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ABSTRACT Surface-mounted permanent-magnet (PM) motors are widely used in motion control systems
because of their high peak torque-to-inertia ratio. These motors exhibit high magnetic saturation to produce
high peak torque. A precise finite-element model (FEM) is needed to optimize these motors. It requires
high computation power, especially for multi-objective optimizations. On the contrary, subdomain models
require low computing power but are inaccurate when magnetic saturation occurs. To solve this problem,
we use a subdomain-assisted FEM optimization method (SAFEMOM) that combines subdomain models
for preoptimization and FEM for refined optimization. We provide the quantitative measurement methods
to compare SAFEMOM with FEM-only optimization. If the constraints in the magnetic fluxes in the
subdomain part of SAFEMOM are based on the actual saturation value of the materials, then the advantage
of SAFEMOM is not significant. The machines in this study use non-linear material with a knee point
at 1.3 T and hence show heavy magnetic saturation above 1.5 T. In that case, contrary to what could be
intuitively thought, we need to increase the magnetic flux density limit to 2.6 T - 3.0 T in SAFEMOM to
have a significant advantage. SAFEMOM reduces about 80% of computing time to obtain a slightly better
convergence than the one using FEM only. Also, if limited computing resource is allowed, SAFEMOM
gives an error reduced by a factor of nearly eight compared to the optimization error using FEM only. Those
results are validated on a family of surface-mounted permanent-magnet machines with a wide range of design
parameters.

INDEX TERMS Surface-mounted permanent-magnet machine, multi-objective optimization, subdomain
analytical modeling, finite element method.

I. INTRODUCTION
Surface-mounted permanent-magnet (SMPM) motors have
the advantage of a high ratio between torque and inertia,
as well as simple manufacture. They are used for many
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applications, including many motion control systems, which
is the background of the work we present here.

Each motion system needs to be optimized individually
depending on its application. Much work has been published
on optimizing electrical machines using single-objective opti-
mization algorithms, such as genetic algorithms [1] and
space-mapping algorithms [2], [3]. However, a Pareto front
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that shows the optimal designs for a few key features can
often be of great use for those who make complex designs
using those motors. Therefore, a multi-objective optimization
of the motor is needed, which can bring a Pareto front that
gives the designer an intuitive understanding of the rela-
tionship between the different performance parameters [4].
This Pareto front can also be used for system optimiza-
tion [5]. For this purpose, previous research has used different
types of multi-objective optimization algorithms: differential
evolution optimization algorithms [4], [6], particle swarm
optimization algorithms [7], [8], the strength Pareto evolu-
tionary algorithm 2 [9], and the nondominated sorting in
genetic algorithm II (NSGA-II) [10]. Whatever optimiza-
tion algorithm is used, a considerable computation burden is
needed to do precise multi-objective optimization of complex
non-linear systems such as SMPM motors.

Much work has been done using FEM to design and opti-
mize motor structures [11]. FEM is a technique that is used
for a wide range of topologies such as SMPMmachines [12],
[13], [14], [15], [16], permanent-magnet (PM) machines with
inserted PMs [17], [18], [19], [20], [21], machines combin-
ing inserted PMs and PM-assisted synchronous reluctance
motors [22]. Also, FEM has been used widely for axial-
flux permanent-magnet motors [23]. Because of the com-
putation load related to FEM, a field reconstruction method
was designed to reduce the computational load [24], [25],
[26]. Nevertheless, this approach brings a high error when
magnetic saturation occurs.

The problem is that many calculations are needed to create
those Pareto fronts, which is very costly in terms of com-
puting power. If multiple objectives need to be optimized
simultaneously, it is problematic. It is even more problematic
when the non-linear finite-elementmethod (FEM) needs to be
used to achieve a high-precision multi-objective optimization
process. Indeed, because of the non-linearity, its computation
burden is prohibitive. Hence, a reduction of the calculation
burden of the optimization procedure is needed.

Previous research provided many kinds of analytical mod-
els to reduce the computation burden, including the linear
relative permeance model [27], the linear complex perme-
ance model [28], or the linear subdomain model [29], [30],
[31], [32]. The linear subdomain model has been devel-
oped for many configurations. Many structures and phenom-
ena, including dynamic effects, can be considered in those
models [33]. Subdomain models have a wide application
range [34], including structures involving dual rotors [35].
Recently, subdomainmodels have been improved to deal with
structures containing some non-orthogonal boundaries [36].

It has been shown that the linear subdomain model is gen-
erally superior to the linear relative permeance model and the
linear complex permeance model in terms of accuracy [37]
and is also very fast. The accuracy is excellent for a system
with linear magnetic features, but when magnetic saturation
is present, the accuracy of the linear subdomain method
decreases. There have been attempts to include magnetic

saturation directly in the subdomainmodels, but the computa-
tional burden is high [38].Muchwork has also been published
using linear subdomain models to model and optimize struc-
tures [39], [40]. Nevertheless, as those models are linear, they
lead to incorrect structures. Indeed, motors used in motion
control systems need a high peak torque, which leads to high
magnetic saturation.

It is natural to use a linear subdomain model for preopti-
mization first, and then a non-linear FEM to further increase
the accuracy of the results. This approach can reduce the cal-
culation resource for optimizing SMPM machines in motion
systems. This technique is named the subdomain assisted
FEM optimization process (SAFEMOM). If no constraint
is imposed on the subdomain model, the designs resulting
from the preoptimization using the subdomain model are
far from the optimum. This is because magnetic saturation
is absent from the linear subdomain model. In the research
presented below, we found out that if constraints are imposed
to forbid the magnetic flux density from being greater than
the saturation point, the subdomain model does not provide
any helpful assistance in the optimization of machines used
in motion control systems.

Therefore, this article discusses a combination of the sub-
domain model and FEM to solve this problem properly.
We compare optimization done through SAFEMOM and
through FEM only. This comparison is made through quan-
titative measurement techniques. To the best of our knowl-
edge, we have not seen any discussion of this comparison,
nor quantitative measurements of convergence of such meth-
ods. We have not seen in-depth discussions with quantitative
results on how linear models should be properly constrained
to be of use for a non-linear optimization process. Also,
we have not seen any article showing how this combination of
a subdomain model and a FEM can achieve multi-objective
optimization, which shows high precision and reduced com-
putation burden.

In this article, we first define the optimization problem
in section II. In section III, we discuss the framework and
models for optimization. In section IV, we give a quantitative
technique to measure optimization convergence, and we also
give the SAFEMOM results. The SAFEMOM given in this
article is compared to FEM-only optimization techniques.
Finally, in section VI, we summarize the key contributions.

II. DEFINITION OF THE OPTIMIZATION PROBLEM
As the background of the article is motion control systems,
the speed of the motor is relatively low. Such applications use
SMPM machines (structure shown in Fig. 1) as their speed
is relatively limited. These applications need a significant
acceleration and deceleration to allow a displacement from
one point to another to be done quickly. For the displacement
to be repeated between two points at a high frequency, the
SMPM motor is optimized using the following three objec-
tives. 1) The peak torque is maximized. Therefore, minus
peak torque T is minimized. 2) The inertia of the rotor I
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FIGURE 1. Structure of the surface-mounted PM machine.

TABLE 1. Constraints and fixed parameters of the SMPM machine used
for the optimization.

is minimized, to allow high accelerations and decelerations.
As the speed is low, the power losses in copper represent
more than 98% of the losses. Therefore, for thermal and
efficiency reasons 3) the power losses L in the copper are
minimized. Each design p is identified by its three objectives
p = (L, I ,T ) and hence a point in the objective space.
In the optimization, the three following constraints are

used. 1) For cost reasons, the volume of PM is limited. 2) The
PM should not demagnetize. 3) Joule losses are limited to a
maximum value to avoid overheated designs. Joule losses are
also limited to a minimum value, as designs with lower values
do not provide enough torque. The values are given in Table 1
and Figs 2 and 3.

The following eight continuous variables are optimized:
1) the current density, 2) the thickness of the PMs, 3) the PM
opening angle ratio, 4) the tooth-tip opening ratio, 5) the tooth
length, 6) the stator yoke thickness, 7) the thickness of tooth-
tip 8) and the width of teeth. The ranges are shown in Table 2.
In the optimization, the PM (N48SH) at 80℃ is modeled

according to the magnetization curve shown in Fig. 2. The
ferromagnetic material is M19 steel. Its properties are shown
in Figs 3 and 4. The knee point of its B-H curve is at 1.3 T.
The knee point is calculated, based on IEC 61869, as the
point at which an increase of 50% of the magnetic field
intensity leads to an increase of 10% of the magnetic flux
density. In Fig. 3, themagnetic flux density of theM19 steel is

TABLE 2. Parameters of the SMPM machine which are optimized. The
dimensions are shown in Fig. 1.

FIGURE 2. Approximation of the PM (N48SH) magnetization curve
at 80◦C.

represented, and its value for low magnetic field intensity can
be clearly seen. In Fig. 3, we can see the magnetic saturation
of the M19 steel beyond 1.5 T more explicitly. The outer
radius and active length are fixed to keep the same cooling
surface area. The inner radius is fixed because the mechanical
design of the bearing is fixed. The air gap is assumed to
be 0.8 mm. The pole-pairs and slots combination are also
fixed during the optimization. The optimization is done using
two-dimensional modeling for the magnetic modeling. Mag-
netic end effects are not considered for the torque calculation,
and only the active length is taken for the inertia calculation.
Therefore, torque and inertia are proportional to the active
length. For the copper loss, we consider the end-winding
influence. The values of the motor fixed parameters are given
in Table 1.
The optimization is highly dependent on magnetic satura-

tion. Hence, there is a need for quick and precise optimization
that considers magnetic saturation. This optimization is done
through the framework shown in the next section.

III. THE FRAMEWORK AND MODELS FOR THE
OPTIMIZATION
A. FRAMEWORK OF SAFEMOM
The SAFEMOM we propose is a hybrid optimization with
two steps: the preoptimization using the subdomain method
and the refined optimization using FEM. More details about
the subdomain method and FEM are given in section III-B.
The optimization process is shown in Fig. 5. We chose a
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FIGURE 3. M19 Steel magnetic properties represented using a log scale
on the magnetic field intensity axis.

FIGURE 4. M19 Steel magnetic properties. A heavy saturation can be
clearly seen above 1.5 T.

FIGURE 5. The process of SAFEMOM (BCE-IBEA stands for Bi-criterion
evolution optimization as explained in section III-C).

population of 28, which means that 28 designs are computed
synchronously using an evolutionary optimization algorithm.

In the first step, the linear subdomain model is used to
approach optimal designs quickly. As the calculation time of
the subdomain method is extremely short, we take 300 gen-
erations in the preoptimization process. As the subdomain
model is based on iron with infinite permeability, we need
to give additional constraints to allow the algorithm to con-
verge closer to the optimal point. In Fig. 6, the different
lines indicate where the fluxes are limited due to saturation.
As the magnetic vector potential A is known in the different
points shown in the figures, the magnetic flux between these
two points is known. The flux going through the rotor yoke
between points 1 and 2 is known. Similarly, the flux in the
tooth tip between points 3 and 4, the flux in the tooth going
between points 5 and 6, and the flux in the stator yoke
between points 7 and 8 are all known. For each of those four
sections, the average magnetic flux density is constrained

FIGURE 6. Representation of the four places where the magnetic
saturation constrains the subdomain model. The different lines where the
magnetic flux is constrained are shown in dotted dark red.

TABLE 3. Optimization time for the different parts of SAFEMOM. The
subdomain model calculation time here includes the analytical
calculation of the torque, inertia, losses, and demagnetization check.

below a given density limit. If the subdomain model gives
a magnetic flux higher than the limit, the calculated design is
removed from the design space. A more detailed discussion
of the magnetic flux density limit value is given in section IV.
In this article, every time we mention a magnetic flux density
limit, it is a limit imposed only in the subdomain and not in the
FEM part of SAFEMOM. Indeed, the FEM part is non-linear.
Therefore, it takes magnetic saturation into account directly.

In the second step, based on the preoptimal results of the
first step, a non-linear FEM is used to refine the optimization.
As the non-linear FEM consumes much more computing
power, the number of generations is restrained to 50. This
restriction is reasonable, as the starting point of the non-linear
FEM optimization is not too far from the optimum.

The calculation time required for the optimization is shown
in Table 3, using AMD 3700X CPU and using an eight-core
parallel computer. The subdomain computation time is less
than 0.6% of the total computation time.

As we will see later, the fact that the subdomain model is
quicker than FEM is not a sufficient condition to allow the
reduction of the computation time in an optimization process,
nor is it a sufficient condition to increase the accuracy in a
given time. Indeed, a key question that needs to be solved
is how to constrain the analytical model in a way that helps
to increase the optimization speed and to allow it to get
closer to the Pareto front. Before discussing those constraints,
we give a short overview of the magnetic models used in the
optimization.

B. THE MAGNETIC MODEL USED IN THE OPTIMIZATION
1) SUBDOMAIN MODEL
The subdomain model relies on the following assumptions.
1) The permeability of iron is infinite. 2) The magnetization
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FIGURE 7. PM structure and its modeling using sectors vs. parallel teeth.

of the PMs is parallel. 3) The space between the PMs is
assumed to have the same permeability as the one of the
PMs. 4) No end effect is taken into account. 5) The teeth are
assumed to have both sides that are radial, whereas in reality,
both sides are parallel, as shown in Fig. 7. As the area of
the slot in the model is reduced compared to the reality, the
current is increased accordingly. The model is based on the
resolution of Laplace’s equation expressed in the cylindrical
coordinate system [41], in the air (layers 2 and 3 of Fig. 1)
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where A is the magnetic vector potential along z-axis, BR is
the remanent flux density, Jex is the excitation current density,
ϕ is the angle in the cylindrical coordinate system, and r is the
radius in the cylindrical coordinate system. A Fourier series
is used to apply these differential equations to each harmonic
of the magnetic vector potential. As those are second-order
differential equations, two constants must be solved for each
harmonic of themagnetic vector potential in each layer or sec-
tor. The values of those constants are found using the different
boundary conditions. The detailed resolution procedure is
given in [33] and [34]. In this form, the subdomain model
does not include magnetic saturation. Therefore, saturation is
considered by removing designs with a magnetic flux density
higher than the imposed limit in the different areas mentioned
in Fig. 6.

2) FEM MODEL
We use Matlab to control a FEM software called FEMM,
which allows us to obtain 2D FEMmagnetic field results. In a
typical calculation, the mesh has 7083 nodes and 12858 ele-
ments (Fig. 8). The mesh size has been decreased by using
symmetry and further reduced where it does not impact

FIGURE 8. Example of the FEM modeling of the structure.

the results significantly. Further calculation time has been
decreased through periodic air-gap boundary conditions that
remove the need to re-mesh the machine between two simu-
lations with different rotor angles.

Thismodel considersmagnetic saturationwithout any need
for additional constraints, but this is at the cost of the com-
puting time.

C. THE SELECTION OF THE OPTIMIZATION ALGORITHM
We can divide the computational time the evolutionary opti-
mization algorithm needs into two parts. Part A is the compu-
tation time the model requires, in our case, non-linear FEM
or subdomain, to give values for the objective function. Part
B is the time used by the algorithm to define which designs
need to be calculated in the next generation.

For the optimization of SMPM motors, more than 99% of
the computation resources are used to calculate part A. For
this reason, the question of the complexity of the optimiza-
tion algorithm itself is not critical in our choice. We chose
the Bi-criterion evolution optimization (BCE-IBEA [42]) as
the optimization algorithm, which is known to have a rela-
tively high computing time required for part B, compared to
other evolutionary optimization algorithms, like the NSGA-II
or NSGA-III [43], [44]. It combines the indicator-based
and non-dominated optimization algorithm advantages. It is
based on ideas coming from the strength Pareto evolutionary
algorithm 2 [9] and the indicator-based evolutionary algo-
rithm (IBEA) [45], the latest being inspired from the non-
dominated sorting in genetic algorithm II (NSGA-II) [10].
We chose it because it gives a better diversity of the results
in the Pareto front [46], which is a highly desirable feature,
as the resulting data are used in a Gaussian process regression
(GPR) [47].

IV. THE MEASUREMENT OF THE OPTIMIZATION RESULTS
As we have suggested a new framework for the optimization
of surface SMPMmachines, we need to haveways to evaluate
the quality of the results as a function of the different mag-
netic flux density limits used in the subdomain part of the
optimization process. The results need to be evaluated quan-
titatively and fairly. We discuss here mainly two indicators.

1) The spread of the results describes how the obtained
Pareto surface covers a wide range of parameters
(objectives). It is calculated through the hypervolume
indicator. It tells us how much hypervolume there
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FIGURE 9. Representation of a hypervolume in 2 dimensions.

is between the Pareto points and the reference point,
as shown in Fig. 9. Hence a more extensive range
of objectives increases the volume. Also, as we see
in the figure, a better optimization results in a bigger
hypervolume, as the goal is to minimize the objectives.

2) The convergence of the results describes the distance
between the calculated non-dominated solutions of
every generation and the approximate Pareto surface,
which is defined in section IV-A1. It is calculated
through the modified generational distance (GD+).
The GD+ tells us how far a set of points is from the
approximate Pareto surface. If the point is more optimal
than the approximate Pareto surface (objectives that are
lower than those of the Pareto surface), the value of the
distance between the point and the approximate Pareto
front is taken to be zero for the calculation of the GD+,
as shown in Fig. 10. This can happen because of the
computation noise of the models, or if the approximate
Pareto surface is slightly suboptimal.

The spread should be maximized, which means that the
hypervolume indicator should be maximized. Also, a good
convergence should be obtained, which means that the aver-
age GD+ should be minimized.

The traditional way to assess both spread and conver-
gence is through a visual check of the different optimization
points. In Fig. 11, we see the result of our optimization
process. In many papers, such figures are used to visually
assess the convergence and spread of the optimization. This
approach has clear limits, as it is not quantitative. This
approach is even more problematic if the Pareto front is
embedded in a four-dimensional space. Therefore, our quanti-
tative approach, which also works in higher dimensions, is of
critical importance.

Through the genetic algorithm, multiple designs are
obtained. Each design p is identified by the three values
(L, I ,T ), which are the objectives of the multi-objective opti-
mization. At the same time, each design’s parameters (dimen-
sions, material properties, current) are stored and associated
with the design p. The different designs are grouped to form
a dataset.

FIGURE 10. Illustration of the modified generational distance GD+ in a
situation with two objectives.

FIGURE 11. All the optimization results during the three objectives
optimization process.

The dataset is processed to measure the hypervolume and
GD+ indicators correctly. Two filters are used for this pur-
pose. They are defined in more detail in sections IV-C1
and IV-C2. Their key contribution and role are given here:

Firstly, the Niche-radius-based filter (NRBF) does mainly
two things. It keeps only non-dominated designs, and then it
reduces the size of the dataset of the non-dominated designs
to obtain a better distribution of the points. As those points
are used for a GPR, this distribution is essential for the
confidence interval calculated by the GPR. More details on
this filter are given in section IV-C1.
Secondly, the Robust filter removes unreliable designs

from the dataset. It removes noise on the indicators and allows
us to obtain better measurements. More details on this filter
are given in section IV-C2.

A. SPREAD CALCULATION
1) CALCULATION PROCESS
A general diagram of the whole computation that includes
this pre-processing for calculating the hypervolume indicator
is shown in Fig. 12. An intuitive representation of the hyper-
volume is represented in Fig. 9.
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FIGURE 12. Hypervolume indicator calculation process. Here the input
dataset is used as a training dataset for the robust filter DI = DT. The
details on both NRBF and robust filter are given in sections IV-C1
and IV-C2, respectively.

First, we start with the complete dataset. This dataset
includes different generation results taken during the opti-
mization process. In this calculation, some designs are kept
in the next generation, leading to an accumulation of points
in the same area and a bad distribution of the results in the
objective space around the Pareto front. Some areas have
many points, and some others do not. This distribution is
problematic, as these data are used for a GPR. This problem
is solved by using the NRBF defined in section IV-C1.

As evolutionary optimization involves a random process,
it induces some results far from the other results, which
mislead the calculation of the hypervolume. These results are
typically in an area of low distribution of points. This low
distribution of points has an impact on the GPR. Indeed, the
GPR has the great advantage of including both prediction
values and also a confidence interval for the predicted values.
This confidence interval relies on the distribution. Because
of this, the points of low distribution have low confidence,
as calculated with the GPR. These points are hence removed
for the calculation of the hypervolume. The robust filter
defined in section IV-C2 is used to remove those points.

From the filtered data of the complete dataset, we can
obtain the minimum and maximum for each objective, which
allow scaling the whole dataset and getting the reference
point for the hypervolume computation. The dataset for each
magnetic flux density limit is then filtered in the same way,
and the hypervolume indicator is calculated.

The calculation of the hypervolume indicator is given in
the Appendix.

2) COMPARISON OF THE SPREAD OF OPTIMIZATION
RESULTS
As in the evolution algorithm, the generations are calculated
using a process that involves randomness, the whole process
has been done 4 times to obtain average results. The com-
putation results of the hypervolume indicator as a function
of the magnetic flux density limits are shown in Fig. 13.

FIGURE 13. Average value of the hypervolume indicator of the optimized
results as a function of the magnetic flux density limit of the subdomain
model.

From the figure, we see that the hypervolume indicator, and
hence the spread of the points indicating the Pareto front,
stays relatively constant, with a slight increase as a function
of the magnetic flux density limit. There is no substantial
influence of the magnetic flux density limit on the spread.
Also, using FEM only, the hypervolume was calculated as
0.66. The optimization using FEM only does not give better
results in terms of the spread of the results. Although not
significantly better, SAFEMOMhas a slight advantage if high
magnetic flux density limits are used.

B. CONVERGENCE CALCULATION
1) CALCULATION PROCESS
To evaluate the convergence, we calculate the modified gen-
erational distance (GD+) to measure the distance between the
optimal points of a generation and the approximate Pareto
front. The evolution of this distance as a function of the
generation gives an insight into the optimization speed.

The whole computation of the GD+ is shown in Fig. 14.
For the computation, the complete dataset is used. Some
pre-processing is applied to it. The NRBF and robust filter
are used first. They give a dataset that has both a good
distribution and can approximate the Pareto front. Using the
GPR from the robust filter, we calculate uniform sampling
points. According to the GPR, some of those points have
low confidence. They are removed from the dataset using the
robust filter. A reference set P̃∗ is obtained, shown in blue
in Fig. 15.

The complete dataset is split into smaller datasets for the
measurement of the convergence of each of them. Each of
those smaller datasets is of one generation m only, and of
one level n of magnetic flux density limit Blimn only. Again,
the robust filter is used to remove points of high variance.
Different datasets Smn are obtained.
The GD+ indicator in this research is taken from [48]. Its

definition is as follows. Assuming we have a reference set
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FIGURE 14. Modified generational distance (GD+) process.

FIGURE 15. Uniform sampling (in blue) of the approximate Pareto front
calculated using the GPR based on the training dataset (in red). The
torque is taken as a negative value as a minimization is done in the
optimization.

P̃∗ = {p̃∗
1, p̃

∗

2, . . . , p̃
∗

Nr } with Nr normalized designs p̃∗

i ∈

[0, 1]3, uniformly sampled along the approximate Pareto
front. Assuming we have Smn = {p̃mn1, p̃mn2, . . . , p̃mnNs}
with Nmn normalized designs, p̃mni ∈ [0, 1]3, the distance
GD+ between Smn and P̃∗ is defined as [48]:

GD+(Smn) =
1
Nmn

(Nmn∑
i=1

(
d+

mni

)pg) 1
pg

, (4)

with

d+

mni =

√√√√ 3∑
k=1

(
max(p̃mni,k − p̃∗

j,k , 0)
)2

, (5)

and with p̃∗

j , j ∈ {1, . . . ,Nr } is the closest solution to p̃mni
in P̃∗. Here we take pg = 1. As k goes from 1 to 3, it is
understood that p̃∗

j,k with k = 1, 2, 3 refer to the normalized
losses, inertia, andmaximum torque of design p̃∗

j respectively.
This notation is used similarly for p̃mni,k .

2) COMPARISON OF CONVERGENCE OF OPTIMIZATION
RESULTS WITH DIFFERENT MAGNETIC FLUX
DENSITY LIMITS
We use the GD+ to compare the convergence of the opti-
mization results. The whole process is run four times to

FIGURE 16. The GD+ value is given as a function of the generations and
illustrates the convergence of SAFEMOM for different magnetic flux
density limits. For each magnetic flux density limit of the subdomain
model. The process has been done four times to obtain an average value.

obtain the average results shown in Fig. 16. The results show
explicitly that the magnetic flux density limit imposed on the
subdomain preoptimization greatly impacts the optimization
speed using FEM. Preoptimization with a very high magnetic
flux density limit, ie 2.8 T, gives designs much closer to
the optimum. Those designs converge much more quickly
using FEM.

The GD+ shows the average distance between the points
that have been found and their closest neighbor on the approx-
imate Pareto front. From Fig. 16, we can see that SAFEMOM
obtains excellent results in 30 generations only, if the imposed
magnetic flux density limit is high. Designs that are preop-
timized using a lower magnetic flux density limit converge
slowly.

In Fig. 17, the convergence is compared between
FEM-based optimization and the SAFEMOM with different
magnetic flux density limits. We see that the SAFEMOM
allows a better convergence than optimization based on FEM
only. The SAFEMOM using a low magnetic flux density
limit does not allow a much quicker convergence than the
optimization using FEM only.

C. USEFUL FILTERS FOR THE MEASUREMENT OF THE
QUALITY OF THE DATASET
Now that the measurement of the optimization results has
been explained, we give here the detailed calculation of the
filters used in this process.

1) NICHE-RADIUS-BASED FILTER (NRBF)
A genetic algorithm produces a dataset with many designs.
Some designs are optimal, and others are not optimal.
The NRBF filter ensures that only non-dominated designs
are kept. Therefore, dominated designs, known to be sub-
optimal, are removed. As defined in the Appendix, dominated
designs are designs with at least another design in the dataset
that has all three parameters L, I , and T smaller.
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FIGURE 17. Evolution of GD+ value in SAFEMOM given as a function of
the generations to show the convergence for different magnetic flux
density limits of the subdomain model. The convergence using SAFEMOM
is compared to the optimization using FEM only. The process has been
done 4 times for each magnetic flux density limit to obtain an average
value. The low limit is from 1.6 to 1.8 T, which is a typical value for the
subdomain model (slightly higher than the knee point). The medium limit
is from 2.0 to 2.4 T, the high limit is from 2.6 to 3.0 T.

The second function of the NRBF is to ensure that the
distribution of the remaining designs is good. It does so by
removing designs where the density of the non-dominated
designs is too high. As a result, a better distribution is
obtained.

For this purpose, the algorithm contains a loop that reduces
the size of the dataset. At each iteration, it looks for the
place with the highest density of non-dominated designs and
removes a design from that place.

The definition of the NRBF is inspired by [42]. This filter
reduces the data and ensures that the remaining data have
a good distribution. As the NRBF uses the niche radius,
we define it first. The niche radius represents the average
distance between the points and the k th nearest neighbor of
each of them. It is calculated in this way:

rniche,k =

∑
p̃∈Q

d(p̃, p̃k )
NQ

, (6)

where p̃ is any point representing the normalized objectives
of a design in the dataset Q, p̃k is the k th nearest neighbor
of p̃, NQ is the number of points in Q, and d(p̃, p̃k ) is the
distance between p̃ and p̃k . In our study we use k = 6. Also,
the crowding degree function is defined as:

Ccd(Q, rniche,k , p̃) = 1 −

∏
q̃∈Q

{
d(p̃,q̃)
rniche,k

if d(p̃, q̃) ≤ rniche,k
1 otherwise.

(7)

The computation process of the NRBF uses the notions
above and is given in the form of a pseudo-code in
Algorithm 1.

Fig. 18 shows the impact of the NRBF. The original data
are shown in blue, and the data kept by the NRBF is shown

Algorithm 1 Niche-Radius-Based Filter (NRBF)
Pseudo-Code
Input: QI: Input dataset
Ns: Number of points in the output dataset

Output: QO: Output dataset
Process:
k = 6 number of closest neighbors to consider
Select the non-dominated points in QI
and store them in QND

Remove duplicates from QND
Calculate nniche,k using (6) for the dataset QND
Calculate Ccd(Q, rniche,k , p) ∀p ∈ QND using (7)
and put in vector vc of length Nd .

while Size of QND > Ns
if max(v1, . . . , vNd ) > 0
Find the maximum vi from (v1, . . . , vNd )
Remove the point p, related to vi, from QND

else
Update nniche,k using (6) for the dataset QND

end
Update Ccd(Q, rniche,k , p) ∀p ∈ QND using (7)
and put in vector vc of length Nd .

end
return QO = QND

in red. The figure shows that the NRBF keeps the key infor-
mation from the Pareto front and ensures a relatively uniform
distribution of points.

2) ROBUST FILTER
The second filter we define is called ‘‘robust filter’’. The
robust filter aims to remove the points related to high uncer-
tainty from the dataset, to increase our confidence in the
dataset. For this purpose, the GPR is used with a Matern
kernel with parameter 5/2 [47]. The algorithm is shown in
Algorithm 2, as a pseudo-code.

The impact of the robust filter applied on the dataset
already filtered by the NRBF is shown in Fig. 19. From the
figure, we see that the robust filter removes some unreliable
points which have low confidence, as calculated by the GPR.
If those points had been taken into account, it would have led
to a misleading measure of the hypervolume and GD+.

V. DISCUSSION
A comparison summary can be found in Table 4. In this
Table, we see that the SAFEMOM with a high magnetic
flux density limit has a significant advantage compared to
optimization using FEM alone, but this is only the case when
a very high magnetic flux density limit, ie 2.8 T, is imposed.
In that case, it converges much more quickly than FEM.
To reach a GD+ convergence of around 0.025, SAFEMOM
needs only 10 generations, whereas optimization with FEM
needs 50 generations. This means a reduction of about 80%
of the time. If a slightly higher GD+ is accepted, and hence
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FIGURE 18. Filtering effect of the NRBF on the dataset. The original
dataset is shown in blue, and the filtered dataset is shown in red. The
torque is taken as a negative value as a minimization is done in the
optimization.

Algorithm 2 Robust Filter Pseudo-Code
Input: DT: Training dataset, with NDT elements
DI: Input dataset

Output: DO: Output dataset
Process:

1) Train the surrogate model of the torque as a function
of losses, and inertia ∀i: TGPR(Li, Ii), using GPR on the
dataset DT.

2) For each couple (Li, Ii) ofDT, using the GPR, calculate
the upper boundary TT,up,i and lower boundary TT,low,i
of the prediction interval of 95%.

3) ∀i write δT,i = TT,up,i − TT,low,i
4) δT,av =

∑NDT
i=1

δT,i
NDT

5) σT =

√
1

NDT

∑NDT
i=1 (δT,i − δT,av)2

6) if no input of DI
DI = DT

end
7) For each couple (Li, Ii) of DI, calculate the upper

boundary TI,up,i and lower boundary TI,low,i of the
prediction interval including 95%, using the surro-
gate model TGPR, trained using the GPR calculated
using DT.

8) ∀i write δO,i = TO,up,i − TO,low,i
9) From the dataset DI, remove all points i such as δO,i >

δT,av + σT and we obtain DO
10) if each data of DO just have two elements (Li, Ii)

Do the prediction of Ti = TGPR(Li, Ii) and add it into
the DO.
end

11) return DO

results are slightly less optimal, the time reduction is even
higher.

FIGURE 19. Robust filter influence on the dataset. The torque is taken as
a negative value as a minimization is done in the optimization.

TABLE 4. Calculation of the optimal designs used to calculate the Pareto
surface: comparison between the three methods. The calculation time
given is a calculation time that includes 50 generations and the
preoptimization time for the SAFEMOM. ‘‘Low magnetic flux density limit’’
is from 1.6 to 1.8 T, which is a typical value for the subdomain model
(similar to the knee point). ‘‘High magnetic flux density limit’’ is from
2.6 to 3.0 T.

From Fig. 17, we see that when we compare both
SAFEMOM and FEM optimization method after four iter-
ations only, the GD+ of SAFEMOM is reduced by a factor
of nearly eight. This means that if only limited computation
resources are allowed, then SAFEMOM gives much more
optimal results.

SAFEMOM using a 1.6 T magnetic flux density limit is
not advantageous compared to FEM. Indeed, although 1.6 T
is close to the knee point of the BH curve of the material,
the optimization using this magnetic flux density limit gives
designs with dimensions that are far from optimal. However,

8618 VOLUME 11, 2023



P.-D. Pfister et al.: Multi-Objective Finite-Element Method Optimization That Reduces Computation Resources

FIGURE 20. Peak torque: average error between the calculation using the
subdomain model and the calculation using FEM.

FIGURE 21. Average torque as a function of tooth opening ratio,
calculated with the subdomain model (red, yellow, and blue curves) using
different magnetic flux density limits, and calculated through non-linear
FEM (green curve). The calculation clearly shows the need to use high
magnetic flux density limits to obtain designs structurally closer to the
optimum calculated using a non-linear method.

an optimization using a high magnetic flux density limit gives
designs that have dimensions much closer to the dimensions
found on designs on the Pareto surface.

This may seem counterintuitive. Indeed, the torque pro-
duced by design with 3 T magnetic flux density limit has
more error than that with 1.6 T magnetic flux density limit,
as shown in Fig. 20. Moreover, this graph is consistent with
the material properties shown in Figs 3 and 4. The error is
calculated using non-linear FEM as a reference.

The fact that the subdomain optimization using a high
magnetic flux density limit gives machines parameters much
closer to the optimum can be explained using both FEM and
subdomain model, as seen in Fig. 21. In that calculation,
we calculated the torque with FEM and with the subdomain
model for different width of teeth, with different magnetic
flux density limits. We see clearly on the graph that if the
magnetic flux density limit is 2.8 T, although the torque
is very different between FEM and subdomain, the optimal
width of teeth is similar. Moreover, if the magnetic flux

density limit is too high, namely 3.6 T, this allows a more
diverse set of parameters in the preoptimization. Therefore,
the optimization using a genetic algorithm reaches the opti-
mum more quickly.

VI. CONCLUSION
It is believed that to increase the accuracy of linear subdomain
models when used to model PMmotors having materials that
saturate, we need to limit the field in the ferromagnetic part to
stay under the level of magnetic saturation of those materials.
This belief seems intuitive. When used in an optimization
process, this approach using linear subdomain models pro-
duces designs that exhibit torques similar to those of designs
optimized using non-linear FEM. However, as shown in this
study, the dimensions of the designs optimized with a linear
subdomain model, using the actual saturation level of the
material for the magnetic flux density limit, are useless.
Indeed, non-linear optimization shows that those designs are
far from the optimum. It is difficult for the optimization to
converge to optimal dimensions starting with the dimensions
of those designs. Therefore, this common belief is inefficient
for optimization.

The solution to this problem is that the magnetic flux
density limit in the linear subdomain model needs to be taken
as very high, in our case 2.6 T to 3.0 T, to ensure that the
dimension design space is not over-constrained. This high
limit leads to designs that exhibit a different torque than
their counterpart calculated with non-linear FEM, but those
designs have dimensions much closer to the optimum.

When this technique is used as a quick preoptimization,
it allows a much quicker and more precise optimization
afterward. Indeed, this has been quantitatively assessed with
the GD+ measure. Also, it allows the hypervolume to be
increased slightly with a high magnetic flux density limit,
which means that the space covered is slightly bigger. There-
fore, increasing the magnetic flux density limit was not
done at the cost of a cover range. SAFEMOM has a similar
cover range compared to the optimization using FEM only.
SAFEMOM can reduce about 80% of optimization comput-
ing time compared to FEM, for a similar GD+ convergence of
about 0.025 in this optimization process. If a higher GD+ and
hence higher error are accepted, the computing time is even
shorter. Also, if only limited computation resources time is
allowed, then the GD+ value is divided significantly (about
eight times). SAFEMOM hence produces less error when the
computation resources are limited.

The optimization results of this study have been obtained
using a broad family of SMPM machines, not only a few
designs. Also, the steel used in this study is typically used in
industry. It exhibits a typical non-linear relationship between
magnetic flux density andmagnetic field intensity. Therefore,
the validity of the conclusion is broad.

As the measurement tools presented in this research are
general, and as the subdomain models can be quickly devel-
oped for other types of structure, the presented method has
broad application for other structure types and applications.
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We expect a further decrease in the computation burden to
be achieved through more complex constraint functions for
the magnetic flux density in the subdomain. Future work will
involve using these techniques to optimize motion control
systems.

APPENDIX. HYPERVOLUME INDICATOR CALCULATION
The calculation of the hypervolume indicator is based on the
definition given by Zitler and Künzli [45]. The definition is
reduced to a hypervolume of 3 dimensions.

Each design is identified by its 3 objectives p = (L, I ,T ),
which are the losses, inertia, and negative peak torque.
Taking the maximum and minimum values of (L, I ,T ) for
our dataset, the losses, inertia, and torque are normalized
from 0 to 1. The normalized designs are hence given by p̃ =

(L̃, Ĩ , T̃ ) ∈ (0, 1)3. By definition, theweak Pareto-dominance
relation ⪰ between two designs p̃1 and p̃2 indicates that the
design p̃1 is at least as good as p̃2, which we write (p̃1 ⪰ p̃2),
if and only if L̃1 ≤ L̃2, Ĩ1 ≤ Ĩ2, and T̃1 ≤ T̃2.
In the same way, we can write this definition for sets. Let

us define two sets of designs P̃1 and P̃2, then, by definition,
P̃1 weakly dominates P̃2 if and only if ∀p̃2 ∈ P̃2, ∃ p̃1 ∈ P̃1 :

p̃1 ⪰ p̃2 [45].
For a set P̃1, and any design z ∈ [0, 1]3, the attainment

function αP̃1
: [0, 1]3 → {0, 1} for P̃1 is defined as [45]

αP̃1
(z) =

{
1 if P̃1 ⪰ {z}
0 else.

(8)

The hypervolume indicator I∗H (P̃1) is defined as [45]

I∗H (P̃1) =

(1,1,1)∫
(0,0,0)

αP̃1
(z)dz. (9)

This is calculated through the code given in PlatEMO [49].
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