Identifier to a listing
2 Require listingId exists
3 Require caller does not obtain listingId
4 Require payment matches the listingId price
5 listing← Listing at listingId

6 listing.balance
+
← Transaction payment

7 Call grant method of listingId.software,
where:

8 Distribution is listing.dist
9 Owner is transaction caller

Finally, this method aggregates the total weights of
the entire dependencies tree into depsWeight vari-
able. Algorithm 2 shows the detailed procedures of this
method, where software and dist are the devel-
oper’s Software smart contract address and distribution
identifier, and deps is an array of listings representing
the dependencies.

• setProperties: Allows the developer to set addi-
tional and optional properties to the listing, such as the
price.

• obtain: Allows the client to acquire a software distri-
bution listingId. Algorithm 3 explains the method
operations in detail.

• withdraw: Distributes the collected revenue of a list-
ing among the developer and dependencies based on the
weights of each. Algorithm 4 clarifies the withdrawal
operations.

The Aggregator contract class manages a set of processor
nodes and requests using five methods. The processor nodes
complywith the Ratable library, allowing requesters to rate its

8740 VOLUME 11, 2023



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

Algorithm 4 withdraw: Receive and Distribute
Listing Revenue

1 Input: listingId← Identifier to a listing
2 Require listingId exists
3 Require listingId has accumulated balance
4 Require caller is the developer of listingId
5 listing← Listing at listingId
/* Define compact local variables for

readability */

6 lB← listing.balance
7 lW← listing.weight
8 lTW← listing.weight +

listing.depsWeight
9 foreach dep in listing.deps do
10 dTW← dep.weight + dep.depsWeight

/* Distribute the dependencies’ share

of accumulated balance among

themselves */

11 dep.balance
+
←

lB× dTW

lTW
12 end
13 listing.balance← 0

/* Send the listing’s share of

accumulated balance to its developer

*/

14 Transfer
lB× lW

lTW
to the listing owner

Algorithm 5 aggregate: Receive Processor Input
and Perform Cumulative Averaging

1 Input: requestId← Identifier to a request
2 Input: input← Unsigned integer value
3 Require requestId exists
4 Require processor is not locked
5 Require processor rating score is acceptable
6 Require request time limit has not passed

7 result←
result× inputs+ input

inputs+ 1
, where:

8 result is the request result
9 inputs is the number of participating processors

10 inputs
+
← 1

11 Update requestId’s properties to result and
inputs

12 Update processor active request to requestId and
lock state to true

performance according to Algorithm 1. The remaining class
methods are:

• initiate: Receives aggregation requests from exter-
nal callers and creates a proper request with a unique
identifier requestId, which returns to the caller.

• aggregate: Accepts numeric response from a proces-
sor node and aggregates it dynamically into the request,
as Algorithm 5 details. Exclusive to processors.

Algorithm 6 unlock: Reset Processor Lock State
and Transfer Incentives
1 Require processor is locked
2 Require request is finalized
/* A request moves to finalized state

after the deadline and rating periods

pass */

3 requestId← Processor’s active request
4 reward← Payment to processors of requestId
5 inputs← Number of participations in

requestId
6 Update processor active request to 0 and lock state to

false, indicating it is unlocked

7 Transfer
reward

inputs+ 1
to the processor

• finalize: Calls back the requester to send the final
result. The first processor to trigger the method after the
request time limit receives an incentive identical to other
processors that submit inputs. Exclusive to processors.

• unlock: Allows the processor to participate in other
requests in addition to transferring incentives. Algo-
rithm 6 delineates the method. Exclusive to processors.

V. TESTING AND EVALUATION
After building and optimizing the smart contracts based on
the algorithms, we evaluate the code to verify that it can pro-
vide the proper functionality outcomes, has resiliency against
erroneous inputs, and lacks major programmatic security
flaws.

Our evaluation phase uses Hardhat version 2.10.1, a devel-
opment environment that enables running scripts to com-
pile, deploy, and test Solidity code. The code relies on two
dependencies: ERC1155.sol and Address.sol, both
of which we import from OpenZeppelin contracts version
4.7.2. The smart contract compiler is Solidity Compiler (Solc)
version 0.8.9, with 1 000 optimization runs. As for the deploy-
ment environment, we use a local Ethereum testing network
housing 11 Ethereum accounts to deploy the smart contracts
and make transaction requests. Table 1 unfolds the roles and
addresses of the Ethereum accounts.

A. UNIT TESTING
The unit testing is the first set of functional validation step
that we execute to ensure the smart contract operate as per
the requirements of our design. We use Mocha framework
to test each method of the three Solidity smart contracts,
by enumerating over all the scenarios in which the methods
may succeed or revert. A smart contract method reverts as
a result of an input error, so that the transaction does not
register in the ledger, saving the caller from losing their
Ether payments. By the end of the unit testing we go through
80 different set of inputs for the methods, of which 55 are
revert cases.

The Software contract method addDist reverts when the
caller is not the developer, or when the hash input already

VOLUME 11, 2023 8741



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

TABLE 1. Entities we use in testing and their truncated Ethereum
addresses.

FIGURE 5. Snapshot of a failed transaction logs, showing the Software
smart contract throwing an error due to invalid inputs.

exists. The grantSoftware internal method reverts if the
client already owns the software token, if the caller is not
a trusted Marketplace, or if the Marketplace grants a non-
existing distribution, to a non-ERC1155Receiver contract or
the zero address. The rate method reverts if the caller
already submitted a rating, if the rating is for an unobtained
or nonexistent distribution, or if the rating is out of the
J−10 000, 10 000K range. Figure 5 depicts one of the revert
cases, in which the Marketplace calls grantSoftware
with the client being the zero address. In such scenario, the
ERC-1155 contract catches the error and logs the reason.

The Marketplace contract method configure reverts
if the caller is not the Marketplace deployer, if there is a
non-finalized request, or if the Aggregator address matches
the existing one, belongs to an Externally-Owned Account
(EOA), or matches the zero address. The addListing
method reverts if the caller is not the software developer,
if the software distribution already exists, or if any of the
dependencies do not exist or without a weight. The method
setProperties reverts in the condition of an invalid or
already weighted listing, and if the caller is not the trusted
Aggregator contract. The method obtain reverts if the list-
ing does not exist, if the caller already obtains the listing,
or if the payment does not match the listing price. Finally,
the withdraw method reverts if the listing does not exist,
or has no balance, or if the caller is not the developer of the
software.

The Aggregator smart contract method initiate reverts
if the caller is an EOA, if the request already exists and

FIGURE 6. On-chain transactions and parameters we execute during
testing.

is active, or if the specific minimum score is outside the
range J−10 000, 10 000K. The aggregate method reverts
if the transaction proceeds the request deadline, if the request
does not exist, or if the caller is locked or has a low score.
Revert cases of the finalizemethod include a nonexistent
request, locked or low score caller, or calling on a final-
ized request or calling before its deadline. Similarly, rate
reverts if the request is nonexistent, non-finalized, or over-
due requests, if the processor did not participate or already
received a rating, if the rating is out of range, or if the caller
is not the one who made the request. As for the unlock
method, it reverts if the caller is already unlocked, or if the
active request is yet not finalized.

B. INTEGRATION TESTING
The smart contract functional validation mimics the scenario
we presented in Section III. The scenario consists of four
phases, the first of which is contract deployment and con-
figuration, followed by two phases of adding and publishing
the software in the marketplace, and the last is obtaining the
software. We report all the method calls that take part in the
testing in Figure 6.

1) DEPLOY AND CONFIGURE
The deployment begins with the Aggregator and then
the Marketplace smart contracts, returning 0xd4d1 and
0xf6c3 as contract addresses, respectively. Neither of those
transactions (trx) supplies additional inputs to the constructor
methods (trx 1-2). However, the Marketplace deployer estab-
lishes a connection to the Aggregator so that the Marketplace

8742 VOLUME 11, 2023



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

FIGURE 7. Snapshot of a transaction logs, showing the weight of a
software.

can trigger it on new software listing requests (trx 3). In antic-
ipation of the software deployments, the software developers
deploy the smart contracts SoftwareA and SoftwareB, pro-
viding the IPNS and HTTPS links as URIs (trx 4-5).

2) ADD LISTING 1
The software developer adds the distribution to SoftwareA,
then publishes it on the Marketplace as a new listing, provid-
ing a 0.5 ETH incentive for processors to estimate the weight
(trx 6-7). Three processors submit weight estimates, which
the Aggregator averages to 56 and returns to the Market-
place (trx 8-11). Figure 7 shows the weight the Marketplace
receives. Finally, the software developer rates the processors
individually (trx 12-14).

3) ADD LISTING 2
Phase 3 is similar to phase 2; however, the software devel-
oper chooses to list the distribution for 1.5 ETH, sets list-
ing 1 as a dependency, and pays 0.3 ETH to the processors
(trx 15-16). For the weight estimation, four processors
respond with an average of 33 (trx 17-21), and the developer
rates three of them back (trx 22-24). After the rating period
passes, the fourth processors manually requests to unlock the
account (trx 25).

4) OBTAIN LISTING 2
A client pays 1.5 ETH for listing 2 through the Marketplace,
granting a license to use the software (trx 26). The client
submits a rating of 100 for SoftwareB distribution 0 (trx 27).
The developer of SoftwareB withdraws 0.556 ETH as rev-
enue from the Marketplace, and similarly for SoftwareA with
revenue of 0.944 ETH (trx 28-29).

C. STATIC SECURITY ANALYSIS
In conjunction with writing the Solidity smart contracts,
we quantitatively analyze the security of the implementation
using Slither, an open-source static analyzer [38]. The tool

TABLE 2. Output of Slither security analysis on the solution’s smart
contracts.

automatically looks for vulnerabilities using 80 detectors of
common attacks. Slither categorizes the vulnerabilities into
five levels of impact: high, medium, low, informational, and
optimization, and two levels of confidence: high andmedium.
By the end of the development and analysis cycles, only
the false positive optimization detectors remain in our code,
in addition to six medium-impact and four low-impact vul-
nerabilities in the OpenZeppelin libraries. Table 2 clarifies
the output of Slither detections, along with their impact, con-
fidence, which smart contract is vulnerable, and how many
times the detector triggered.

VI. DISCUSSIONS
In this section, we discuss the cost and security of the pro-
posed architecture and explore additional domains that can
take advantage of this solution.

A. COST ANALYSIS
To get an insight into the feasibility of the system, we record
and report the transaction costs while issuing repeated
Ethereum requests to the network, covering all methods of
the three smart contracts. Table 3 summarizes the methods
and their costs to call. The gas cost reflects the time and space
complexity according to the EVMs, whereas the USD cost is
the fiat representation of the gas cost, which differs depending
on the market’s gas and Ether prices. The prices as of October
27th, 2022, are 10Gwei per gas unit and 1 550USD per Ether.
Although the gas costs are mostly steady over time, the USD
costs fluctuate more and in a less predictable manner.

The highest costs trace back to the contract deployments,
which is reasonable considering they are only deployed once
per system (Aggregator and Marketplace) or software (Soft-
ware). The methods with the highest costs are addDist,
addListing, and obtain, due to making cross-contract
calls and heavily modifying state variables. The remaining
methods cost much lower, with an average of 0.86 USD per
invocation.

cmin = ncaggregate + cfinalize (1)

An additional cost that we can calculate is the incentive
users must pay to publish their software. Equation 1 shows
the minimum payment to processors cmin, where cm is the cost
of method m, and n is the expected number of processors to
participate in the distribution weight estimation task.

B. LATENCY AND THROUGHPUT ANALYSIS
The main factor in determining the latency and throughput of
our system is the blockchain network we use. In Ethereum,

VOLUME 11, 2023 8743



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

TABLE 3. Transaction cost and throughput of smart contract deployment
and user-invokable methods.

the expected latency of executing the methods, which is the
average time between reaching the network’s pool of pending
transactions and the first confirmation, is 6 seconds. This
latency value is a direct result of the network’s characteristics
of adding a new block of transactions every 12 seconds
(a slot). Additionally, this value assumes the caller of the
method pays a competitive gas price.

The throughput of the methods also depends on the charac-
teristics of the blockchain network, such as the average block
capacity (in gas) and slot time. Table 3 shows the throughput
estimations for each method, given the current 15 000 000 gas
units block capacity and 12 seconds slot time.

C. SECURITY
We study the security of our proposed solution based
on the formal threat-risk assessment model laid out by
Homoliak et al. [39]. The model analyzes each component of
the blockchain architecture stack, consisting of the network,
consensus, replicated state machine, and application layers.
We choose this model over the domain-risk alternative pro-
posed by Lee et al. [40], as it reflects our architecture more
directly.

1) NETWORK LAYER
Our solution adopts the Ethereum public blockchain network.
As a result, it entertains high availability, decentralization,
and openness. On the other hand, the nodes are prone to
Domain Name Service (DNS) and traffic routing manipula-
tions which can escalate to preventing them from connecting
to the network, causing an eclipse attack [41]. Although
improbable, concentrated cyberattacks on the network can
theoretically cause a Denial of Service (DoS) on the consen-
sus nodes and resources.

2) CONSENSUS LAYER
Under Ethereum’s new proof of stake consensus mech-
anism, the blockchain network announces the validator
node addresses ahead of publishing a new block, mak-
ing them susceptible to targeted DoS attacks. Besides this
risk, the new consensus mechanism makes previous attacks

significantly more expensive and less rewarding, including
the 51% attack.

3) REPLICATED STATE MACHINE LAYER
Ethereum does not confiscate the user identity and parameters
of the transaction logs. Therefore, in our solution, we abstain
from dealing with private or personally identifying data.
However, our implementation uses Solidity, which suffers
from language vulnerabilities on its own. In addition, the
code can contain unchangeable implementation vulnera-
bilities, necessitating thorough technical investigation using
static and dynamic code analysis tools, such as Slither and
Echidna (see Section V) [42], [43].

4) APPLICATION LAYER
This layer houses five components that we analyze separately.
• Non-custodial wallets, which are the most secure among

wallet options, are susceptible to private key theft through
malware, keyloggers, and social engineering [41].
• Fiat-cryptocurrency exchanges are inherently centralized

and pose a Single-Point-of-Failure (SPoF).
• Compromised processor nodes can cause data tamper-

ing, and they rely on an imperfect aggregation model that
does not counteract freeloading attacks [39], [44].
• IPFS-based Filecoin [45] storage uses proof-of-

spacetime and proof-of-replication to prevent availability
attacks, Sybil attacks, de-duplication attacks, outsourcing
attacks, and generation attacks.
•The proposed reputation system prevents bad-mouthing,

and ballot-stuffing attacks with compulsory purchase of
the software and non-reimbursable transaction fees prior to
submitting a rating. However, processor nodes and software
developers can perform whitewashing by discarding their
identity of poor rating for a new one with a neutral state
and a rating of 0. Additionally, a misbehaving developer
of cloud-based software may unjustly refuse or revoke the
client’s license.

D. GENERALIZATION
Our design of the architecture and algorithms is alignedwith a
software distribution setting, enabling effective management
of the licenses and fair sharing of the royalties. Nevertheless,
we can transfer and expand this solution to other industries
and domains with few changes to the stakeholders and mini-
mal tweaks to the system design. One areawith great potential
is license agreements within governmental or business-to-
business operations, such as property lease contracts, trade-
mark licensing, and art royalties. Instead of the developer and
client stakeholders as in our proposal, the new stakeholders
can be government institutions, or business entities with mul-
tiple underlying owners using a multi-signature wallet [46].
Furthermore, the distribution of royalties can be based on a
settled ratio, or the decision of a committee that operates as a
decentralized autonomous organization [47]. These solutions
typically require a high level of confidentiality, encouraging
the use of private and permissioned blockchain networks,

8744 VOLUME 11, 2023



M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

such as Hyperledger Fabric, alongside local storage that
encrypts data by default.

Another aspect in which other systems can take advantage
of our solution is using the individual modular components
we are proposing, including the Ratable library, Aggregator
smart contract, andMarketplace’s efficient hierarchical distri-
bution of assets. In our solution we design these components
and integrate them for the goal of decentralized software
distribution and monetization. However, blockchain-based
systems in the supply chain, healthcare, insurance, and other
fields can utilize these features, as they overcome common
limitations in blockchain systems, especially Ethereum.

VII. CONCLUSION
To address the issues existing in today’s software licensing,
we proposed a decentralized solution based on NFTs and
Ethereum blockchain smart contracts to enable verifiable
software ownership, direct purchase payments, and royalty
distribution, all in a trusted, secure, and immutable manner.
Our approach employed the ERC-1155 standard to tokenize
software distributions as unique NFTs, which developers can
list on decentralized NFT marketplaces for clients to pur-
chase. In addition, developers can earn from an additional
monetization stream, by receiving royalty payments when
other developers use the software as a dependency. Our
solution brings trusted and enforceable license agreements
to protect the rights of developers and clients, and revives
the open-source software model with new revenue streams.
We demonstrated the effectiveness of our system as we
implemented, deployed, and evaluated three Solidity smart
contracts, which incorporated all the key functionalities of
our solution. The smart contracts mint software distributions
as NFTs, list them on a marketplace, and estimate the weight
of the software to build a dependency tree, allowing fair distri-
bution of royalties. The results of our testing and evaluation
showed that all code components functioned as expected in
default scenarios and in cases where entities behaved mali-
ciously or erroneously. The results of our cost and security
analyses showed that our system is feasible, cost-efficient,
and resilient against known cyberattacks. As a future work,
we plan to develop an end-to-end system for transparent and
monetizable software distribution, and integrate the solution
with well-known open-source software repositories such as
GitHub and BitBucket.

REFERENCES
[1] Y. G. Grange, T. Jurges, J. Schnabel, N. P. F. Lorente, and M. Fußling,

‘‘Best licensing practices,’’ 2020, arXiv:2012.12994.
[2] M. Ballhausen, ‘‘Free and open source software licenses explained,’’

Computer, vol. 52, no. 6, pp. 82–86, Jun. 2019, doi: 10.1109/
MC.2019.2907766.

[3] V. Stepanova and I. Erins, ‘‘Blockchain-based model for software licens-
ing,’’ in Proc. 4th Int. Conf. Syst. Rel. Saf. (ICSRS), Nov. 2019, pp. 30–34,
doi: 10.1109/ICSRS48664.2019.8987715.

[4] H. Kaminski and M. Perry. (2007). Open Source Software Licensing Pat-
terns. [Online]. Available: https://ir.lib.uwo.ca/csdpub/10

[5] E. DeBrie and D. Goeschel, ‘‘Open source software licenses: Legal impli-
cations and practical guidance,’’ The Nebraska Lawyer, Mar./Apr. 7–13,
2016.

[6] S. Li, H. K. Cheng, Y. Duan, and Y.-C. Yang, ‘‘A study of enterprise soft-
ware licensing models,’’ J. Manag. Inf. Syst., vol. 34, no. 1, pp. 177–205,
Jan. 2017, doi: 10.1080/07421222.2017.1297636.

[7] T. August, H. Shin, and T. I. Tunca, ‘‘Generating value through open
source: Software service market regulation and licensing policy,’’ Inf. Syst.
Res., vol. 29, no. 1, pp. 186–205, Mar. 2018, doi: 10.1287/isre.2017.0726.

[8] T. August, W. Chen, and K. Zhu, ‘‘Competition among proprietary and
open-source software firms: The role of licensing in strategic contribu-
tion,’’Manag. Sci., vol. 67, no. 5, pp. 3041–3066, May 2021, doi: 10.1287/
mnsc.2020.3674.

[9] J. P. Moraes, I. Polato, I. Wiese, F. Saraiva, and G. Pinto, ‘‘From one to
hundreds: Multi-licensing in the JavaScript ecosystem,’’ Empirical Softw.
Eng., vol. 26, no. 3, p. 39, Mar. 2021, doi: 10.1007/s10664-020-09936-2.

[10] D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye, ‘‘Investigating
whether and how software developers understand open source software
licensing,’’ Empirical Softw. Eng., vol. 24, no. 1, pp. 211–239, Feb. 2019,
doi: 10.1007/s10664-018-9614-9.

[11] L. A. Barba, ‘‘Defining the role of open source software in research
reproducibility,’’ 2022, arXiv:2204.12564.

[12] S.-Y. T. Lee, H.-W. Kim, and S. Gupta, ‘‘Measuring open source
software success,’’ Omega, vol. 37, no. 2, pp. 426–438, 2009, doi:
10.1016/j.omega.2007.05.005.

[13] M. Krichen,M. Ammi, A.Mihoub, andM.Almutiq, ‘‘Blockchain for mod-
ern applications: A survey,’’ Sensors, vol. 22, no. 14, p. 5274, Jul. 2022,
doi: 10.3390/s22145274.

[14] W. Zou, D. Lo, P. S. Kochhar, X. B. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, ‘‘Smart contract development: Challenges and opportunities,’’
IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106, Oct. 2021, doi:
10.1109/TSE.2019.2942301.

[15] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and
A. Bani-Hani, ‘‘Blockchain smart contracts: Applications, challenges, and
future trends,’’ Peer-Peer Netw. Appl., vol. 14, no. 5, pp. 2901–2925,
Sep. 2021, doi: 10.1007/s12083-021-01127-0.

[16] G. Wang and M. Nixon, ‘‘SoK: Tokenization on blockchain,’’ in Proc.
14th IEEE/ACM Int. Conf. Utility Cloud Comput. Companion. New York,
NY, USA: Association for Computing Machinery, Dec. 2021, pp. 1–9, doi:
10.1145/3492323.3495577.

[17] M. Legault, ‘‘A practitioner’s view on distributed storage systems:
Overview, challenges and potential solutions,’’ Technol. Innov. Manag.
Rev., vol. 11, pp. 32–41, Jul. 2021, doi: 10.22215/timreview/1448.

[18] E. Daniel and F. Tschorsch, ‘‘IPFS and friends: A qualitative compar-
ison of next generation peer-to-peer data networks,’’ IEEE Commun.
Surveys Tuts., vol. 24, no. 1, pp. 31–52, 1st Quart., 2022, doi: 10.1109/
COMST.2022.3143147.

[19] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, ‘‘Trust-
worthy blockchain oracles: Review, comparison, and open research chal-
lenges,’’ IEEE Access, vol. 8, pp. 85675–85685, 2020, doi: 10.1109/
ACCESS.2020.2992698.

[20] L. Breidenbach, C. Cachin, A. Coventry, A. Juels, and A. Miller.
(Feb. 2021). Chainlink Off-Chain Reporting Protocol. [Online]. Available:
https://research.chain.link/ocr.pdf

[21] M. Madine, K. Salah, R. Jayaraman, Y. Al-Hammadi, J. Arshad,
and I. Yaqoob, ‘‘AppXchain: Application-level interoperability for
blockchain networks,’’ IEEE Access, vol. 9, pp. 87777–87791, 2021, doi:
10.1109/ACCESS.2021.3089603.

[22] P. Venalainen, ‘‘Detecting software license violations,’’ M.S. thesis,
Metropolia Univ. Appl. Sci., Finland, May 2021.

[23] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, ‘‘Finding
software license violations through binary code clone detection,’’ in
Proc. 8th Work. Conf. Mining Softw. Repositories. New York, NY,
USA: Association for Computing Machinery, May 2011, pp. 63–72, doi:
10.1145/1985441.1985453.

[24] S. Costea and B.Warinschi, ‘‘Secure software licensing: Models, construc-
tions, and proofs,’’ inProc. IEEE 29th Comput. Secur. Found. Symp. (CSF),
Jul. 2016, pp. 31–44, doi: 10.1109/CSF.2016.10.

[25] W.-Y. Chiu, L. Zhou, W. Meng, Z. Liu, and C. Ge, ‘‘ActAnyware-
blockchain-based software licensing scheme,’’ in Blockchain and Trust-
worthy Systems, H.-N. Dai, X. Liu, D. X. Luo, J. Xiao, and X. Chen, Eds.
Singapore: Springer, 2021, pp. 559–573.

[26] L. Di Gaetano, ‘‘A model of corporate donations to open source under
hardware-software complementarity,’’ Ind. Corporate Change, vol. 24,
no. 1, pp. 163–190, Feb. 2015.

VOLUME 11, 2023 8745

http://dx.doi.org/10.1109/MC.2019.2907766
http://dx.doi.org/10.1109/MC.2019.2907766
http://dx.doi.org/10.1109/ICSRS48664.2019.8987715
http://dx.doi.org/10.1080/07421222.2017.1297636
http://dx.doi.org/10.1287/isre.2017.0726
http://dx.doi.org/10.1287/mnsc.2020.3674
http://dx.doi.org/10.1287/mnsc.2020.3674
http://dx.doi.org/10.1007/s10664-020-09936-2
http://dx.doi.org/10.1007/s10664-018-9614-9
http://dx.doi.org/10.1016/j.omega.2007.05.005
http://dx.doi.org/10.3390/s22145274
http://dx.doi.org/10.1109/TSE.2019.2942301
http://dx.doi.org/10.1007/s12083-021-01127-0
http://dx.doi.org/10.1145/3492323.3495577
http://dx.doi.org/10.22215/timreview/1448
http://dx.doi.org/10.1109/COMST.2022.3143147
http://dx.doi.org/10.1109/COMST.2022.3143147
http://dx.doi.org/10.1109/ACCESS.2020.2992698
http://dx.doi.org/10.1109/ACCESS.2020.2992698
http://dx.doi.org/10.1109/ACCESS.2021.3089603
http://dx.doi.org/10.1145/1985441.1985453
http://dx.doi.org/10.1109/CSF.2016.10


M. Madine et al.: NFTs for Open-Source and Commercial Software Licensing and Royalties

[27] Liberapay. (Oct. 2019). Liberapay—Payment Processors. [Online]. Avail-
able: https://en.liberapay.com/about/payment-processors

[28] GitHub. (Mar. 2019). GitHub Sponsors Additional Terms. [Online].
Available: https://docs.github.com/en/site-policy/github-terms/github-
sponsors-additional-terms

[29] GitCoin. (Sep. 2017). GitCoin—Discover and Fund Public Goods.
[Online]. Available: https://gitcoin.co/grants

[30] V. Buterin, Z. Hitzig, and E. G. Weyl, ‘‘A flexible design for funding
public goods,’’ Manag. Sci., vol. 65, no. 11, pp. 5171–5187, Nov. 2019,
doi: 10.1287/mnsc.2019.3337.

[31] (Jan. 2016).Outsourced Guru—Royalty-Source Code. [Online]. Available:
https://outsourcedguru.wordpress.com/2016/01/10/royalty-source-code/

[32] P. Ç. Aksoy and Z. Ö. Üner, ‘‘NFTs and copyright: Challenges and opportu-
nities,’’ J. Intellectual Property Law Pract., vol. 16, no. 10, pp. 1115–1126,
Dec. 2021, doi: 10.1093/jiplp/jpab104.

[33] Q. Wang, R. Li, Q. Wang, and S. Chen, ‘‘Non-fungible token
(NFT): Overview, evaluation, opportunities and challenges,’’ 2021,
arXiv:2105.07447.

[34] B. Bodo, A. Giannopoulou, P. Mezei, and J. Quintais, ‘‘The rise of NFTs:
These aren’t the droids you’re looking for,’’ Eur. Intellectual Property Rev.,
vol. 44, no. 5, pp. 267–282, 2022.

[35] S. M. H. Bamakan, N. Nezhadsistani, O. Bodaghi, and Q. Qu, ‘‘Patents
and intellectual property assets as non-fungible tokens; Key technolo-
gies and challenges,’’ Sci. Rep., vol. 12, no. 1, p. 2178, Feb. 2022, doi:
10.1038/s41598-022-05920-6.

[36] H. R. Hasan, K. Salah, A. Battah, M. Madine, I. Yaqoob, R. Jayaraman,
and M. Omar, ‘‘Incorporating registration, reputation, and incentivization
into the NFT ecosystem,’’ IEEE Access, vol. 10, pp. 76416–76433, 2022,
doi: 10.1109/ACCESS.2022.3192388.

[37] M. Madine, K. Salah, R. Jayaraman, A. Battah, H. Hasan, and I. Yaqoob,
‘‘Blockchain and NFTs for time-bound access and monetization of
private data,’’ IEEE Access, vol. 10, pp. 94186–94202, 2022, doi:
10.1109/ACCESS.2022.3204274.

[38] J. Feist, G. Grieco, and A. Groce, ‘‘Slither: A static analysis framework for
smart contracts,’’ 2019, arXiv:1908.09878.

[39] I. Homoliak, S. Venugopalan, D. Reijsbergen, Q. Hum, R. Schumi, and
P. Szalachowski, ‘‘The security reference architecture for blockchains:
Toward a standardized model for studying vulnerabilities, threats, and
defenses,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 341–390, 1st
Quart., 2021, doi: 10.1109/comst.2020.3033665.

[40] J. H. Lee, ‘‘Systematic approach to analyzing security and vulner-
abilities of blockchain systems,’’ Ph.D. dissertation, Massachusetts
Inst. Technol., Cambridge, MA, USA, 2019. [Online]. Available:
https://dspace.mit.edu/handle/1721.1/121793

[41] (Jul. 2022). A Security Framework for Blockchain Applications. [Online].
Available: https://halborn.com/a-security-framework-for-blockchain-
applications

[42] A. Groce and G. Grieco, ‘‘Echidna-parade: A tool for diverse mul-
ticore smart contract fuzzing,’’ in Proc. 30th ACM SIGSOFT Int.
Symp. Softw. Test. Anal. New York, NY, USA: Association for
Computing Machinery, Jul. 2021, pp. 658–661, doi: 10.1145/3460319.
3469076.

[43] (Mar. 2019). Blockchain Security A Framework for Trust and
Adoption. [Online]. Available: https://www.kennisdclogistiek.nl/
publicaties/blockchain-security-a-framework-for-trust-and-adoption

[44] N. Chondamrongku, J. Sun, and I. Warren, ‘‘Formal security analysis for
blockchain-based software architecture,’’ in Proc. Int. Conf. Softw. Eng.
Knowl. Eng. (SEKE), Pittsburgh, PA, USA, Jul. 2020.

[45] J. Benet and N. Greco. (2018). Filecoin: A Decentralized Storage Network.
[Online]. Available: https://filecoin.io/filecoin.pdf

[46] W. Powell, S. Cao, T. Miller, M. Foth, X. Boyen, B. Earsman, S. Del Valle,
and C. Turner-Morris, ‘‘From premise to practice of social consen-
sus: How to agree on common knowledge in blockchain-enabled sup-
ply chains,’’ Comput. Netw., vol. 200, Dec. 2021, Art. no. 108536, doi:
10.1016/j.comnet.2021.108536.

[47] A. I. Sanka, M. Irfan, I. Huang, and R. C. C. Cheung, ‘‘A survey of break-
through in blockchain technology: Adoptions, applications, challenges and
future research,’’ Comput. Commun., vol. 169, pp. 179–201, Mar. 2021,
doi: 10.1016/j.comcom.2020.12.028.

8746 VOLUME 11, 2023

http://dx.doi.org/10.1287/mnsc.2019.3337
http://dx.doi.org/10.1093/jiplp/jpab104
http://dx.doi.org/10.1038/s41598-022-05920-6
http://dx.doi.org/10.1109/ACCESS.2022.3192388
http://dx.doi.org/10.1109/ACCESS.2022.3204274
http://dx.doi.org/10.1109/comst.2020.3033665
http://dx.doi.org/10.1145/3460319.3469076
http://dx.doi.org/10.1145/3460319.3469076
http://dx.doi.org/10.1016/j.comnet.2021.108536
http://dx.doi.org/10.1016/j.comcom.2020.12.028

