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ABSTRACT Efficient intersection planning is one of the most challenging tasks for an autonomous vehicle
at present. The degree of response to other traffic participants and whether the path tracking effect is good are
the key aspects that determine the performance of planning algorithm for an autonomous vehicle. In order
to deal with these problems, in this paper, the frame structure of POMDP (Partially Observable Markov
Decision Processes) and the time distance coordinate system are combined to carry out the speed planning for
the self-propelled vehicle. The speed planning designs a novel POMDP model to ensure effective prediction
of behavioral intentions and decision-making at intersections with no traffic signs. Specifically, the method
is considered both the driving position and the time range of arrival of the vehicle at the intersection in real-
world situations. At the same time, the algorithm is projected the state information into the time distance
coordinate system in the form of probability, and used the value iterationmethod to solve the optimal solution,
so as to improve the adaptability of the algorithm to real-world scenarios. Furthermore,MPC control is added
on this basis. Rational use of dynamic MPC and kinematic MPC can effectively reduce the tracking error,
improve the stability of tracking, and carry out finer control when the speed frequently fluctuates.

INDEX TERMS POMDP, MPC, distance time coordinate system.

I. INTRODUCTION
In the past few years, with the development of the automobile
industry, more andmore cars were equipped with the function
of autonomous driving, a large number of algorithms were
used to solve the problem of automobile path planning and
tracking decision. However, most of the vehicles provided
with autonomous driving functionwere running in somefixed
scenes or some structured scenes. For complex scenes, the
voice prompted the procedure to exit and require manual
takeover. In the whole process from the driver entering the
vehicle at the starting point to drive and leaving the vehicle
at the destination, it was rare that the vehicle can fully drive
autonomously. One of the key difficulties lied in the terrible
traffic conditions, such as intersections without traffic signs.
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approving it for publication was Yang Tang .

The scene of intersection is one of the most commonplace
scenes for vehicles on the road, and its complexity and dan-
gerous degree also vary widely, requiring avoidance of pedes-
trians, vehicles and other static obstacles [1]. The avoidance
of these objects is directly related to local path planning.
Generally speaking, the decision and planning of local path
are usually decouple into a position state and a velocity state.
The position state is applied for the static obstacle, and the
velocity state is for the dynamic obstacle. In the intersection
scenario, it is also necessary to consider a tracking control
state of the autonomous vehicle path, so that the vehicle can
pass through this scenario safely and efficiently. Moreover,
in the actual scene, due to noise, distance limitation and
sensor occlusion, the perception of autonomous vehicles is
uncertain. And considering the intentions of other traffic
participants, their behavior cannot be accurately predicted.

Many researchers studied the intersection scenarios, such
as the adaptive signal controlled scheme to reasonably
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allocate the green time and prevent vehicle congestion [2].
In order to help drivers pass the intersection safely, the
pre-collision acceleration model of non-turning drivers in
straight-line crossover path collision, the pre-collision accel-
eration model

of left-turning drivers in the left turn crossover path reverse
direction collision and lateral collision were established [3].
Methods related to intersections are broadly divided into three
categories.

1) The first category is non-learning based method. These
schemes don’t involve learning. For example, in the
DARPA Urban Challenge, hierarchical state machines
were applied to define the expected behavior of vehi-
cles in the different scenarios, such as driving straight
on urban roads, changing lanes, and turning left at
intersections [4], [5]. However these methods ignore
the uncertainty of the decision process. For the forma-
tion of the tracking path, a reaction-based trajectory
generation method was proposed to avoid a collision
on the road [6]. For the constraint of comfort, a new
longitudinal driving strategy was proposed to carry out
in a discrete planning, so that the driving vehicle can
better recognize and respond obstacles [7]. But these
planners tend to be too conservative. For the question
of whether it can be stable during lane change, sta-
ble trajectory planning was achieved by establishing
dynamic constraints on vehicles during lane change,
with limiting time-dependent lane changing yaw veloc-
ity and lateral acceleration [8]. Nevertheless, surround-
ing vehicles were not considered.

2) The second category is supervised learning method.
Such as, logistic regression model was used to deduce
the probability of different intentions of other drivers,
and a unified planning framework under uncertain
probability was proposed to realize the decision of
vehicles overtaking and yielding at intersections [9].
In addition to manually design driven decision, high
performance driving strategies can also be obtained by
collecting driving data and offline learning [10]. How-
ever, thesemethods are independent of the futuremove-
ment of autonomous vehicles and lack of interactivity.

3) The third category is Reinforcement learning method.
This can be divided into offline and online modes.
Offline policies are powerful and can solve very com-
plex situations: Mixed Observable Markov Decision
Process (MOMDP) was used to describe the vehicle
problem in the intersection scene as an intentions-
aware planning decision problem, and the driving
intentions of additional vehicles were considered in
the discrete state space [11]. Considering that there
may have obstruction in an uncertain environment,
continuous POMDP was used to solve this problem,
and a general method for decision-making in uncertain
driving environment was proposed [12]. The disadvan-
tage of these offline methods is that the diversity of

scenarios and vehicle configurations can lead to poli-
cies that are unpredictable. Online approach requires
trade-offs between solution quality and the complexity
of problem formulation, depending on the size of the
state space and planning horizon. For example, in order
to adapt sensor noise in urban traffic, POMDP method
was utilized to realize real-time decision when vehicle
lane changes [13]. Because of the simplification of
state space, this method can not be easily transferred to
intersection planning. For the uncontrolled intersection
scenario, the Hidden Markov Model (HMM) was used
tomodel the behavior of other traffic participants, after-
wards the POMDP decision-making process was estab-
lished. The human-like strategy generation mechanism
was used to generate candidate decisions to make them
pass the intersection [14]. The intention estimation was
assumed to be deterministic in the planning process.
Therefore, no information-gathering operation was car-
ried out. Aiming at the scene with complex pedestri-
ans, an intention-aware online planning approach for
autonomous driving amid many pedestrians was pro-
posed, which can drive safely, efficiently and smoothly
as near the pedestrians [15].

This paper studies the special movement scene of intersec-
tion scenarios without traffic signs. For such a low or middle
speed scenario, the autonomous vehicle needs to predict the
vehicle’s behavior intention in order to prevent collisions,
or to yield to other vehicles and pedestrians. In this scenario,
in the absence of static obstacles, the moving destination
target of both the ego-vehicle and the target vehicle is limited,
and the corresponding path is restricted. No special planning
is required for the position statement of the ego-vehicle.
We focus on the planning of the speed and the tracking state
of the ego-vehicle in the arc trajectory of intersection.

The contributions in this paper are two-folds:

1) POMDP and time distance coordinate system are used
as the two methods for complementation. The advan-
tage of POMDP method is a random process in accor-
dance with the actual environment [16], [17], which
can be an appropriate modeling calculation for com-
plex scene, but it needs a lot of computing power.
The method of time distance coordinates system is one
of the methods based on the reaction formula, which
has the advantages of simplicity, high efficiency and
strong adaptability, but has the disadvantage of hystere-
sis. Furthermore, combining the characteristics of the
two methods, we can achieve another speed planning
method. This proposed method improves the interac-
tivity and decision-making ability to the surrounding
dynamic traffic participants while reducing the compu-
tational power. Under appropriate circumstances, it can
also degenerate to a linear prediction.

2) For the position tracking control, the ego-vehicle itself
is not stabilized when passing the arc trajectory. After
adding the velocity planning to the ego-vehicle, it is
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FIGURE 1. Simulink simulation architecture.

easier to cause the tracking error to become larger
because of the frequent fluctuation of the velocity.
Vehicle MPC control [18], [19] is the most commonly
used method, which can be divided into the dynam-
ics and kinematics according to the characteristics of
modeling with different advantages. The combination
of the two modeled MPC control methods can be used
alternately to avoid their respective shortcomings. This
control method is suitable for intersections with no
traffic signs.

II. RELATED WORK
In this paper, we useMATLAB/Simulink simulation software
to complete the whole closed-loop simulation experiment.

Fig.1 is the architecture diagram of the entire closed-
loop simulation module. The vehicle adopts a bicycle model,
and the simulation scene is set up by the Driving Scenario
Designer APP of MATLAB. The data of the camera and
radar in the data fusion module are used separately, and the
camera is used to collect the lane line. Radar is devoted to
detect the target vehicle. The prediction module carries out
a separate setting for the scene, and will give the path of
every conceivable target point of the target vehicle, as well
as the probability of its driving intention. And it also simu-
lates the output given by the actual prediction algorithm. For
the path planning module of static obstacle avoidance, A∗

algorithm [20], [21] and ego-vehicle coordinate system are
utilized to search the path. The obstacle avoidance of dynamic
obstacles is based on the combination of POMDP and time-
distance coordinate system. The overall process is shown in
Fig.2. Before that, the static obstacle avoidance method of
vehicle in road coordinate system is introduced. As shown in
Fig.3.

The coordinate system in Fig.3 adopts the Frenet coordi-
nate system. The S axis is the center line of the road, which
can be obtained from the lane line. The L axis is the direction
perpendicular to the S axis. The red part in the Fig.3 is
the projection of the static obstacle in the Frenet coordinate
system. At this time, there are two ways for the vehicle to per-
form static obstacle avoidance: the first is to directly change
the lane, using polynomial curves, Bezier curves, B-spline
curves, sine-cosine curves or Dubins curves to connect to
the center line of adjacent lanes; the second is to keep the
lane unchanged and expand the driving range, which needs to
evenly scatter points in Frenet coordinate system. The single
point of each layer adds smoothing cost, distance obstacle

FIGURE 2. The overall implementation steps of method in a flowchart.

FIGURE 3. Static obstacle avoidance in Frenet coordinate system.

cost and distance reference line cost as its final cost, and
then the convex space is opened up by dynamic programming
method to find a rough solution, such as the green curve part
of the graph. Finally, the path of static obstacle avoidance is
planned by smoothing the green curve.

The static obstacle avoidance at the intersection is a little
special. The entrance and exit of the intersection are struc-
tured roads, and only the middle connection is a large open
area where all lane line information is not visible. In fact,
all driving routes of vehicles passing through this area are
shown in Fig.5. This means that open space at intersections
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FIGURE 4. Paths searched using A ∗ at roundabouts.

are actually unstructured areas affected by structured roads.
When the unstructured area affected by the structured road
is a regular shape, the driving path of the vehicle can be
connected by an arc. When there are static obstacles, it is still
possible to take the arc as the S-axis of the Frenet coordi-
nate system and use the above second way to avoid static
obstacles. But when the unstructured area affected by the
structured road is irregularly shaped, similar to a roundabout,
the directly connected curve is difficult to find, so a path needs
to be searched out. A∗ search is used and the formula is as
follows

f = g+ h (1)

where adopts the Euclidean distance. The effect of the search
is shown in Fig.4. Blue is the starting point and red are
the target points. When the vehicle turns left through this
intersection, the path is one of the green curves, of course,
the path needs further smoothing.

When the intersection shape is irregular and there are com-
plex static obstacles, the vehicle must get rid of the influence
of the structured road on the unstructured area if it wants
to pass through the area safely, and the path of the static
obstacle avoidance must be an irregular curve. As shown
in Fig.5, if there are too many static obstacles in the scene,
when the blue vehicle passes through the intersection, its
path can pass through the area in front of the red vehicle
or the green vehicle. Under normal circumstances, the path
planned by the blue vehicle cannot pass through these areas
under the influence of the structured road. At this time, it can
consider Yi et al.’s improved P_RRT∗ algorithm [22], Xiang
et al.’s improvedA∗ algorithm [23] orWang et al.’s PGI-RRT∗

algorithm [24]. These algorithms are effective algorithms in
the face of complex static obstacles. In addition, when the
vehicle passes through the scene of complex static obstacles,
the speed is generally low, and there will be sufficient time to
plan. In practice, it is very rare for intersections to have irreg-
ular shapes and complex static obstacles. By changing lanes,
or keeping the lane unchanged and expand the driving range

FIGURE 5. Reference path network of vehicles at the intersection.

or simple A ∗ search, most of the static obstacle avoidance
path planning of the vehicle can be satisfied.

The premise of the research is that the vehicle can perform
static obstacle avoidance. And the speed planning module
of POMDP and the control module of MPC are the main
contents of this paper. The main validation is the feasibility
of the POMDP model framework combined with time dis-
tance coordinate system, the hybrid control effect of dynamic
MPC and kinematic MPC. Therefore, static obstacles are not
installed in the intersection scenarios without traffic signs.

III. PROPOSED METHOD
A. POMDP MODEL COMBINED WITH DISTANCE TIME
COORDINATE SYSTEM
POMDP decision process is a sequential decision model in
a dynamic environment, which is partially known about the
environment state. Based on MDP, POMDP considers the
partial observability of the environment. Thatmeans the agent
cannot obtain the environment state accurately. In unmanned
driving, the vehicle itself can not fully obtain the driving path
and intention of other vehicles.

A POMDP can be described by a seven-tuple array
[S,A,T,O,Z,R,γ ]. S is the set of states in the decision-making
process.A is the set of actions in the decision-making process.
T is the transition probability between states. O represents
the observation state of the environment by the agent. Z is
the observation function or the observation probability. R
is the payoff after taking an action to reach the next state.
γ is the discount factor for subsequent rewards.

The probability of a state transition depends on the action

Pass′ = p(s′|s, a) = p(S ′

t+1 = s′|St = s,At = a) (2)

The observation probability of the agent is also related to the
action

Zas′o = p(o|s′, a) = p(Ot+1 = o|S ′

t+1 = s′,At = a) (3)

Compared with MDP, POMDP also has an initial probability
distribution b(s), which represents the probability distribution
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of the current state. The updated formula is

b′(st+1) = p(st |o, a, b) =
p(o|s′, a) ·

∑
s p(s

′
|s, a)b(s)

p(o|a, b)
(4)

p(o|a, b) =

∑
s′
p(o|s′, a)

∑
s
p(s′|s, a)b(s) (5)

The Bellman optimal equation of the reward function is

R∗
t (b) = max

a∈A
[ρ(b, a) + γ

∑
o∈O

p(o|b, a)R∗

t+1(b
′)] (6)

where ρ(b, a) =
∑

s′ b(s)V (s, a), V(s,a) represents the imme-
diate reward for performing action A in state S.

Depending on the basic definition model of POMDP, the
car passing through the intersection scenarios without traf-
fic signs is modeled. It is assumed that the state of the
autonomous vehicle is known, that is, the autonomous vehi-
cle is completely observable in the process of moving. The
coordinate system is the coordinate system of the car body.
The trajectory and velocity of the ego-vehicle are decoupled
and decomposed into a trajectory planning and a velocity
planning. The intersection scenario without traffic signs is
shown in Fig.5. The number of one-way lanes is 3, and the
number of lanes has no essential impact on scene modeling.
In the figure, cyan curves are the driving route connected by
each lane, and the orange triangle is the driving target position
of the ego vehicle. The red, green, black and yellow rectangles
are the location of the target vehicle. There is no signal in this
scene, that is, no traffic light sign, no lane restriction sign, and
no headlight sign.

The forward direction of the autonomous vehicle at the
intersection is determined according to the driving intention
of the driver. After the vehicle’s driving intention is deter-
mined, the target lane is also determined, which is the middle
lane by default. The actual driving will also be affected by
other vehicles to change the target lane, which is not con-
sidered in this paper. At this time, the trajectory that the self-
propelled vehicle needs to track laterally has been completely
determined, and the longitudinal speed planning needs to be
completed with the POMDP model.

According to the prediction module, there are four kinds
of driving intentions, namely [turn left, turn right, straight
on, turn round], and each intention has different probability.
Driving intention is the set of state S in POMDP and the
set of observed state O of the vehicle, and the correspond-
ing probability of driving intention is the initial probability
distribution b(s). The set of action A is [accelerate, con-
stant, decelerate], with the difference between ATarget and
AEgo−Car . The intention state of the target vehicle will not
change due to the change in the behavior of the ego vehicle,
which means that the state transition matrix T is fixed. The
observation probability depends on the camera and radar of
the ego-vehicle. And the observation probability matrix Z
is fixed. According to equations (2), (3), (4) and (5), the
probability value of the target vehicle’s driving intention at
the next time can be obtained. The probability value of each
intention can be divided according to the number of lanes of

FIGURE 6. Speed planning process of POMDP combined with distance
time coordinate system.

the target car. In a single lane, the probability of the target
vehicle’s driving intention is also the probability of driving
in the lane. In the case of dual lanes, the weight of the inner
lane is larger than that of the outer lane, and the probability
of the target vehicle’s driving intention is assigned according
to the weight. In the case of three lanes, the middle lane has
more weight and the two lanes have less weight. In order
to simplify the model, the weights are evenly distributed.
The probability of the target vehicle’s driving intention was
assigned to the driving path of each lane, and the driving path
of the autonomous vehicle was used for collision detection
to extract the target vehicle’s driving path with intersecting
trajectories. The speed planning operation was performed
with time distance coordinate system, as shown in Fig.6.

Combined with the flow chart, each target vehicle path
that intersects with the ego-vehicle path has its correspond-
ing probability value, which is represented by Pintersect .
When operating with the time distance coordinate system,
it is necessary to extract other states of the target car
except the driving intention. Once the intersection is deter-
mined, the distance from the ego-vehicle to the intersection
and the distance from the target vehicle to the intersec-
tion can be calculated, which are represented by dEgo and
dTarget respectively. These two distances are corresponding
to each other: use dTarget for target calculation, use the corre-
sponding dEgo for projection on the distance time coordinate
system.

The state transition matrix of the target vehicle in the path
is (

dk+1
vk+1

)
=

(
1 1t
0 1

) (
dk
vk

)
+

(
1t2
2

1t

)
ak (7)
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FIGURE 7. Curve of solving the equation.

where ak ∈ ATarget . Because the intersection point is solved,
the dk in the target transition matrix is limited by the maxi-
mum value, and the ak of the target vehicle is also limited by
the maximum value, namely ak ∈(-amax , amax). If the vehicle
observes the position state dk and speed state vk of the target
vehicle, the state quantities vmin and vmax of the two limit
conditions reaching the intersection point can be calculated,
and the corresponding limit time tmin and tmax can also be cal-
culated. vmax is generally limited by the road speed. The limit
state quantity of the target vehicle is discretized respectively,
and the possibility of each combination is solved. In fact,
it is to solve all curves satisfying the constraint conditions
of formula (8) in Fig.7.

The horizontal axis is time, and the vertical axis is speed.
The curve satisfies the formula

V (0) = vk
V (tm) = vm
V (t)max = vmax
V (t)min = vmin
V (t)′max = amax
V (t)′min = −amax∫ tm
0 V (t) = dT arget

(8)

where tm ∈ (tmin, tmax), vm ∈ (vmin, vmax).
All curves satisfying the constraints of time and speed

can be calculated, and the probability of the target vehicle
reaching the state of the crossing point can be calculated
according to the probability formula. Assuming mmax=n, the
probability matrix is shown in Formula (9).

q =

intersection tmin → tmax
vmin p11 · · · p1n

↓
...

. . .
...

vmax pn1 · · · pnn

(9)

As the distance and speed of the target vehicle are changed,
its probability matrix will also change. dTarget is discretized,
assuming it is discretized into k parts. Then the probability
matrix is transformed into

target 0 → vmax
0 q11 · · · q1n

↓
...

. . .
...

dT arget qk1 · · · qkn

(10)

FIGURE 8. Probability distribution of a vehicle arriving at the collision
point.

According to probability matrix (9) and probability matrix
(10), the probability P obtained by interpolation is multi-
plied by Pintersect , which is the additional weight on the
time distance coordinate system. The probability of ak in the
above solution process is an equal random process, and its
action probability can be selected according to the driving
style of the actual driver. Due to the existence of observation
probability, the observation state needs to be discretized and
then interpolated. After all the additional weights of a single
target vehicle are added to the time distance coordinate sys-
tem (Fig.8), it is a contour plane with different probabilities.
The corresponding different colors are an additional weight
loss when the ego-vehicle reaches this point during speed
planning.

When multiple target vehicles are detected, the additional
weight of each vehicle will be projected onto a time distance
coordinate system. If loss weight of different target vehicles is
taken to the maximum value for each point in the coordinate
system, it represents the possibility that each point is occupied
by only one vehicle. When the vehicle with the largest weight
occupies this point, other vehicles cannot occupy this position
at the same time. In this case, no collision will occur by
default. When the weight of each point in the coordinate
system is accumulated, it represents the dangerous degree
of each point at the corresponding time, which means the
degree of collision of the car at this point at the corresponding
time. Results will be calculated on the time distance coor-
dinate system according to the loss weight after the final
superposition. Since the state of the ego-vehicle is completely
known, the classical value iteration algorithm of MDP can
be used to solve the problem. However, the difference is that
the complete action curve on the time distance coordinate
system is not required, and only the discrete action AEgo−Car
of the ego-vehicle at the next moment can be iteratively
stable. Depending on the corresponding cost, the optimal is
selected, which represents the action to be executed at the next
moment.

B. KINEMATIC MODEL MPC
The kinematics of the vehicle is modeled. According to
Fig.9, it is assumed that the state quantity deviation and
control quantity deviation of the vehicle are as shown in
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FIGURE 9. Kinematic model of vehicle.

Equation (11)

x̂ =

 ẋ − ẋr
ẏ− ẏr
φ̇ − φ̇r

 , û =

[
v− vr
δ − δr

]
(11)

The kinematics equation of the vehicle is
ẋ = vx = v cosφ

ẏ = vy = v sinφ

φ̇ =
v tan δ
l

(12)

According to Fig.9 and Equations (11) and (12), the discrete
state space equation of the vehicle kinematic model is as
follows

x̂(k + 1) =

 1 0 −Tvr sinφr
0 1 Tvr cosφr
0 0 1

 x̂(k)

+

 T cosφr 0
T sinφr 0
T tabφr

l T vr
l cos2 δr

 û(k) = ax̂(k) + bû(k)

Define the output equation

y(k) =

 1 0 0
0 1 0
0 0 1

 x̂(k) = cx̂(k) (13)

Build a new state vector

ξ (k) =

[
x̂(k)

û(k − 1)

]
(14)

Then the new state space expression is

ξ (k + 1) =

[
x̂(k + 1)
û(k)

]
=

[
ax̂(k) + bû(k − 1) + bû(k) − bû(k − 1)

û(k − 1) + û(k) − û(k − 1)

]
= Aξ (k) + B1û(k) (15)

where A =

[
a b
0 INu

]
,B =

[
b
INu

]
. Combined with

equation (13), the new output equation is

η(k) =
[
INx 0

]
·

[
x̂(k)

û(k − 1)

]
= Cξ (k) (16)

Assuming that the prediction time domain is Np and the con-
trol time domain is Nc. Equation (15) is derived in multiple
steps as, shown in the equation at the bottom of the next page.

In the formula, the sum of the exponent of A and the control
step of u is Np+k-1. Similarly, formula (15) can be deduced
in multiple steps as, shown in the equation at the bottom of
the next page.

When

Y =


η(k + 1)
η(k + 2)

. . .

η(k + Nc)
. . .

η(k + Np)

 , 9 =



CA
CA2

. . .

CANc

. . .

CANp

 ,

1U =


1û(k)

1û(k + 1)
1û(k + 2)
1û(k + 3)

. . .

1û(k + Nc− 1)



2 =



CB 0 0 . . . 0
CAB CB 0 . . . 0

...
...

...
...

...

CANc−1B CANc−2B CANc−3B . . . CA0B
...

...
...

...
....

CANp−1B CANp−2B CANp−3B . . . CANp−NcB


.

Then, the output equation is

Y = 9ξ (k) + 21U (17)

The reference value of the output of the system is defined as

Yr = [ηr (k + 1), ηr (k + 2), . . . , ηr (k + Nc),

. . . , ηr (k + Np)]T = [0, 0, . . . , 0]T (18)

Since the state quantity is in the form of error, the reference
value of the output quantity is 0. Suppose E = 9ξ (k),QQ =

INp ⊗ Q,RR = INp ⊗ R, the defined optimization objective
function is

J = Ŷ TQQŶ + 1UTRR1U

= 1UT (2TQQ2 + RR)1U + 2ETQQ21U

+ETQQE − YrQQ21U + Y Tr QQY − 2Y Tr QQE

(19)

LetH = 2TQQ2+RR, g = ETQQ2, and cancel the constant
term of equation (17). The equation can be written as

min
1U

J = 2
(
1
2
1UTH1U + gT1U

)
⇔ min

1U
J =

1
2
1UTH1U + gT1U (20)

For the control quantity and control increment, it becomes the
following recursive formula, as shown in the equation at the
bottom of the next page.
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When

Ut =


û(k − 1)
û(k − 1)
û(k − 1)

. . .

û(k − 1)


,

At =


I2 0 0 . . . 0
I2 I2 0 . . . 0
I2 I2 I2 . . . 0

. . . . . . . . .
. . . 0

I2 I2 I2 I2 I2

 ,

1Ut =


1û(k)

1û(k + 1)
1û(k + 2)

. . .

1û(k + Nc− 1)

 .

formula is rewritten as

U =


û(k)

û(k + 1)
û(k + 2)

. . .

û(k + Nc− 1)

 = Ut + At1U (21)

According to Equations (13) and (14), the constraints of the
control quantity are

Umin =


ûmin
ûmin
ûmin
. . .

ûmin

 ≤


û(k)

û(k + 1)
û(k + 2)

. . .

û(k + Nc− 1)

 ≤


ûmax
ûmax
ûmax
. . .

ûmax

 = Umax

(22)

Combined with formula (18), it can be written as

Umin ≤ Ut + At1U ≤ Umax

⇒

{
At1U ≤ Umax − U

−At1U ≤ −Umin + Ut
(23)

In summary, the vehicle control model is transformed into a
standard quadratic programming.

C. DYNAMIC MODEL MPC
The dynamics of the vehicle is modeled. According to
Fig.10, the Y-axis of the vehicle can be obtained by applying

FIGURE 10. Dynamic model of vehicle.

Newton’s second law

may = Fyf + Fyr (24)

where ay is the lateral acceleration at the center of mass of the
vehicle, and Fyf and Fyr are the lateral forces exerted by the
ground on the front and rear tires. The lateral acceleration is
composed of two parts: the acceleration caused by the lateral
movement of the vehicle along the Y-axis of the vehicle sound
and the centripetal acceleration caused by the yaw movement
of the body. Then formula (21) can be written as

m(ÿ+ vx φ̇) = Fyf + Fyr (25)

The torque balance equation of the vehicle around the Z-axis
is

Izφ̈ = Fyf lf − Fyr lr (26)

For the two lateral forces on the tire, considering the assump-
tion of small side deviation angle, the lateral force exerted
by the ground on the tire has a linear relationship with the
tire side deviation angle. And the front wheel side deviation
angle is

αf = δ − θvf (27)

where θvf is the angle between the speed of the front tire and
the longitudinal axis of the body, and δ is the steering angle
of the front wheel. The side angle of the rear wheel is

ar = −θvr (28)

ξ (k + Nc) = ANcξ (k) + ANc−1B1û(k) + ANc−2B1û(k + 1) + . . . + A0B1û(k + Nc− 1)
...

ξ (k + Np) = ANpξ (k) + ANp−1B1û(k) + ANp−2B1û(k + 1) + . . . + A0B1û(k + Np− 1)

η(k + Nc) = CANcξ (k) + CANc−1B1û(k) + CANc−2B1û(k + 1) + . . . + CA0B1û(k + Nc− 1)
...

η(k + Np) = CANpξ (k) + CANp−1B1û(k) + CANp−2B1û(k + 1) + . . . + CA0B1û(k + Np− 1)

û(k) = û(k − 1) + 1û(k)

. . .

û(k + Nc− 1) = û(k + Nc− 2) + 1û(k + Nc− 1) = û(k − 1) + 1û(k) + 1û(k + 1) + . . . + 1û(k + Nc− 1)
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The lateral tire forces of the front and rear wheels are

Fyf = 2Caf (δ − θvf ) (29)

Fyr = −2Carθvr (30)

The center of mass of the vehicle to the tire is regarded as a
rigid body, according to the rigid body kinematics

tan θvf =
vy + φ̇lf

vx
⇒ θvf =

vy + φ̇lf
vx

(31)

tan θvr =
vy − φ̇lr

vx
⇒ θvr =

vy − φ̇lr
vx

(32)

The expected yaw velocity and lateral acceleration of the
vehicle are respectively

φdes =
vx
r

(33)

ay,des =
v2x
r

= vx φ̇des (34)

The change rate of yaw angle deviation and yaw angle devi-
ation is

φ̂ = φ − φdes (35)
˙̂
φ = φ̇ − φ̇des (36)

Lateral acceleration deviation

ây = ay − ay,des = ÿ+ vx
˙̂
φ (37)

When equation (35) is integrated, the transverse velocity
deviation is

v̂y = ˙̂y = ẏ+ vx φ̂ (38)

According to equations (21) - (32), the tracking error state
equation of vehicle lateral dynamic model can be obtained as
follows

d
dt


ŷ
˙̂y
φ̂
˙̂
φ



=


0 1 0 0
0 −

2Caf +2Car
m·vx

2Caf +2Car
m

2lrCar−2lf Caf
m·vx

0 0 0 1

0 2lrCar−2lf Caf
Iz·vx

2lf Caf −2lrCar
Iz

−
2l2f Caf −2l2r Car

Iz·vx



·


ŷ
˙̂y
φ̂
˙̂
φ

 +


0
2Caf
m

0
2lf ·Caf
Iz

 δ +


0
2lrCar−2lf Caf

m·vx
− vx

0

−
2l2f Caf +2l2r Car

Iz·vx

 φ̇des

The state space of equation is discretized

x̂(k + 1) = As · x̂(k) + Bs · δ(k) + Gs · φ̇des(k) (39)

where, as shown in the equation at the bottom of the next
page.

Define the output equation

y = C · x̂ (40)

where

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

When the predicted step size is Np and the output step size
is Nc, where the maximum value of Nc is Np-1, the output
equation is transformed into, as in (41), shown at the bottom
of the next page.

The theoretical yaw velocity cannot be obtained directly,
therefore it is discretized as a coefficient and calculated in
the matrix. According to the defined quadratic optimization
objective function, it is reduced to

J = uTHu+ fu (42)

where QQ = INp ⊗ Q,RR = INp ⊗ R,RR = INp ⊗ R,H =

B̄QQB̄T+RR, f = 2ETQQB̄,E = Ā·x̂+Ḡ·EHR−y_ref ,R =[
1 0
0 1

]
,

Q =


qa 0 0 0
0 qb 0 0
0 0 qc 0
0 0 0 qd

 , y_ref =


ref · x̂
ref 2 · x̂
...

ref Np · x̂

 ,

EHR =


vx
r · 0.51−1

vx
r · 0.52−1

...
vx
r · 0.5Nc−1

 .

where qa, qb, qc and qd are the expected reference coef-
ficients of the corresponding terms respectively. ref is the
weight of the theoretical deviation coordinate point, which is
0 in general, representing no deviation. In the actual control
system, the constraint conditions of the system state quantity
and the control quantity need to be satisfied. The formula for
the constraint of the control quantity is

umin(t + k) ≤ u(t + k) ≤ umax(t + k), k = 0.1 . . .Nc− 1

(43)

The first term after the quadratic programming solution is
used as the actual control input for steering. When the vehicle
runs on a curved road, especially the curve with large curva-
ture, the dynamic MPC feedback control can not completely
eliminate the tracking error, so the feedforward controller
related to road curvature is introduced to help eliminate the
tracking error

δff =
lf + lr
r

+

[
lr · m

2Caf · (lf + lr )
−

lf · m
2Car · (lf + lr )

]
·
v2x
r
(44)
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Since then, the MPC modeling of the vehicle kinematics
and dynamics model is completed. Then the vehicle control,
according to the vehicle heading angle and speed, alternate
uses different control methods.

IV. SIMULATION AND RESULTS
After the model is established, the simulation will be carried
out. The intersection scenario without traffic signs is gener-
ally a low or middle speed scene, thereby the optimal speed
set during the simulation is 8 m/s. When there is no collision
risk, the self-propelled vehicle performs P-controller accel-
eration. The algorithm starts to work when the target vehicle
is 20 m away from the intersection, and the update time step
is 0.1 s.

Different trajectory curves in Fig.11 and Fig.12 represent
different restriction conditions, which have different degrees
of influence on the autonomous vehicle. In Trajectory 1, the
acceleration action is a ∈(-2,0,2). When the lateral devi-
ation and heading angle deviation of the vehicle are too
large, the kinematic MPC will be used to control the motion.
Trajectory 2 adds P-controller on the basis of Trajectory 1 to
carry out more detailed operations. Trajectory 3 is based on
Trajectory 1, adding the operation of kinematic MPC control
when the vehicle speed is less than 3 m/s. Trajectory 4 is
to add P-controller on the basis of Trajectory 3. Trajectory
5 is adopted kinematic MPC when the speed threshold is less
than 4 m/s based on Trajectory 4. Trajectory 6 is completely

FIGURE 11. Global map driving trajectories.

controlled by dynamic MPC based on Trajectory 2. Actually,
it is found that the Trajectory 2 and Trajectory 4 coincide.
That is, the speed of the car does not fall below 3 m/s under
the restriction of Trajectory 4, which means that the speed
does not play a role in the restriction of the kinematic MPC
at this time.

Fig.11 is the global map coordinate diagram, which is
the whole driving track of the vehicle in the simulation.

x̂ =


ŷ
˙̂y
φ̂
˙̂
φ

 ,As =


1 T 0 0
0 1 −

2Caf +2Car
m·vx

T 2Caf +2Car
m T 2lr ·Car−2lf ·Caf

m·vx
T

0 0 1 T

0 2lr ·Car−2lf ·Caf
Iz·vx

T 2lf ·Caf −2lr ·Car
Iz

T 1 −
2l2f ·Caf +2l2r ·Car

Iz·vx
T

 ,

Bs =


0
2Caf ·T
m

0
2lf ·Caf ·T

Iz

 ,Gs =


0
2lr ·Car−2lf ·Caf

m·vx
T − vx · T

0

−
2l2f ·Caf +2l2r ·Car

I z·vx
T

 .

y = Āx̂ + B̄δ + Ḡ

Ā =


C · As
C · As2

...

C · AsNp

 ,

B̄ =


C · Bs 0 0 0

C · As · Bs C · Bs · · · 0
...

...
...

...

C · AsNp−1
· Bs C · AsNp−2

· Bs · · · C · AsNp−Nc · Bs

 ,

Ḡ =


C · Gs 0 0 0

C · As · Gs C · Gs · · · 0
...

...
...

...

C · AsNp−1
· Gs C · AsNp−2

· Gs · · · C · AsNp−Nc · Gs

 (41)
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FIGURE 12. Enlarged view of the trajectories at the intersection.

FIGURE 13. Front wheel steering angle.

FIGURE 14. Velocity curves.

Fig.12 is an enlarged view of the trajectory of the car at
the intersection. In the figure, Trajectory 1 and Trajectory 5
are the smoothest curves, indicating that the actual process
of the car is also the most stable. Compared with Trajec-
tory 1, Trajectory 5 is restricted by P-controller and kinematic
MPC, which improves the control of speed and trajectory
tracking and make the vehicle experience more comfortable
during driving. The corresponding front wheel angle, speed
and acceleration curves are all reflected in Fig.13, Fig.14
and Fig.15. Trajectory 6 is the least smooth curve, which is
manifested as the irregular curve of the front wheel angle,
with serious fluctuation up and down, and the corresponding
track tracking effect is not satisfactory, which is also reflected
in Fig.16 and Fig.17. Other trajectory curves are more and
more stable with the restriction of conditions, and the cor-
responding front wheel angle, lateral deviation and heading
angle deviation are also appeared.

As shown in the speed curve of Fig.14 and acceleration
curve of Fig.15, the whole process is divided into four stages:
0-10 s stabilization stage, 10-15 s deceleration stage,15-19 s

FIGURE 15. Acceleration curves.

FIGURE 16. Heading angle deviation.

FIGURE 17. Lateral deviation.

acceleration stage, 19-21 s deceleration stage, and 21-30 s
final stage.

0-10 s, the car runs smoothly at the best speed, other
parameters are 0.

10-15 s, at this time the car finds the right front inter-
section when the green vehicle is passing. According to the
algorithm, there will be a heavy collision cost when the
ego-vehicle continues to pass, while the cost is less as it
slows down. Therefore, a deceleration operation is carried
out at this time, which is also reflected in 10-15 s in Fig.15.
In Fig.14, the curve appears to be separated after 13 s, which
means that the car observed that the green vehicle finished
passing and then found that the red vehicle in front of the
left needed to pass. Depending on the algorithm, the cost
of acceleration is higher than that of deceleration, hence the
ego-vehicle decelerates for the second time. At this stage, the
acceleration curves in Fig.15 are all shown as point braking.
Since P-controller is added to Trajectory 2, Trajectory 4,
Trajectory 5 and Trajectory 6, the point brake acceleration of
the ego-vehicle is smaller than Trajectory 1 and Trajectory 3,
and the control is more refined. Fig.14 shows that the velocity
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FIGURE 18. Different target velocities.

curves of Trajectory 1 and Trajectory 3 are steeper than other
curves, and the velocity decreases even lower.

15-19 s, at this time, the car finds that the black vehi-
cle also would like to pass the intersection. According to
the algorithm, the cost of acceleration is much smaller
than that of deceleration, and the car starts to speed up.
Trajectories 1 and 3 show a small fluctuation in Fig.15, which
means that at this time, the vehicle has completely eliminated
the risk of collision and starts to implement the accelera-
tion of ego-vehicle’s P-controller. However, other trajectories
already have more refined operations when executing the
algorithm, consequently there is no need to perform other
operations when exiting the algorithm.

19-21 s, at this stage, the autonomous vehicle heading
towards the target lane redetects the lane lines of the target
lane and then abandons the reference line given by the prior
condition. According to Fig.16 and Fig.17, the lateral devia-
tion of the ego-vehicle from the lane center line of the target
lane is about 2.5 m, and the deviation of the heading angle is
about 0.7 radian. However, the vehicle is generally very close
to the target road when it detects the lane line, hereby it needs
to decelerate and correct in a very short time. The influence
of this part can be well reduced by using kinematic MPC
control. As shown in Fig.16 and Fig.17, the lateral deviation
and heading angle deviation of the car are corrected within
1.5 seconds, and the lateral deviation is controlled within
0.5 meters and the heading angle deviation is controlled
within 0.1 radian. After that, they quickly converge to 0.

After 21 s, the car completely leaves the intersection, and
the road ahead is smooth. Start to execute the P accelerator,
accelerate to the best speed, and drive out of the intersection.

The optimal target speed of the car is set to different
values when making it through the same conditions of the
scene. Fig.18 shows the velocity curve of the same scene,
which has experienced at least one deceleration cycle, and
the difference between the upper and lower limits is 10m/s
when the fluctuation range is maximum. Fig.19 shows the
corresponding acceleration curve.

Fig.20 shows the curve of the front wheel angle at different
speeds through the intersection. The fluctuation of the front
wheel angle is all within 0.35 rad, and the most severe curve
fluctuation is at the optimal target speed of 12 m/s, its maxi-
mum speed is 12m/s andminimum speed is 2m/s. The drastic
fluctuation of speed correspondingly causes the change of

FIGURE 19. Acceleration of different target velocities.

FIGURE 20. Front wheel angles at different target velocities.

FIGURE 21. Heading angle deviation of different target velocities.

FIGURE 22. Lateral deviation of different target velocities.

the front wheel angle, which is also reflected in the heading
angle deviation in Fig.21. However, in lateral deviation in
Fig.22, the maximum amplitude of the corresponding lateral
deviation is the smallest, which means that the distance from
the reference line is the smallest.

The driving target of the vehicle is changed to make
the autonomous vehicle go straight through the intersection.
Fig.23 is its speed curve, and Fig.24 is its acceleration curve.
The curves of the dynamic MPC and kinematic MPC in the
two figures are coincident, whichmeans that when the vehicle
is controlled in two ways, the response of the vehicle is
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FIGURE 23. Velocity in straight motion.

FIGURE 24. Acceleration in straight motion.

FIGURE 25. Front wheel angle in straight motion.

consistent. However, when the two control methods are used
alternately, the curves appear slightly different, meaning that
the control also is under a slight effect on the speed change.

When the car has been accelerated and decelerated, the per-
formance will be distinct with different control algorithms.
Fig.25 is the comparison of front wheel angles of vehicles
using different control algorithms as going through the inter-
section. Dynamic MPC control will have an obvious jitter
when the speed changes greatly, and this change starts from
the low speed of the car. When the speed climbs, the front
wheel angle quickly tends to be stable. The control algorithm
of kinematic MPC fluctuates back and forth in the form of
harmonics throughout the whole process, whereas it is main-
tained in a small range. When the vehicle speed decreases,
the range of fluctuation becomes smaller. After alternating
the two control algorithms, it is obviously that the front wheel
rotation angle has no jitter of dynamic MPC at low speed and
no harmonic fluctuation of kinematic MPC at high speed,
which combines the advantages of the two algorithms. The
deviation of heading angle is also reflected in Fig.26.

The heading angle of kinematic MPC decreases signif-
icantly at 12 s, and the deviation tends to 0 obviously in

FIGURE 26. Heading angle deviation in straight motion.

FIGURE 27. Lateral deviation in straight motion.

the whole low-speed driving interval. However, after 18 s,
when the vehicle speed increases, the heading angle deviation
becomes markedly and violently dithered, and then tends to
be harmonically stable. On the contrary, the dynamic MPC
approaches 0 when the heading angle deviation is at high
speed. But after 12 s, when the vehicle speed decreases, the
heading angle deviation becomes significantly and rapidly
larger, and finally becomes stable when the vehicle speed
increases. When the two methods are used alternately, the
heading angle deviation of the vehicle at high speed is sig-
nificantly more stable than the kinematic MPC. The heading
angle deviation increases slowly at low speed, and the trend
is markedly lower than that of MPC alone. When the vehicle
speed increases again, the change of heading angle deviation
is also more stable than when it is used alone. Fig.27 shows
the comparison of their lateral deviations.

Although the lateral deviations become larger when they
are mixed, they are still within the acceptable range of 0.4 m.

V. CONCLUSION
This paper studies the scenario of cars passing through inter-
section scenarios without traffic signs. POMDP and time dis-
tance coordinate system are used to carry out speed planning
to avoid the problem of high computational force consump-
tion when solving POMDP model. The optimal acceleration
action of the vehicle can be solved within the specified time,
so that the vehicle can effectively avoid other vehicles and
pass at a higher speed, in order to improve the efficiency
of traffic. Compared with using dynamic MPC or kinematic
MPC alone, using dynamic MPC and kinematic MPC alter-
nately in control can effectively reduce the tracking error,
improve the stationarity of tracking, and carry out finer con-
trol under the condition of frequent velocity fluctuation.
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According to the graph of all simulation results, it can be
observed that the time period of autonomous vehicles passing
through the entire intersection is concentrated within 8-24 s,
and the whole process lasts about 16 s. In this process, three
vehicles that might be in collision are prevented, which has
high timeliness. At the same time, in the control process
of turning, the fluctuation range of the front wheel angle is
always controlled within 0.35 rad, without drastic fluctuation.
This method may also have implications in the treatment of
other traffic problems.

REFERENCES
[1] J. Yuan, M. A. Abdel-Aty, L. Yue, and Q. Cai, ‘‘Modeling real-time

cycle-level crash risk at signalized intersections based on high-resolution
event-based data,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 11,
pp. 6700–6715, Nov. 2021.

[2] Y. Ren, Y. Wang, G. Yu, H. Liu, and L. Xiao, ‘‘An adaptive signal con-
trol scheme to prevent intersection traffic blockage,’’ IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 6, pp. 1519–1528, Jun. 2017.

[3] J. M. Scanlon, R. Sherony, and H. C. Gabler, ‘‘Models of driver accelera-
tion behavior prior to real-world intersection crashes,’’ IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 3, pp. 774–786, Mar. 2018.

[4] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, andD. Johnston, ‘‘Junior:
The Stanford entry in the urban challenge,’’ J. Field Robot., vol. 25, no. 9,
pp. 569–597, Sep. 2008.

[5] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,
J. Schroder, M. Thuy, M. Goebl, F. V. Hundelshausen, and O. Pink, ‘‘Team
AnnieWAY’s autonomous system for the 2007 DARPA urban challenge,’’
J. Field Robot., vol. 25, no. 9, pp. 615–639, 2008.

[6] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, ‘‘Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,’’ in Proc. IEEE
Int. Conf. Robot. Automat. (ICRA), May 2010, pp. 987–993.

[7] C. Hubmann, M. Aeberhard, and C. Stiller, ‘‘A generic driving strategy for
urban environments,’’ in Proc. IEEE 19th Int. Conf. Intell. Transp. Syst.
(ITSC), Nov. 2016, pp. 1010–1016.

[8] L. Xu, G. Yin, G. Li, A. Hanif, and C. Bian, ‘‘Stable trajectory planning
and energy-efficience control allocation of lane change maneuver for
autonomous electric vehicle,’’ J. Intell. Connected Vehicles, vol. 1, no. 2,
pp. 55–65, Dec. 2018.

[9] W. Zhan, C. Liu, C.-Y. Chan, and M. Tomizuka, ‘‘A non-conservatively
defensive strategy for urban autonomous driving,’’ in Proc. IEEE 19th Int.
Conf. Intell. Transp. Syst. (ITSC), Nov. 2016, pp. 459–464.

[10] J. Chen, B. Yuan, and M. Tomizuka, ‘‘Deep imitation learning for
autonomous driving in generic urban scenarios with enhanced safety,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019,
pp. 2884–2890.

[11] V. Sezer, T. Bandyopadhyay, D. Rus, E. Frazzoli, and D. Hsu, ‘‘Towards
autonomous navigation of unsignalized intersections under uncertainty of
human driver intent,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2015, pp. 3578–3585.

[12] S. Brechtel, T. Gindele, and R. Dillmann, ‘‘Probabilistic decision-making
under uncertainty for autonomous driving using continuous POMDPs,’’
in Proc. 17th Int. IEEE Conf. Intell. Transp. Syst. (ITSC), Oct. 2014,
pp. 392–399.

[13] S. Ulbrich and M. Maurer, ‘‘Probabilistic online POMDP decision making
for lane changes in fully automated driving,’’ in Proc. 16th Int. IEEE Conf.
Intell. Transp. Syst. (ITSC), Oct. 2013, pp. 2063–2067.

[14] W. L. Song, G. M. Xiong, and H. Y. Chen, ‘‘Intention-aware autonomous
driving decision-making in an uncontrolled intersection,’’Math. Problems
Eng., vol. 2016, Apr. 2016, Art. no. 1025349.

[15] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, ‘‘Intention-aware online
POMDP planning for autonomous driving in a crowd,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2015, pp. 454–460.

[16] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, ‘‘Online planning algo-
rithms for POMDPs,’’ J. Artif. Intell. Res., vol. 32, pp. 663–704, Jul. 2008.

[17] T. Lee and Y. J. Kim, ‘‘Massively parallel motion planning algorithms
under uncertainty using POMDP,’’ Int. J. Robot. Res., vol. 35, no. 8,
pp. 928–942, Jul. 2016.

[18] R. Verschueren, S. De Bruyne, M. Zanon, J. V. Frasch, and M. Diehl,
‘‘Towards time-optimal race car driving using nonlinear MPC in real-
time,’’ inProc. 53rd IEEEConf. Decis. Control, Dec. 2014, pp. 2505–2510.

[19] H. Wang, B. Liu, X. Ping, and Q. An, ‘‘Path tracking control for
autonomous vehicles based on an improved MPC,’’ IEEE Access, vol. 7,
pp. 161064–161073, 2019.

[20] D. Harabor and A. Grastien, ‘‘Online graph pruning for pathfinding on
grid maps,’’ in Proc. AAAI Conf. Artif. Intell., Aug. 2011, vol. 25, no. 1,
pp. 1114–1119.

[21] J. Chen, R. C. Holte, S. Zilles, and N. R. Sturtevant, ‘‘Front-to-end bidirec-
tional heuristic search with near-optimal node expansions,’’ in Proc. 26th
Int. Joint Conf. Artif. Intell., Aug. 2017, pp. 489–495.

[22] J. Yi, R. Sun and H. Bai, ‘‘Path planning of a manipulator based on an
improved P_RRT∗ algorithm,’’ Complex Intell. Syst., 2022, vol. 8, no. 3,
pp. 2227–2245.

[23] D. Xiang, H. Lin, J. Ouyang, and D. Huang, ‘‘Combined improved A∗ and
greedy algorithm for path planning of multi-objective mobile robot,’’ Sci.
Rep., vol. 12, no. 1, p. 13273, Aug. 2022.

[24] Y. Wang, D. Liu, H. Zhao, Y. Li, W. Song, M. Liu, L. Tian, and
X. Yan, ‘‘Rapid citrus harvesting motion planning with pre-harvesting
point and quad-tree,’’ Comput. Electron. Agricult., vol. 202, Nov. 2022,
Art. no. 107348.

WEI LIANG received the B.S. degree in electronic
information engineering from the University of
Shanghai for Science and Technology, Shanghai,
China, in 2007, the M.S. degree in sensor technol-
ogy from the Coburg University of Applied Sci-
ences, Coburg, Germany, in 2010, and the Ph.D.
degree in materials science from the University of
Bayreuth, Bayreuth, Germany, in 2014.

From 2010 to 2014, she was a Research
Assistant at the Institute of Sensor and Actuator

Technology, HS Coburg, Coburg. Since 2015, she has been an Associate Pro-
fessor with the School ofMechanical andAutomotive Engineering, Shanghai
University of Engineering Science. Her research interests include the devel-
opment of droplet propulsion, trajectory tracking, and path planning.

Dr. Liang received awards and honors, including the Young Eastern
Scholar of Shanghai and the Morning Plan of Shanghai.

HAITAO XING was born in Xiangyang, Hubei,
China, in 1997. He received the B.S. degree in
energy and power engineering form the Wuhan
Institute of Technology, Wuhan, in 2020. He is
currently pursuing the M.S. degree in mechanical
engineering with the Shanghai University of Engi-
neering Science, Shanghai.

Since 2020, his research direction is intelligent
connected vehicles.

8480 VOLUME 11, 2023


