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ABSTRACT Accurate prediction of human motion trajectory can improve the security of human-robot
cooperation. Due to the unstructured nature of collaborative workspace and the uncertainty of sensor sensing
data, the trajectory prediction accuracy of traditional prediction algorithms is low, and the uncertainty is
difficult to estimate. Aiming at the complex characteristics of human upper limb movement patterns, this
paper proposes a robust upper limb end trajectory prediction algorithm. The robust Gaussian mixture model
was used to model the trajectory of human upper limb movement, and the statistical values of the future
trajectory were obtained by combining Gaussian mixture regression. The advantage of this algorithm is that
the prediction result is not only the predicted value of the position, but also the probability distribution of
all possible future motion trajectories of the upper limb. The position prediction information in a specific
motion mode can be obtained by using probability and statistical distribution characteristics. The algorithm
is tested on both public and private datasets. Experimental results show that this method can predict human
trajectories well.

INDEX TERMS Human-robot collaboration, trajectory prediction, GMM, GMR, RGMTP.

I. INTRODUCTION

Many fields have benefited by applying human-robot collab-
oration (HRC) strategies since the creation of collaborative
robots that can safely share tasks with humans [1], [2]. In the
military field, cooperative robots are expected to work with
military personnel in order for soldiers to better understand
the dangers of the battlefield [3]. HRC strategies in agri-
culture can provide solutions to complex problems in crop
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production processes, providing safety, comfort, lower work-
load and better process productivity [4]. In industrial pro-
duction, HRC can improve the efficiency of assembly tasks
[5]. The application of HRC in the medical industry is also
popular [6], [7], [8]. This paper focuses on the application
of HRC in the pathology department. The main task of the
pathology department is to determine the nature of the disease
through biopsy of cell tissue or body fluid during the medical
process and carry out pathological examination. In many
cases, these robots will share the same physical space with
people and work closely with people to complete common

VOLUME 11, 2023


https://orcid.org/0000-0002-6102-6832
https://orcid.org/0000-0002-2797-0264

Q. Li et al.: Robust Human Upper-Limbs Trajectory Prediction Based on Gaussian Mixture Prediction

IEEE Access

collect datal

FIGURE 1. The flow path of our proposed method.

tasks as part of their daily work. The assistance of robots can
reduce the probability of medical personnel being exposed
to dangerous environments and improve the efficiency of the
detection process [9], [10]. However, some of these tasks,
such as separating tissues from cells to make pathological
cell sections and other tasks requiring high details, are dif-
ficult to be fully automated, and human-robot cooperation
can solve this problem. Humans can perform tasks with high
flexibility, and robots can perform simple and repetitive tasks
to assist humans to jointly perform the basic tasks of the
pathology department. Deployment of human-robot cooper-
ation in real-world applications requires the safety of coop-
erators and avoidance of collisions with robots [11]. In the
previous work [12], [13], it has been shown that predicting
human motion allows for smoother robot motion in the shared
workspace.

Due to the regularity of the pathological examination pro-
cess, the human follow similar trajectories in each work cycle,
and we use statistical regression to model and predict human
trajectories to exploit this property. Traditional prediction
algorithms based on Gaussian mixture models first model the
type of human upper limb motion trajectory using Gaussian
mixture models (GMM), and then combine with Gaussian
mixture regression (GMR) to predict the future human upper
limb motion trajectory. The Gaussian mixture prediction
algorithm has defects such as being sensitive to initial val-
ues, convergence slowly, falling into local convergence and
requiring prior clustering components [14]. Some algorithms
without considering the robustness of the initialization of the
clustering components were proposed [15], [16], [17], which
directly affect the clustering effect and thus the accuracy of
prediction.

For solving these problems, a Gaussian mixture predic-
tion framework that combines a robust GMM with GMR
(RGMTP) is proposed.

The framework of the proposed model in this paper is
shown in Fig.1, and its main contributions are as follows:
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(1) A dataset of human upper limb trajectory is gen-
erated, which focuses on the human-robot cooperation
task in pathological examination. Compared with similar
datasets, the proposed dataset matches better to the real
human-robot collaborative scene, especially in the pathology
examination.

(2) The robust GMM algorithm takes all data points in the
dataset as initial values, which solves the problem of selecting
initial values; adds penalty terms to the objective function to
optimize the weight update, considers the global and local
data structures, and obtains appropriate parameter estimates
to achieve automatic clustering. Moreover, adaptively assign
different weights to the extracted features for learning in
response to different features of the data, to improve the
accuracy and generalization ability of clustering.

(3) Combined with GMR for prediction, the future tra-
jectories of the motion target are predicted based on the
input history trajectory data, which can provide uncertainty
information of the motion trajectory.

This paper is organized as follows. In section II, we discuss
the related works in the area of human motion prediction.
Section III introduces some foundation knowledge used in
this paper. Section IV introduces the improved robust GMM
algorithm. Section V introduces the application of RGMTP
in human motion prediction. Simulation results and the algo-
rithm performance are analyzed in Section VI. Conclusions
and future research directions are presented in Section VII.

Il. RELATED WORK

Our work focuses on trajectory prediction of human upper
limbs in HRC. In this section, we briefly summarize previous
work on human trajectory prediction. Ernaga et al. proposed
a constant acceleration dynamic obstacle prediction model
based on Kalman filter, which solves the problem of trajec-
tory prediction of moving objects in a time-varying environ-
ment [18]. Dutta V et al. proposed trajectory prediction based
on the Bezier algorithm, which relies on four parameters
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to fit the upper limb trajectory, including the starting point
of the trajectory, the target point, and two key points [19].
However, the prediction model based on physical methods
increases rapidly with the increase of physical quantities, and
its robustness is poor. Li et al. proposed a data-driven model-
based prediction system that combines multi-step Gaussian
process regression and a representative trajectory algorithm
to predict human motion trajectories in HRC, providing tra-
jectory uncertainty [20]. Most recent approaches use neural
networks that are trained directly with a strict assignment
of data from input to output, which leads to surprisingly
impressive results on similar data. Elflin et al. based on the
history of trajectories, a hybrid framework that mixes hidden
Markov models and social power methods can infer goals and
predict a person’s path toward the goal [21]. Pareek intro-
duced an intelligent assistant for robotic therapy (IART) that
provides robotic assistance in 3D trajectory tracking tasks.
A new LSTM based robotic learning demonstration (LFD)
paradigm is proposed to mimic therapists’ assistance behav-
iors [22]. Considering the interaction between people and the
workspace, some meaningful work on extending LSTMs can
accurately predict human trajectories [23], [24], [25], [26].
The above work adopts the method of supervised learning,
which requires a large number of training data of manual
marking and depends on the accuracy of human marking.
If the way of performing a given task is changed, or a new
human is observed to perform a task in a different way, the pre
trained model will not be able to predict the new sports style.
Therefore, we seek a model that can be built and adapted to
new trajectory patterns when they appear.

Different from the previous work, the unsupervised pre-
diction algorithm does not depend on manually marked data
sets. It is very similar to human learning through their
own thinking, which makes it closer to real artificial intel-
ligence. Gaussian mixture model is a probability statistical
model, which can simulate the variability of human behav-
ior in various experiments, and has been widely used in
human trajectory prediction. J. Mainprice and D. Berenson
combined Gaussian mixture model with Gaussian Mixture
Regression to generate representative human motion and esti-
mate the task space area occupied by the human body [27].
Pérez D’ Arpino and Shah improved the GMM classification
algorithm reported in [27], adding regularization to prevent
singularities [28]. Cheng Q et al. proposed a method based
on Gaussian mixture model, Gaussian mixture regression and
probabilistic roadmap, which provides the distribution of all
feasible motions of an agent [29]. A trajectory prediction
algorithm based on Gaussian mixture model is proposed,
which uses the Gaussian mixture model to calculate the
probability distribution of different motion modes of complex
motion modes, and combines Gaussian process regression
to predict the most probable motion trajectory of moving
objects [30]. In [31], the robot teaching based on impedance
control is used to guide therapists to carry out robot assistance
for the participants with drooping feet in the treadmill based
treatment program. GMM and GMR are used as learning
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and regression algorithms required to train robots and mimic
therapists at a later date. Mahdi T developed a learning from
demonstration (LfD) framework and proposed a GMM based
learning model, which can represent different rehabilitation
tasks and provide help for patients [32].

Gaussian mixture models are also widely used in the pre-
diction of human upper limb movement trajectories. Jie Kang
and Kai Jia proposed a ROS-based real-time motion esti-
mation framework based on human pose, using Gaussian
mixture model and expectation maximization (EM) algo-
rithm to cluster and estimate human motion trajectories [33].
Luo R proposed a two-layer Gaussian mixture model frame-
work and Gaussian mixture regression algorithm to identify
and predict human limb trajectories [34]. Hong Yan L et al.
proposed single-layer unsupervised parallel GMMs-GMRs
model to predict the motion trajectories of human palms,
which predicts the remaining motion trajectories based on
the observed motion trajectories [35]. Harish C and Ashwin P
used an approximate EM algorithm as a parametric reasoning
problem to reason about people’s intentions [36].

When GMM clusters the trajectory data, it needs to arti-
ficially set a fixed component value, and then apply the EM
algorithm to obtain the maximum likelihood (ML) parame-
ter estimation of the model [37]. This method of parameter
estimation has the following disadvantages: it must apply EM
multiple times for each different initialization, and it only pro-
vides parameter estimates for fixed model complexity. If the
complexity of the model cannot be determined in advance,
the EM algorithm may converge to the boundaries of the
parameter space, which means that the weight of one of the
components may approach a small value and its covariance
matrix becomes singular, making the likelihood value close
to infinity, which affects the clustering effect. In the HRC
task, the types of human upper limb motion trajectories are
complex and uncertain, so it is difficult to determine the
number of clustering categories. Unlike previous work, the
RGMTP proposed in this paper can not only automatically
obtain the optimal number of clusters according to different
types of trajectories to obtain more accurate trajectories, but
also calculate the probability distribution of all possible future
trajectories of upper limbs.

Ill. THE FOUNDATION KNOWLEDGE

A. THE KINEMATICS MODEL OF HUMAN UPPER LIMBS
This paper mainly studies the cooperation process between
human upper limb motion and robot. First, it is necessary
to model the human upper limb. The human upper limb
motion system is a nonlinear, continuous and differentiable
multi degree of freedom rigid body motion system. In the
pathological examination task, the position of the human
shoulder is stable, so we model the human upper limb system
based on the shoulder joint, as shown in Fig. 2. The simplified
limb defined in this paper has 3 degrees of freedom, L,
L, is the length of the upper limb and forearm. The Denavit
Hartenberg(DH) parameters are given in Table 1. The DH
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FIGURE 2. The kinematics model of human upper limbs.

TABLE 1. DH parameters of human upper limbs.

{ a;—1 1 d; 0;
1 0 0 0 01
2 L4 0 0 )
3 Lo 0 0 0

parameter is used to obtain the following general transfor-
mation matrix, as shown in the equation at the bottom of the
page.

The final transformation matrix of upper limb is given by
the following formula [38], [39]:

3 1 23
3T =) T2T5T (1)

Where (I)T,% T,% T are obtained by substituting the values
of the DH parameters in the general transformation matrix.
We can establish the kinematic relationship between the posi-
tion information of wrist joint and other joints of upper limb
according to (1). Therefore, next we focus on the prediction
of wrist joint position.

B. GAUSSIAN MIXTURE REGRESSION PREDICTION
ALGORITHM

Using GMM to represent human motion has an important
advantage: it can not only cluster human upper-limbs trajec-
tories but also combine GMR to perform prediction [16]. The
Gaussian mixture regression prediction model is constructed
as:

Fe) = =M 0 (x| ttms Om) 2)

where x is a random variable, M is the number of clus-

oy, 1s a mixture coefficient that must satisfy 0 < «;;,, < 1 and
Zﬁl’lzlam =1.

If the training set is Dy = (x, y), the input data is x,and
the output data is y. The test set is Dye5; = (x*, ¥*), the input
test data is x*, and the output test data is y*, then [y, y*]T
joint probability density function follows the following GMM
model:

By 00" = 20l 10mg (. Y tm, o) 3)
where Um = [,umyy ,u«my*]Ty Pm = [ Pmy pm}’y*:|’ and
Pmy*y  Pmy*
Znﬂleam = 1.
The joint probability density function is expressed as:
Fyr 0.5 = Byl amg 1y fn ). ) @)

where f,,(9) = E[y*|y] = Kmy* + Pmy*ypy;yly(y — Wmy)s 0',,21 =
var[y*|y] = pmy*'pmy*yp;;ylypmyy*-

The marginal probability and conditional probability den-
sity can be obtained by (3) and (4). The marginal probability
density of y is:

fy(y) = /[y’ y*]dy = Znﬂleamg(% MHmy, :Omy) 5)
The marginal probability density of y is:

SO 1) = ol 8mg (v (¥, o30) ©)
h h f ol ich — am8(y, imy, Pmy) )
where the mixing weight ¢,,(y) B T — T g0t )
Therefore, the regression function of y* about y, that is, the
predicted value of y* is:

Y = fO) = EDx, v, x*1 = ZM dufn(y) ()
v(y) = varly*lyl = Z2_, (¢pmom)* ®)

C. AN EXPECTATION-MAXIMIZATION ALGORITHM

One important work of the prediction model is parameter
estimation. The parameters. The parameters o and 6 (i, p) are
usually determined by using the expectation-maximization
(EM) algorithm. The EM algorithm improves model param-
eter estimates in iterations.

Let z = 21,22, -+ , 2, be the missing data in which z; €
1,2,---, M.If z; = m, it means that the ith data point belongs
to the mth class. Thus, the joint pdf of the complete data
{x1,x0, -+, Xn, 21,22, , Zy} becomes:

ters, and «y, is the weight of the «,,th Gaussian component. f&,x2, -  Xn, 21,22, 5 203 0)
g(x|tsm, pm) s the mth multivariate normal distribution, and = H;’z 1“%:1 [amg@m; Op)T?™ (9)
—cos0; —sin6; 0 o1
i s?n 0; cps o1 cosb; cps o1 —sinoj_q —Sino;_1d;
i—1 sinf;sino;_; cosé;sinaj_|  COSQ;_| cos oj—1d;
0 0 0 1
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| ifz=k
U= The log-likelihood function is
0 ifz; #k

obtained as follows:

where z,,;, = {

L(x1,x2, Xy 21,22, » Zns 0)

=S =M zilnlong(xi; 6,01 (10)

E-step: Since the latent variables z,,; are unknown, accord-
ing to Dempster et al. [37], the conditional expected value
E(zmilxi; @, ) is substituted for z,;. By Bayes’ theorem,
we have:

ag(xi; Om)

Esﬂi 1 as8(Xs; Om)

Zmi = E(@milxis o, 0) = (1D
M-step: Under the constraint E _ %, = 1, tomaximize (10),
We can obtain the updated equatlon for mixing proportions
with:

»n oz
oy = =" (12)
n
X ZmiXi
—1%miXi
U = ———F (13)
" L 1 Zmi
A T
oy = B Zmi(xi _nlir:z)(xi ) (14)

E-step assumes that the parameters of each Gaussian model
are known, and then the weights of each Gaussian model
are estimated. M-step is to determine the parameters of the
Gaussian model based on the estimated weights. Repeat the
above two steps until the set threshold fluctuates very little
and approximately reaches the extreme value.

Traditional GMM requires a priori number of clusters,
which is often given by human experience, making the algo-
rithm sensitive to initial parameters and easy to fall into local
extremes, limiting the application of GMM.

IV. THE ROBUST CLUSTERING GMM ALGORITHM

The robust GMM proposed in this paper optimizes the weight
update method of Gaussian mixture term in the EM algo-
rithm by adding a penalty term to the objective function of
the traditional EM algorithm, and then changes the specific
parameter update rules of the mixture model. According to
different track types, the most suitable cluster number can be
automatically obtained without manually setting the cluster
number.

We know that the «,, is the probability that a point belongs
to mth class. Therefore, we can use —Inao,, as the information
when it appears as a data point belonging to mth class, and
—E,Af:lamlnam is the average of information, commonly
referred to as the entropy. Entropy is a generalization of
rather vague concepts such as disorder or chaos, uncertainty
or randomness [40]. We need to minimize entropy to get
o, more information. When «,,, = Ai/l,Vm =1,2,---,M,
we say that there is no information about «,,. At this point,
the entropy reaches the maximum value. Therefore, we first
add this term to the original EM objective function. Then,
we use a learning process to estimate o, by minimizing the
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entropy to get the most information for «,,. To minimize
—2M _ a,lnay, is equivalent to maximizing M o lna,.

Therefore, we use — Efr‘:’:lamlnam as the penalty term for the
EM objective function. Incorporating this as a penalty term

into the objective function yields:

J(@,0) = ZM 7 ilnl g (xi; Om)]

+BEL E0 amlnay,, B> 0. (15)

The «, proportions can be derived by maximizing J(«, 6),
the following update equation:

a,(,few) =aflM + ,Ba,(,fld)(lna,(q?ld) - ESAi 1a§”ld>lna§”ld)). (16)

=1 Ani . .
where aEM = %Z’ Zf‘;’:lamlnam is the weighted mean
of Ino,, with the weights a1, - - - , apy. For the mth mixing

proportion a,(n if lna((’l ) is less than the E

then the new mixing proportion oc,(,, will become smaller

than the old. Thus, smaller proportions will decrease and
larger proportions will increase in the next iteration, creat-
ing competition. After several iterations, we will discard the
smaller portions and then update the M©) to:

1 Omlncty,,

M(new) — M(old)_ M(old) | )

1

| omlotm < —,m=1,---,
n

7

¢ (new) 5
To retain the constraints ZM wl o,y =1 and E%:{ i =
1, the following updates are requ1red

Uy

Oy = —EM(W) . (18)
s=1 m

~ Em’i

Imi = rema " (19)
EM si

The algorithm can reduce the number of clustering auto-
matically and get the estimation of parameters in the com-
petition mode. On the other hand, B can help us control the
competition. To prevent 8 from being too large, let 8 € (0, 1).
If the difference between " and «'¢® is small, then ,3

(new)
must become larger to become more competitive. If oy,
much different from a(OId) then B will get smaller to keep it
stable. Therefore, 8 is defined as:

Ep el — ')

M

p= (20)
where nismin {1, 0.5 15-1) }. where d is the Gaussian variable
dimension. Because the 8 can jump at any time, we let 8 =
0 when the cluster number M is stable.

Parameters u,, and p,, can be updated as follows:

S ZmiXi
I = ﬁ 1)
T
om = L Zmi(xi _nﬂlzl)(xi = m) 22)

Thus, the robust EM clustering algorithm can be summa-
rized as Algorithm 1.
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Algorithm 1 The RGMM Algorithm
Initialization: ¢ = le — 4, ,3(0) = 1,MO = g, aﬁ,(,)) =
Land n©=x.
Compute ,om) by (22).
Compute Z zm O O

), with a7, ,pm) by (11),and set t=1.

Compute ) with 2 A(t% Do g by(21).
Update oz(’) with Z zml S, A,(fm D and oz(t D by(16).
if max ||M(l+1) Ef,)|| > ¢ then

1<m<M®

Compute B with o) and «“~1 by(20).
Update M(’ D to MO by(17).
Update oy and 27" by (18),(19)

if r > 60 and MO=60) _pt) Z 0 then
let B = 0.
end if

Update pi with o) and i(tl b ...

29D by(22).
Update ASZ with affl), ,ug,t,), ,om) by(11).
Update 1,

4D with vatz)l R ) by(21).
Compute u* to ).
t=t+1.

else
STOP.

end if

V. THE RGMTP ALGORITHM FOR HUMAN UPPER LIMBS
TRAJECTORY PREDICTION

In actual prediction, the RGMTP model first clusters the
historical trajectories and then regresses the prediction.
We make predictions in the X,Y and Z directions respec-
tively, and the obtained prediction function is: Xzy1 =

felxa, xa—1, - ,dek+1), Va1 =H0d, Ya—1, s Yd—k+1),
Zd+1 =f:(2ds 2d—15 "+ 5 Zd—k+1)-
The training data Dm,m = {(xl,yl,z,)}l | = X,7, Z)

is divided into D, = {(xj_1, Ax,)}lzz, y = {(y,_l, Ay,)}[.:2
and D, = {(zi-1, Azi)}?': , for processing separately. Given
the trajectory position information {xi, xp, - - - , x4}, predict
the next position point x441, the calculation formula is:
Xd+1 = fx(x) + €x.4, equivalent to Ax = (A2, Az, -+, Ayg)
predicts the next position increment Axgy1. Where Axy; =
Xg—Xd—1,€ ~ N(0, %) is the trajectory noise, the calculation
formula is:

Axgi1 = fx(Ax) + &xq. (23)

The key of this process is how to get the incremental
regression estimation function f;(Ax). From the regression
(7), the following is obtained:

Axg1 = fi(Ax) = EpL )i Ax) 24)
% ) K, x) + 020) ' Ax, $(x) =
Through the historical trajectory {si,

wherefm(AAx) =K,
m8(AX,0,Kn(x X))

=M ng(Ax,0,Kpn(x,x))

$2, - , 84}, the predicted increment in the X, Y, Z directions

of the future d + 1 time position is Axg4+1, Ayg+1, Azg+1,and
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(a) (b) (c)
FIGURE 3. Trajectory prediction of human upper-limbs based on RGMTP.

(a) real trajectory. (b) robust GMM clustering. (c) RGMTP prediction
results.

the predicted position of this point is:

Sd+1 = (Axay1, Aya+1, Azas1)
= (x4 + AXg+1,Yd + Aya+1,2d + Aza+1).  (25)

The prediction error is:

RMSE

1 _ -
= ;l\/(xd+l = xa41)? + Ozt — Ya+1)* + @51 — 2a+1)*
(26)

The advantage of RGMTP is that there is no need to
manually set the mixed components, and the robust GMM
can automatically obtain the mixed components according to
the historical trajectory, which more objectively reflects the
essential characteristics of the data and obtains the predicted
trajectory more accurately; and the variance of the predicted
trajectory is calculated by GMR. It represents the uncertainty
of human behavior and further improves the safety of human-
robot collaboration. Fig. 3 shows the prediction effect of
the human upper limb motion trajectory of the pathological
examination data set in the 2D world coordinate system. First,
use Robust GMM to train the trajectory of human upper limbs
to get the clustering results (as shown in Fig. 3(b)). Then, use
GMR to predict future trajectories (as shown in Fig. 3(c)), red
is the test trajectory, and blue is the predicted trajectory. The
shaded area represents the variance at each time step.

VI. EXPERIMENTAL

In order to evaluate the prediction performance of RGMTP
algorithm, tests were conducted on public data sets [26] and
own dataset. Omission cross validation (LOOCYV) is used as
the validation method. All experiments were conducted on a
platform equipped with a 1.5 GHz Intel Core I3 processor.

A. PATHOLOGICAL EXAMINATION DATASET

Because public datasets are not suitable for testing human
upper limb movements, especially in pathological examina-
tion tasks. We simulated some tasks in the pathology lab
and produced pathological examination dataset, which is
closer to the actual scenario than before. The work cell was
equipped with a collaborative robot dobot CR5 and used
Kinect V2.0 to acquire human depth map and skeletal infor-
mation to construct the human upper limb motion dataset, the
Kinect was mounted at a height of 0.2 m relative to the robot
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light dobot CRS

arrival
trajectory

arrival
trajectory

(c) Task 10: preparation of cell sections

FIGURE 4. Pathological examination in real scenarios.

base linkage. 13 healthy adults participated in data collection
(9 males and 4 females, 10 right handed and 3 left handed,
age: 23.7 £ 3.0 years, body height: 171.4 £ 7.9 cm,
body mass: 70.3 £ 14.4 kg). All participants gave written
informed consent before starting data collection. Participants
are assigned a numeric ID (random number between 0 and
10000) for anonymous data.

The pathological examination data set includes upper limb
trajectories during routine tasks of human pathological exam-
ination. Due to the high specialization of pathological exam-
ination, the pathologist first demonstrated the examination
actions, and the experimental participants need to learn these
actions before collecting the data set. We proposed several
tasks related to actual pathological detection tasks: detection
of pathological solution, transfer of test solution and prepara-
tion of cell sections. As shown in Fig. 4.

1) TASK 1 TO 8

In this detection task, the collaborator places the test tube
containing the pathological test solution to be detected at
the designated position on the table. The cooperative robot
can identify the intention of human placing test tubes in
advance, predict the future trajectory of human movement,
reach the corresponding position in advance to act as the third
arm to assist human to drop the corresponding test reagents.
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Target
position

Predicted
hand trajectory

FIGURE 5. The hand arrival trajectory of collaborators in different
tasks. Mark the location as ongoing task 6. Predict the future trajectory
of hand movement according to the past trajectory.

According to the 8 different positions where the tubes are
placed on the table, we recorded 8 groups of tracks from Task
1 to 8. As shown in Fig. 5.

2) TASK9

Task 9 is the transfer between tubes. This task aims to show
the typical tasks that may occur in the medical collaborative
workspace. The robot can prevent collisions with humans
through prediction.

3) TASK10

In this task, the collaborators take the reagents from the test
tube rack to make cell sections on the workbench. Robots that
predict the future trajectory of humans can plan safe routes in
advance to prevent collisions and other safety accidents and
ensure human safety.

One test includes all 10 tasks in a sequence. The order of
task execution is randomly selected among the participants.
Each subject has carried out 4 consecutive tests, and about
1 minute rest is allowed between each test to limit fatigue.
Due to the regularity of the detection task, the collabora-
tors follow similar tracks in each cycle. We believe that
data-driven methods based on real trajectory data obtained
from each human worker are effective in dealing with the
impact of individual differences.

B. CLUSTERING
In this section, we discuss the clustering performance of the
algorithm.

The number of clustering categories is very important for
the RGMTP trajectory prediction model, which affects the
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Iteration: 1; M: 862

Iteration: 5; M: 670 Iteration: 10; M: 66

FIGURE 6. Clustering process of robust GMM. The data set is the
trajectory of the human upper limb on the x-axis during Task 2. Iteration
represents the number of iterations, and M represents the number of
clusters.

quality of the training model and the accuracy of motion esti-
mation. If the number of clusters is too small, the algorithm
cannot model the data fully and express the characteristics of
the trajectory adequately, which affects the prediction effect;
if the number of clusters is too large, it will increase the
complexity of the model and trajectory prediction time, which
is not conducive to the safety of collaborators. To verify the
accuracy of the algorithm clustering, we can use the Bayesian
Information Criterion (BIC) [41] to find the optimal number
of clusters. According to the BIC scoring scheme, the k that
minimizes the BIC score is the optimal number of clusters.

BIC = —2InL + kin(n) (27)

where I is the maximum likelihood estimation,k is the num-
ber of free parameters for the model, and n is the number of
collection values. kln(n) Penalty term can effectively avoid
dimension disaster when the dimension is too large and the
training sample data is relatively small.

Fig. 6 shows the clustering process of the trajectories in
Task2 using the robust GMM: with all data points as the
initial clusters, the clusters drop rapidly from 862 to 66 after
10 iterations, and the dataset is classified into 6 classes after
194 iterations successfully. Furthermore, Fig. 7 shows the
comparison of the clustering effect between traditional GMM
[30] and robust GMM, and it can be seen that the latter divides
the data set more carefully and clusters better compared to the
former. We use BIC to evaluate the clustering effect of robust
GMM, and we can find that the BIC value is low when the
cluster is 6 from Fig. 8, which means that the clustering is
close to the best effect, which also verifies that the clustering
effect of the algorithm is real and effective.

To verify the robustness of RGMTP algorithm in more
datasets, we use traditional GMM and robust GMM to cluster
the two-dimensional four component Gaussian mixture dis-
tribution data set in [15]. As shown in Fig. 9, the clustering
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FIGURE 7. Comparison of clustering effect between traditional GMM and
robust GMM.
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FIGURE 8. Use BIC to analyze the clustering effect of the algorithm. The
abscissa is the number of clusters, and the ordinate is the BIC value.

effect of traditional GMM deviates from the original dataset.
After 84 iterations of the robust GMM algorithm, 4 clusters
were obtained (Fig. 10). The clustering performance of the
algorithm is evaluated quantitatively using purity, which indi-
cates the ratio of the number of points correctly assigned to
the cluster to all points, and higher purity indicates better
clustering performance. In this dataset, the purity of the tra-
ditional GMM algorithm is 71.6%, while the total accuracy
of the algorithm in this paper is 94.8%, which is a 32.4%
increase in purity. The clustering performance of this paper
can perform better in different samples.

To further analyze the clustering effect, we used this Gaus-
sian distribution to generate 100 data sets, and used the
method of [15] to train these 100 data sets. Finally, 69 of the
100 data sets were correctly divided into 4 clusters. Robust
GMM is used to train these 100 datasets, and 82 datasets
are finally successfully divided into 4 clusters, 5 of 100 with
5 clusters, 13 of 100 with 3 clusters. As a whole, our robust
GMM clustering algorithm presents better than the traditional
GMM.

C. HUMAN TRAJECTORY PREDICTION

In this section, we will verify the prediction performance of
the RGMTP algorithm.

1) TRAJECTORY PREDICTION ON A PUBLIC DATASET
We first verified the prediction ability of the algorithm in
this paper on a public data set, which is derived from the
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FIGURE 9. The correct clustering results of a two-dimensional,
four-component Gaussian mixture data set with a sample size of
1000 and the clustering results of traditional GMM, including four
clusters.

Iteration: 1; M: 604 Iteration: 5; M: 327

Iteration: 84; M: 4

,,,,,,,,,

FIGURE 10. The robust GMM clustering process of a two-dimensional,
four-component Gaussian mixture data set with a sample size of 1000,
in which the blue line is the correct clustering effect and the red line is
the robust EM clustering effect.

driving vehicle data of the MIT parking lot, which collected
40453 real trajectory data [42]. We used the traditional Gaus-
sian mixture trajectory prediction model (TGMTP) [30] and
the RGMTP prediction model in this paper to carry out
experiments on this data set.

The two prediction algorithms are analyzed under different
test sets of 50-100 test trajectories, and the accuracy of the
prediction is evaluated by the root mean square error (RMSE).
As shown in Fig. 11, compared with the traditional algorithm,
the prediction accuracy of RGMTP is improved by 6% on
average. We analyzed the reasons for this result: The cluster-
ing numbers of traditional algorithms are often given empir-
ically, mostly considering only the global data structure but
not the local data structure, and are sensitive to parameters,
easily falling into local convergence, which directly affects
the accuracy of prediction. In contrast, the weight updating
method of RGMTP by algorithmically optimizing Gaussian
mixture terms can adaptively assign weights to each feature
according to the importance of different features, which has
better generality.
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FIGURE 11. Comparison of prediction errors.

2) TRAJECTORY PREDICTION ON OWN DATASET

Although the performance of the RGMTP algorithm was
tested in the public dataset, its effect on the task of patholog-
ical examination is still unknown. Therefore, we conducted
simulation experiments in the pathological examination
dataset and selected RMSE, prediction time, and interference
resistance as evaluation metrics. We compared the predic-
tion results generated from the simulation experiments with
related work.

a: RME

To analyze the experimental results, we calculated the pre-
diction errors of all trajectories of each of the four methods
(i.e. the GPR algorithm, Bezier curve, BP-HMT model, and
RGMTP algorithm). Fig. 12 shows the error comparison of
the four prediction models. The x-axis represents the predic-
tion time and the y-axis is RMSE.

Analysis of the experimental results shows that the error of
the Bezier curve is higher than the other three. The reason is
that the bezier algorithm relies on four parameters to fit the
trajectory of the upper limb, but the joint position or speed
will be affected by noise or sudden changes in the direction
of limb movement, which will change the parameters of the
model and produce large prediction errors. The GPR predic-
tion model has better accuracy for the trajectory prediction of
simple motion patterns relatively, but it is difficult to describe
a single Gaussian process for more complex and diverse
trajectory patterns such as grasping test tubes. The BP-HMT
algorithm combines the improved GPR algorithm and the rep-
resentative trajectory algorithm, the prediction effect is better
in the early stage of the experiment, because the represen-
tative trajectory is the average value of multiple trajectories,
but when the variance of the trajectory becomes larger in the
later stage, the representative trajectory algorithm will also
produce a high error. The RGMTP algorithm automatically
clusters according to different trajectory types, mines more
trajectory information, and the obtained parameters are used
for GMR regression prediction with high prediction accuracy.

To further verify the performance advantages of the pro-
posed algorithm, we compare the RGMTP algorithm with
the existing trajectory prediction algorithms with better
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FIGURE 13. The RMSE of three algorithms on 10 tasks.

performance, including the Kalman filter and LSTM algo-
rithm. As shown in Fig. 13, the x-axis represents different
test sets, the y-axis represents the RMSE of the algorithm,
and the prediction of RGMTP is always better than the other
two algorithms. The reasons for this case are analyzed: The
trajectory prediction based on the Kalman filter only makes
linear regression prediction for the trajectory without clus-
ter analysis for different trajectory modes, so the prediction
error is large. The LSTM algorithm needs a large number
of parameters, the model is complex, the calculation cost
is high, and the learning time is too long. In the human-
computer cooperation scene, it is necessary to accurately
identify the human intention and predict the trajectory of
human upper limb movement in a short time. Therefore, the
LSTM prediction model is not suitable for the prediction of
human upper limb movement trajectory.

Table 2 shows the overall RMSE of 7 prediction algorithms
in the time step range of 1s in 10 test sets. The prediction
accuracy of the RGMTP algorithm is always higher than that
of the other 5 algorithms and the overall mean error (across all
datasets) is 12.9%, 30.6%, 36.87%, 48.6%,83.2%, and 87.1%
lower than that of the TGMTP, LSTM, Kalman filter, BP-
HMT, GPR, and Bezier curve respectively. The prediction
accuracy of RGMTP is improved most obviously in task 1,
task 5, and task 7. Compared with TGMTP, LSTM, Kalman
filter, BP-HMT, GPR, and Bezier curve, the prediction accu-
racy is improved by 5%,36%, 40%,51%,83%, and 86%.
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b: PREDICTION TIME

The robot needs to accurately predict the trajectory of human
upper limb movement in a short time in HRC. Therefore, this
section compares the prediction time of RGMTP, Kalman,
and GPR algorithms. As shown in Fig. 14. The prediction
time of RGMTP is very small, which is reduced by 60% and
56% on average compared with GPR and Kalman filter algo-
rithm. Because the Kalman filter predicts the next position
of each trajectory by substituting the position information
of the previous point into the regression analysis, when the
number of predicted trajectories increases, the prediction time
will increase linearly. Every inference optimization of the
GPR algorithm requires matrix inversion of all training data
points. The time complexity of n sample points is n> and
the prediction time is long. RGMTP prediction can predict
the trajectory with unified model parameters at the same
time. The trajectory described by GMM only needs one-
time prediction. When the number of predicted trajectories
increases, as long as there is no more trajectory motion mode,
the prediction time will not have a large increase and fluctu-
ation. Our training set has a large number of trajectories and
rich trajectory motion modes, which can include most motion
modes. Therefore, RGMTP can deal with the trajectory pre-
diction of various complex motion modes.

¢: ALGORITHM ANTI-INTERFERENCE ANALYSIS

There are three sources of uncertainty in the human upper
limb motion model: uncertain system dynamics, sensor mea-
surement noise, and unknown human intention. The RGMTP
algorithm can provide the variance of the predicted trajectory
to deal with the uncertainty of human behavior(Fig. 15).
Aiming at the problem of noise in collecting human upper
limb trajectory data in the HRC scene, which interferes with
the prediction model, this section selects the task2 data set to
analyze the anti-interference of three prediction algorithms.
The results are shown in Fig. 16.

The experimental results show that GPR algorithm has
limited ability to describe complex trajectories and is more
sensitive to changes in noise data. With the increase of noise,
the prediction error also increases. BP-HMT algorithm uses
representative trajectories. When the noise data increases,
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TABLE 2. The overall RMSE.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
RGMTP 0.00169 0.00189 0.00207 0.00206 0.00151 0.00196 0.00154 0.00181 0.00229 0.00200
TGMTP [30] 0.00179 0.00190 0.00267 0.00231 0.00171 0.00230 0.00175 0.00219 0.00239 0.00225
LSTM 0.00267 0.00310 0.00287 0.00237 0.00156 0.00345 0.00186 0.00436 0.00265 0.00227
Kalman [18] 0.00282 0.00273 0.00279 0.00280 0.00277 0.00220 0.00327 0.00439 0.00239 0.00302
BP-HMT [20] 0.00347 0.00377 0.00422 0.00375 0.00303 0.00382 0.00272 0.00412 0.00440 0.00339
GPR 0.01037 0.01003 0.01062 0.01197 0.01041 0.01141 0.01005 0.01095 0.0150 0.01129
Bezier [19] 0.01211 0.01202 0.01599 0.01695 0.01689 0.01831 0.01399 0.02011 0.01190 0.00850
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FIGURE 15. Prediction results of the RGMTP algorithm. The blue solid line represents the prediction trajectory. The red solid line represents the
observation. The shaded area represents the variance of x, y, and z positions per time step in Cartesian space, respectively.
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the selection of representative trajectories will be affected,
so the prediction error is large. RGMTP and TGMTP algo-
rithms effectively classify the noise trajectory points before
prediction, and can distinguish the noise trajectory well in
the prediction process, making the algorithm less affected by
noise data.

VIl. CONCLUSION

In this paper, we propose an improved GMM-based trajectory
prediction algorithm. By adding a penalty term to the objec-
tive function of the traditional EM algorithm comprehensive
parameter information can be considered in the clustering
process, and making it robust to the initial value and different
mixture components. Furthermore, the optimal number of
clusters is generated to obtain more trajectory information
and improve the prediction accuracy. The predicted position
value and the probability distribution of all possible future
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trajectories of the moving object can provide an estimation
of the uncertainty of the trajectory and further improves the
safety of human-robot collaboration.

In future work, we will investigate a broader range of
tasks to explore the application of predictive algorithms
in multi-robot collaborative work scenarios, while ensur-
ing human safety. We hope that our work can enhance
the safety and reliability of human-robot collaboration
further.
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