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ABSTRACT Software defect prediction models help testers find program modules that have a high
probability of having defects. A method-calling network can express the dependencies between methods
in a program. Existing approaches do not sufficiently utilize method-calling network to characterize the
structural features between methods. To address this problem, in this study, it is proposed for the first time
that the characteristics of methods in a program are obtained by analyzing the method-calling network,
and a new approach is proposed for defect prediction at the method-level. Specifically in this study, the
method-calling network of the program was first constructed and the network metrics of the method-calling
network were obtained. Next, the new network embedding technique (node2vec) was used to automatically
encode the method-calling network structure into a low-dimensional vector to obtain the network embedding
metrics. Finally, they were combined with code metrics to construct defect prediction models. We evaluated
our approaches on 13 open-source software systems. The experimental results show that the proposed method
improved the values of area under the receiver operating characteristic curve by 2.5% to 6.7% and Matthews
correlation coefficient by 13% to 178.4% compared to the baselines. Therefore the method-calling network
contains rich structural features between methods, and the structural features extend the features used for
method-level defect prediction and further improve the performance of defect prediction models.

INDEX TERMS Software defect prediction, structural features, method-calling network, network
embedding.

I. INTRODUCTION includes packages [1], files [2], classes [3], methods [4],

In the software lifecycle, a software test is an important
safeguard for a product before its release. Software testers
must find potential defects within the software before they are
released. However, the time and number of testers are often
limited, which makes it unfeasible to examine all source code
files. With defect prediction models, software quality assur-
ance teams can expend more effort on code modules with a
high propensity for defects and provide effective guidance to
testers.

In software defect prediction studies, the granularity level
of defect prediction ranges from coarse to fine, which
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[5], and commits [6]. It may be laborious for testers to
locate defects using coarse-grained defect prediction because
reviewers need to examine all the methods in the pack-
age or file to find the defects. In contrast, a more fine-
grained defect prediction can ease the work of software
quality assurance personnel and thereby reduce the time
spent in locating defects and modifying them [7]. In addi-
tion, several studies have shown that larger files are more
prone to defects [8], resulting in an increased workload of
reviewing the code. Hata et al. [5] found that fine-grained
defect prediction outperforms coarse-grained defect predic-
tion when considering the effort required to find defects.
Pascarella et al. [9] replicated previous studies and found
that all models showed a significant dip in performance
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when evaluated using a more realistic strategy and pointed
out that method-level defect prediction remains a significant
challenge.

Network metrics are obtained by analyzing software net-
works, and use dependencies between code modules to cap-
ture the structural characteristics of the network. Gong et al.
[10] extracted network metrics from the software depen-
dency network using social network analysis (SNA) and then
combined them with code metrics to obtain a defect predic-
tion model with better performance. They proposed that the
ego network metrics and the global network metrics of the
SNA metrics would exhibit different defect prediction perfor-
mance. Chen et al. [11] found that most network metrics are
significantly associated with a propensity for severe defects.
Recently, network-embedding techniques have yielded good
results in network node classification and link prediction
tasks. Qu et al. [3] used the latest network embedding tech-
nique to extract structural features in a class dependency
network, and they achieved good prediction results by com-
bining structural features with code metrics. However, they
used only the features obtained from network embedding to
characterize the class-dependency network and ignored the
information contained in other network metrics.

Inspired by previous research, this study analyzes the
method-calling network of a program using the network
metrics and network embedding technique [12]. They can
analyze the method-calling network from different perspec-
tives to obtain richer structural features. Then, the struc-
tural features are combined with code metrics to construct
method-level defect prediction model.

The main contributions of this study are as follows:

o This study characterizes the dependencies of meth-
ods in a program by constructing a method-calling
network, and obtains network embedding metrics
and network metrics by analyzing the method-calling
network.

o This study also proposes a new method for defect pre-
diction at the method-level; a defect prediction model
is constructed by combining the network embedding
metrics, network metrics, and code metrics.

« Experiments on 13 open-source software systems have
shown that the proposed method can improve the perfor-
mance of the defect prediction model.

The remainder of this paper is organized as follows. Sec-
tion II presents related work of software defect prediction and
background on software metrics, method-calling network,
and network embedding techniques. Section III presents our
approach. Section IV presents the experiments and discusses
the experimental results. Section V introduces the threats to
the validity of the approach. Finally, Section VI concludes the
study and gives future work.

Il. RELATED WORK AND BACKGROUND
This section introduces related work of software def-
ect prediction and background on software metrics,
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method-calling networks, and network

techniques.

embedding

A. SOFTWARE DEFECT PREDICTION

Software defect prediction [1], [2], [3], [4], [5] builds defect
prediction models by uncovering historical data of software
projects, aiming to identify modules that are at risk of defects
in software projects. Software defect prediction is divided
into different levels of prediction according to the software
modules that need to predict defects. Giger et al. [4] con-
structed a method-level defect prediction model using the
project’s change metrics and code metrics and achieved good
performance. In the software defect prediction contexts [10],
within-project software defect prediction [3], [13] uses histor-
ical data from the same project and version to build training
set and test set. Cross-version software defect prediction [2],
[14] in the same project, using historical data from previous
versions to build the training set and using data from new
versions as the test set. Cross-project software defect pre-
diction [15], [16] uses data from different projects to build
training set and test set separately. Static features [3], [4] have
been used extensively in the past studies. Code metrics are
obtained by analyzing the source code to obtain statistical
features. Process metrics [4] are obtained by analyzing the
changes in software modules in historical software versions.
Network metrics [17] obtain dependencies between modules
by analyzing software dependency networks and are used for
defect prediction. Qu et al. [18] use k-core decomposition
on class dependency networks, found that classes with larger
k values have higher defect risk, and then they proposed a
new equation to make classes with high defect prediction risk
rank higher in the classes defect risk list. With the devel-
opment of deep learning, researchers have started to try to
extract features that are not accessible by static features in
the program. These features include the semantic features
[19], [20], [21] of the program as well as the structural
features, since two pieces of code with the same static fea-
tures may have different contextual information as well as
structural features. Wang et al. [22] analyzed the source code
through the abstract syntax tree of the program, extracted
semantic features by deep belief network, and obtained better
defect prediction performance. Lin et al. [23] improve the
performance of defect prediction by representing a simpli-
fied abstract syntax tree through two sequences and learning
semantic features using a bi-directional long and short-term
memory neural network. With the development of network
embedding techniques [12], researchers have started to use
network embedding techniques to characterize software net-
works [3]. While network metrics can statically analyze soft-
ware networks, network embedding techniques automatically
learn the structural features of software networks. Qu et al. [3]
learned the structural features of class dependency networks
through network embedding techniques and combined them
with traditional software engineering features to construct
defect prediction models, and their approach improved the
performance of defect prediction.
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B. SOFTWARE METRICS

Software defect prediction uses metric data from software
projects to train machine learning models, and these defect
prediction models can be used to predict program modules
with a high defect risk factor [24].

1) CODE METRICS

Code metrics are statistics obtained after static analysis of a
program and quantify various properties of the project source
code. Commonly used code metrics include the Halstead
measure for operators and operands [25], McCabe measure
for dependencies [26], object-oriented CK measure [27],
polymorphism factor, and MOOD measure for coupling fac-
tors [28]. Pham et al. [29] proposed a new set of metrics based
on different metrics, and the new combined metric achieved
good results in identifying defective classes.

2) NETWORK METRICS

The nodes in a software network can be evaluated from ego
network metrics as well as global network metrics [10], [11].
In the method-calling network, the ego network metrics con-
sider the direct calling relationship between methods; while
the global network metrics consider the indirect influence of
methods in the entire method-calling network.

Ego network metrics (EN): EN measures various proper-
ties of a node’s domain, which consists of the node and the
nodes directly connected to it. Each node has three types of
EN: In, Out, and Un. The In type only considers the node and
the nodes on which it depends, the Out type only considers the
node and the nodes that depend on it, and Un type considers
both In and Out types.

Global network metrics (GN): The metrics obtained by GN
take into account a larger scope of the network compared to
the domain, and they measure the role played by the node in
the larger scope of the network.

C. METHOD-CALLING NETWORK

In object-oriented programming, the functions that must be
implemented are often written as methods and can be called
by each other to satisfy the specified requirements. The exe-
cution of a program is the result of many calls between the
methods. In an object-oriented program P, the method-calling
network (MCN) can be described as:

MCN, = (V,E) ey

Here, V denotes the set of methods in the program P and
the set of edges E denotes the calling relationship. v;, v; € V
denotes the methods mi and mj; then, vi — vj denotes a
call relationship between m; and m;. The study of complex
networks plays an active role in the analysis of influence
propagation and interactions. An MCN is a collection of
method-calling graphs in which the nodes represent the indi-
vidual methods in a program and the edges are the calling
relationships.

Throughout the project, a series of method-calling graphs
will form an MCN. In the MCN, the calling relationship
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FIGURE 1. Method-calling network in the program.

between the methods can be observed (A.mI—C.m3,
A.ml—B.m2, B.m2— D.m4).

Figure 1 shows a sample MCN diagram for a Java program.
Figure 1(a) shows a Java program fragment, and Figure 1(b)
shows its method-calling diagram [30].

D. NETWORK EMBEDDING TECHNIQUE
Networks are commonly used to express connections and
interactions, and the analysis of networks is an area of
research that continues to be of interest. The rich structural
features of networks allow researchers to understand network
systems better. Network embedding techniques can map the
nodes in a network to low-dimensional vectors:
fivio>yieR, wiev )
where d is much smaller than |V], f holds some measures
defined on the network N [31]. In recent years, researchers
have proposed several network-embedding techniques [32],
[33], [34], [35], [36].

The node2vec algorithm [12] is based on the natural lan-
guage processing (NLP) model skip-gram and generates net-
work domains for nodes using a flexible random wandering
method. In a network, a path sampled by random wandering
corresponds to a sentence in a text in NLP, and each network
node corresponds to a word [3]. Node2vec uses stochastic
gradient descent to optimize new network perception and
neighborhood preservation goals efficiently. Node2vec uses
a second-order random walk, which controls the transfer
probability of a random wander through the parameters p
and ¢g. The two parameters control the wandering strategy
and the speed of leaving the starting node. Specifically, the
parameter p controls the possibility of returning immediately
to the last sampled node. A large value of p avoids sampling
nodes that have already been visited with high probability,
while a small value of p causes the next sampling step to
return to the previous node and maintains the sampling in
the domain. Parameter g controls whether the sampling is
biased toward nodes outside or inside the domain. When
g < 1, the sampling process tends to sample nodes further
away from the original node, approximating the depth-first
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sampling; when ¢ > 1, the sampling process remains within
the domain, approximating the breadth-first sampling. The
sampling schematic of node2vec is shown in Figure 2, where
parameter « is the search deviation term that identifies the
next node that will be sampled; its value is determined by
parameters p and q.

Sampling1: MI.M4MS....
E—
Sampling3: M2.M1,MS5,

FIGURE 2. Sampling method of node2vec.

lll. APPROACH

This section describes the flow of this approach in detail. This
study first constructed the MCN and then analyzed the net-
work to obtain the network metrics and network embedding
metrics of the MCN. The framework of the general approach
is illustrated in Figure 3.

For a software project that requires an analysis of defect
propensity, the program’s MCN is first constructed based
on the call relationships between the methods. The network
embedding technique node2vec is used in the MCN to learn
the structural features of the program. It maps each method
node to a low-dimensional vector to generate network embed-
ding metrics. Then, the network metrics for each node are
extracted in the MCN. In addition, the code metrics of the
software project are used as part of the features, following
which, the network embedding metrics, network metrics,
and code metrics are used to form a comprehensive feature
dataset. Finally, the features of each method in the project are
input with defect labels into a machine-learning classifier to
train the defect prediction model.

A. CONSTRUCT METHOD-CALLING NETWORK

This approach uses the MCN of a program. The structure
and relationships of classes and methods in a project can be
extracted by analyzing the source code, bytecode, and other
file forms of the project to derive information about the MCN.
This study used parsing bytecode files in Java programs to
construct an MCN for software projects.

The algorithm describes the process of constructing an
MCN, where the input of the algorithm is a collection of
project files that can obtain information about method calls.
The output result is a Map; the key to the Map is the method
in the extracted program, and the value is the method called
by each method in this project. Each step is briefly described
as follows.

1) Extract class nodes. First, iterate through each input
project file and record information regarding each class node,
including the class name and method node information. The
method node information includes the name of the method
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Algorithm 1 Construct Method-Calling Network

Input: Set of project files F = {f1, f2, ..., fu}-

Output: Map with the extracted methods as key and the set of methods
they call as Value.

1 Map D, E

2 foriin{l,2,...,n}do

3 cn = ParseClassByClassReader (f;)

4  forjin {1,2,..., cn.methods.length} do

5 {Method:CalllnvokeSet} = ParseMethodInsnNode(cn;)
6 D = DU ({Method:CalllnvokeSet})

7 end

8 end

9 foriin {D} do

10 {MethodNode:CallMethodSet} = ParseCallMethod( D;)
11 E = EU {MethodNode:CallMethodSet}

12 end

belonging to this project and information about which other
methods are called by this method (Line 3).

2) Extract method nodes. The recorded class node infor-
mation is iterated and the method and method-calling infor-
mation are extracted. Store each method with its method call
information in a Map, with the method name as key and the
set of method calls as value (Lines 5-6).

3) Save method-calling relationships. Iterate through the
map that stores the method-calling information and resolve
the methods that belong to this project. Based on the method-
calling information, the extractable method node and its call-
ing method node are saved to the map, with the parent node
as the key and the set of called child methods as the value
(Lines 10-11).

B. FEATURES EXTRACTION

In this study, the structural features of the method-calling
network are obtained by extracting the network embed-
ding metrics and the network metrics, and they analyze
the method-calling network from different perspectives. The
richer structural features help to characterize the method-
calling network. The code metrics characterize each method
by analyzing the source code. Therefore, these three metrics
of methods are extracted as features for constructing defect
prediction models in this study.

1) NETWORK EMBEDDING METRICS

In this study, node2vec is used to automatically encode the
network nodes into a low-dimensional vector, and we input
the MCN into the node2vec algorithm in the form of node
pairs. By traversing the map that stores the MCN, we can rep-
resent the MCN as a collection of node pairs, where the first
methods in the node pair represent the parent methods that
call other methods and the second nodes represent the child
methods that are called by the parent methods. The file that
holds the collections can then be input into the node2vec algo-
rithm. The MCN is input as an undirected network because it
provides richer node sampling results, and thus, richer struc-
tural features. The output of node2vec is a low-dimensional
vector representation for each method node. The features
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FIGURE 3. General framework of the approach.

obtained by network embedding are referred to as the network
embedding metrics.

2) CODE METRICS

This study used 20 code metrics, including size, structural
complexity, and Halstead metrics. Size metrics include the
number of lines of code (NLOC) and the number of com-
ments (NOC). Structural complexity metrics include the
McCabes cyclomatic complexity (CC) for the method, Hal-
stead metrics include: the Halstead length (HLTH) of the
metric, the Halstead vocabulary (HVOC), and so on. The code
metrics used in this study are presented in Table 1.

TABLE 1. Code metrics used in this study.

Symbol Metrics Name
CC McCabes cyclomatic complexity
NOCL Number of comment lines
NOS Number of statements
HLTH Halstead length of the metric
HVOC Halstead vocabulary
HEFF Halstead effort
HBUG Halstead prediction of the number of bugs
NLOC Number of lines of code
NOC Number of comments
NOA Number of arguments
HDIF Halstead difficulty
VDEC Number of variables declared
CAST Number of class casts
TDN Total depth of nesting
HVOL Halstead volume
NAND Total number of operands
VREF Number of variables referenced
NOPR Total number of operators
MDN Maximum depth of nesting
NEXP Number of expressions

3) NETWORK METRICS

In this study, the network metrics of the MCN, including EN
and GN, which have been widely used in previous studies
[10], [11], are extracted. For each node in the network, three
types of EN (In, Out, and Un) are calculated, as well as 11
GN. In total, 53 network metrics, including 36 EN and 17 GN,
were extracted. Table 2 lists the network metrics and their
descriptions [11].
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C. HANDLING IMBALANCE AND PREDICTING DEFECTS

1) HANDLING IMBALANCE

Data imbalance is common in defect prediction [37], [38].
Defective data is often a small fraction of the entire dataset.
In this study, we used a random oversampling technique to
address the problem of data imbalance. Specifically, we ran-
domly oversampled the data with defects in the training
dataset to keep a ratio of defective data to data without defects
as 1:1. We used random oversampling in the training set but
not in the test set.

2) PREDICTING DEFECTS

In defect prediction, machine learning classification mod-
els are often used to predict the final outcome. This study
used a random forest classifier that performs well in defect
prediction within projects [39] and followed the above steps
to obtain the network embedding metrics, code metrics, and
network metrics of the methods. The three metrics were com-
bined to form the features of the methods, and the combined
features corresponded to the methods with defective labels
one by one to form the dataset. Finally, the dataset was
divided into training and test sets, which were used to train
and validate the proposed model, respectively.

IV. EXPERIMENTS

A. STUDIED SYSTEM

The experimental dataset was obtained from the dataset pub-
lished by Shippey et al. [40]. Due to the missing source files
or dependency libraries incompatible in some projects, this
study compiled 13 of these projects for the experiments. 5 of
these 13 projects have been used in previous software defect
prediction studies [3]. EclEmma is a free Java code coverage
tool for Eclipse, HtmlUnit is a Java GUI-Less browser, Jmol
is a molecular viewer for 3D chemical structures, OmegaT
is a computer-assisted translation tool, Saros is an Eclipse
plug-in for distributed assistance and twinning programming,
UNICORE is a software suite for building federated systems,
JMRI is a modeling tool, JPPF is an open-source grid com-
puting solution, DrJava is a Java development environment,
and GenoViz can be used for data visualization and sharing
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TABLE 2. Network metrics used in this study.

Category Metric Description
Size Number of nodes directly connected to the node
Ties Number of edges in the EN
Pairs Number of possible directed ties in each EN, that is, Size x (Size — 1)
Density Ratio of the actual number of ties to the possible number of ties, that is, ties/pairs
Ego network Broker Number of ipdirectly connected pairs'
measures nBroker Broker normalized by the numt?er of pairs
nWeakComp Number of weak components in the EN
pWeakComp Number of weak components normalized by size
EgoBetween Percentage of shortest paths from neighbor to neighbor that pass-through ego
2StepReach Percentage of nodes within two steps normalized by size
ReachEffic 2StepReach normalized by the sum of the sizes
Degree Number of methods associated with a method
Clus Coef Extent of connectivity between neighboring methods of a method
Closeness Measure the shortest path from one method to other methods
Reachability Number of other methods a given method can reach
Global network Eigenvector Assign r.elative scores to methoqs in the method-calling network
measures Betweenness Number of times a method appears in the shortest path of other methods
Power Measure the connections of methods in the method-calling network
EffSize Number of methods associated with a method
Efficiency Normalizes EffiSize to the total size of the network
Constraint Measures constraints of methods in the method-calling network
Hierarchy Measures the extent to which a method is centrally constrained in a method-calling network

in genomics. CDK 1is a software related to 3D rendering,
JUMP is a software related to GIS, and jTDS is a software
related to database. These systems and their MCN statistics
are shown in Table 3. The data can be explained as follows:
the Systems column shows the corresponding name of the
dataset, and the Version column shows the corresponding
systems and versions. Nycy N Nyyp shows the number of
methods that appear in the MCN and dataset. Methods with a
calling relationship were recorded during the construction of
a MCN, which was extracted by analyzing the bytecode file.
Methods in the MCN whose names cannot be found in the
dataset will not be recorded, for example, methods in some
internal classes. Therefore, the intersection of the methods in
the MCN with those in the dataset is less than the number of
methods in the dataset. Here, the Eypcn column shows the
number of edges extracted from the MCN and the Ppefecr
column shows the number of methods with defects in the
MCN as a percentage of the overall MCN.

TABLE 3. Details of the studied systems.

Systems Version NMCNHNMID EMCN PDel’ecl
EclEmma 2.1 446 605 1.56
HtmlUnit 2008 1,440 2,830 13.19

Drlava 2008 1,062 7,730 14.12
GenoViz 5.4 4,551 9,779 12.96

Jmol 10 2,360 3,606 3.6
OmegaT 3.5 3,359 5,994 2.2
JMRI 2.0 5,885 11,689 1.27
Saros 1.0.6 755 1,156 5.03
UNICORE 1.4 832 929 8.65
JPPF 4.0 4,494 8,579 4.09
CDK 1.1 9,310 27,146 2.44
JUMP L5 7,171 15,613 1.42
JTDS 23072009 393 2,788 1.52

B. BASELINES
This study used the implementation of the node2defect
framework of Qu et al. [3] in an MCN as one of the baselines.
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In addition, this study also used a single or combined form of
network embedding metrics, CM, EN, and GN as baselines.

C. EVALUATION METRICS

1) METRICS FOR NON-EFFORT-AWARE EVALUATION

To evaluate these approaches, the following evaluation met-
rics frequently used by researchers [3], [7], [19] were also
used in this study: Recall, Probability of false alarm (PF),
Precision, F1 score (F1), area under the receiver operating
characteristic curve (AUC) and Matthews correlation coeffi-
cient (MCC).

In the case of AUC, the horizontal coordinate indicates the
false positive rate and the vertical coordinate indicates the
recall rate. An AUC value between 0.5 and 1 indicates an
overall better effect than a random guess; the closer the value
is to 1, the better the effect.

The MCC indicates the correlation coefficient between
actual and predicted classifications. As a balanced evaluation
index, it is applied to class imbalanced data. The value of
MCC is in the range of [—1, 1], where —1 means the effect of
the prediction result is completely wrong and 1 indicates the
prediction result is correct.

TP
Recall = —— 3)
TP + FN
FP
FAR= ————— 4)
FP+ TN
. TP
Precision = —— ®)
TP + FP
2 X Precision x Recall
Fl= — (6)
Precision + Recall
TP x TN —FP x FN
MCC =

/(TP+FP) (TP+FN) (TN +FP) (TN +FN)
(N
Here, TP and TN are the number of methods correctly

identified as defective and clean, respectively. FP is the
number of actual clean methods predicted to be defective.
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TABLE 4. AUC values of our NENCM and the baselines.

Systems CM NM EN GN NEM NENM NECM NENCM
EclEmma2.1 0.503 0.674 0.657 0.649 0.683 0.68 0.678 0.693
HtmlUnit2008 0.58 0.565 0.543 0.561 0.545 0.55 0.558 0.563
DrJava2008 0.583 0.549 0.534 0.556 0.539 0.555 0.583 0.585
GenoViz5.4 0.598 0.563 0.558 0.576 0.569 0.583 0.602 0.604
Jmol10 0.591 0.635 0.655 0.612 0.641 0.664 0.651 0.679
OmegaT3.5 0.562 0.527 0.544 0.516 0.527 0.542 0.541 0.555
JMRI2.0 0.564 0.584 0.56 0.588 0.531 0.528 0.536 0.539
Saros1.0.6 0.52 0.577 0.577 0.571 0.572 0.575 0.568 0.581
UNICORE1.4 0.55 0.51 0.503 0.505 0.567 0.568 0.568 0.569
JPPF4.0 0.554 0.55 0.547 0.542 0.552 0.555 0.549 0.557
CDK1.1 0.659 0.692 0.677 0.689 0.656 0.663 0.658 0.695
JUMP1.5 0.549 0.585 0.577 0.576 0.579 0.585 0.593 0.631
jTDS23072009 0.628 0.639 0.643 0.645 0.589 0.623 0.666 0.694
Average 0.572 0.588 0.582 0.583 0.58 0.59 0.596 0.611

FN is the number of actual defective methods predicted to be
clean.

2) METRICS FOR EFFORT-AWARE EVALUATION

In this study, PofB20 [41] and Precision@20% [42] were
used as effort-aware evaluation metrics. The effort-aware
evaluation metrics evaluate the performance of the defect
prediction model with a limited amount of effort. Developers
want to get better benefits with limited effort. This effort can
be expressed as the number of lines of code to be inspected.
In this study, the number of lines of code to be inspected was
set to 20% of the total number of lines of code. To calculate
these two metrics, the probability of each module being pre-
dicted to be defective is first calculated based on the defect
prediction model, and then the modules are ranked based on
the probability. After inspecting 20% of the total number of
lines of code according to the sorting results, the percentage
of defective modules identified is PofB20 and the proportion
of defective modules inspected to all inspected modules is
Precision@20%.

D. VALIDATION SETTING

Cross-validation allows for the evaluation of defect prediction
models [3]. The experiments in this study refer to Qu et al. [3]
to divide the dataset in the ratio of 2:1, as well as the number
of experimental repetitions. Specifically, in each experiment,
two-third of the data was used for defect prediction model
training and the remaining one-third for model testing. For
each system, the experiments were repeated 30 times, thus
reducing the bias caused by the random assignment of the
experimental examples.

E. STATISTICAL ANALYSIS

Performance gain [7]. To compare our approach with the
baselines, the performance difference between them in pre-
dicting defects was calculated using the following method:

z (Resours — ReSpaseline)
Z Respaseline

%ResultDiff = ®)
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Here, Res,,rs indicates the average experimental results of
our approach on different data sets, and Respqgerine indicates
the average experimental results of the baselines.

Statistical test. This study used the Wilcoxon signed-rank
test, which is a nonparametric statistical test that allows
a two-by-two comparison between two data distributions,
to confirm the statistical differences between the experimen-
tal results of the groups. Specifically, the performance of
the proposed approach was compared with those of other
approaches. This study also performed effect size analysis.
This study used Cliff’s delta (§), commonly used in previous
studies, to quantify the difference between our approach and
the baselines. The amount of difference can be negligible
(18] < 0.147), small (0.147 < |5| < 0.33), medium (0.33 <
|8] < 0.474), large (|§] > 0.474).

F. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results of our approach in different
case systems, poses relevant research questions, and dis-
cusses the results for each question.

RQ1: Can richer structural features of method-calling
network improve the performance of method-level defect
prediction models?

In previous studies, researchers improved the performance
of software defect prediction models by extracting network
embedding metrics for class dependency network and com-
bining them with code metrics. They did not use network
metrics of class dependency network to build software defect
prediction models. And previous studies have shown that net-
work metrics have good performance in software defect pre-
diction. The purpose of RQI is to investigate whether richer
structural features of the method calling network can improve
the performance of method-level defect prediction models.
This study formalizes a hypothesis for RQ1: Richer structural
features of the method-calling network cannot improve the
performance of method-level defect prediction models.

To answer RQ1 and to test the proposed hypothesis, this
study compares our approach with the baselines. This study
used the implementation of the node2defect framework in
the MCN as one of the baselines. The experiments refer

7939



IEEE Access

F. Yang et al.: Method-Level Defect Prediction Approach Based on Structural Features of MCN

TABLE 5. MCC values of our NENCM and the baselines.

Systems CM NM EN GN NEM NENM NECM NENCM
EclEmma2.1 0.036 0.234 0.166 0.14 0.48 0.5 0.491 0.539
HtmlUnit2008 0.18 0.122 0.071 0.113 0.153 0.184 0.211 0.22
DrJava2008 0.179 0.096 0.057 0.1 0.118 0.191 0.233 0.257
GenoViz5.4 0.24 0.151 0.117 0.171 0.216 0.254 0.287 0.298
Jmol10 0.223 0.306 0.284 0.229 0.394 0.512 0.439 0.527
OmegaT3.5 0.143 0.162 0.04 0.017 0.149 0.222 0.233 0.286
JMRI2.0 0.125 0.104 0.046 0.069 0.128 0.165 0.183 0.189
Saros1.0.6 0.03 0.128 0.09 0.086 0.212 0.268 0.239 0.213
UNICORE1.4 0.124 0.016 0.004 0.013 0.184 0.197 0.225 0.204
JPPF4.0 0.144 0.128 0.075 0.079 0.201 0.227 0.23 0.255
CDK1.1 0.252 0.231 0.223 0.255 0.428 0.508 0.506 0.575
JUMPL1.5 0.191 0.145 0.085 0.121 0.323 0.331 0.397 0.433
jTDS23072009 0.425 0.307 0.398 0.462 0.382 0.246 0.406 0.615
Average 0.176 0.163 0.127 0.142 0.259 0.292 0.313 0.354

TABLE 6. Comparison of non-effort-aware evaluation metrics results between our NENCM and baselines (Statistical Significance: #+ p < 0.01, = p < 0.05,

o p > 0.05.).
Ours vs AUC MCC F1 Precision Recall PF
Baseline  %Diff E.Size %Diff E.Size %Diff E.Size %Diff E.Size %Diff E.Size %Diff E.Size
CM 6.7 M* 101.1 L** 35.7 M* 135.6 L** 22 So -73.6 L**
NM 3.8 S* 116.4 L** 453 M** 197.3 L** -1.3 No -82.3 L**
EN 4.8 M** 178.4 L** 80.4 L** 270.2 L** -3.8 No -91.2 L**
GN 4.7 S** 148.5 L** 63.7 L** 241.2 L** -5 So -89.1 L**
NEM 52 M** 36.9 M** 19.1 S** 39.8 L** 28.6 Sk -31.9 S*
NENM 3.5 S** 21.1 SH* 14.4 S* 11.7 M** 19.1 SH* -18.6 SH*
NECM 2.5 S** 13 S* 16.1 S** 12.3 M** 12.5 S** -23.7 S**

to node2defect as a combination of the network embedding
metrics and the code metrics (NECM). In addition, a sin-
gle or combined form of the code metrics (CM), EN, GN,
and network embedding metrics (NEM) were used, such
as NM (EN+GN), and NENM (NEM+NM), as the base-
lines. Our approach combines all the metrics, which we call
NENCM (NEM+NM+CM). We used the default parameters
of node2vec in our experiments and set the dimensionality of
the generated vectors to 32.

As shown in the Table 4 and Table 5, NENCM has the
highest AUC values on 10 projects and NENCM has the
highest MCC values on 11 projects, shown in bold. As shown
in Figure 4. The PF values of NENCM are overall lower than
those of the baselines, the precision and F1 values of NENCM
are overall higher than those of the baselines, and the recall
values of NENCM are overall higher than those of most of
the baselines. The values of recall for NM, EN and GN are
a little higher than those of NENCM, but NM, EN and GN
have lower precision and higher probability of false alarm.
Our NENCM has better performance overall.

Table 6 demonstrates the comparison of the results of our
NENCM with those of the baselines for the non-effort-aware
evaluation metrics. Our NENCM improves AUC values by
2.5% to 6.7% and MCC values by 13% to 178.4% compared
to the baselines. The results of the Wilcoxon signed-rank
test show significant differences in AUC, MCC, F1, preci-
sion, and PF values for our NENCM compared to baselines
(p-value < 0.05). Table 6 also shows the results of the effect
size analysis. The precision values of our NENCM show large
or medium amounts of difference compared to the baselines.
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TABLE 7. Comparison of effort-aware evaluation metrics results between
our NENCM and baselines (Statistical Significance: * p < 0.01,
# p < 0.05, 0 p > 0.05.).

Ours vs PofB20 Precision@20%
Baseline %Diff E.Size %Diff E.Size
CM 51.8 L** 81 L#*
NM 46.3 L** 108.4 L**
EN 36.3 L#* 140.7 L**
GN 47.6 L** 111 L**
NEM 19.1 M* 50.8 M**
NENM 19.3 M** 46.2 S**
NECM 31.8 L** 33.7 SH*

Our NENCM values of AUC, MCC, F1, and PF show large
or medium amounts of difference compared to some of the
baselines. The amount of difference in recall values of our
NENCM compared to the baselines is negligible or small.

As shown in Figure 5, the values of PofB20 and Pre-
cision@20% of our NENCM are overall higher than the
baselines. As shown in Table 7, the results of the Wilcoxon
signed-rank test show significant differences in PofB20, Pre-
cision@20% values for our NENCM compared to baselines
(p-value < 0.05). the PofB20 values of our NENCM show
large or medium amounts of difference compared to all
baselines. Our Precision@20% values for NENCM show
large or medium amounts of difference compared to most
baselines.

MCNE s are established by obtaining dependencies between
the methods. The network metrics count the values of var-
ious attributes of each node in an MCN. Homogeneity and
structural equivalence have an important role in the task of
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FIGURE 4. Distribution of the values of AUC, MCC, F1, Precision, Recall, and PF for our NENCM with the baselines.

prediction of network nodes [12]. Breadth-first search (BFS)
and depth-first search (DFS) achieve structural equivalence
and homogeneity, respectively [12]. Therefore, in a method-
calling network, similar structural properties of methods can
be obtained using the network-embedding technique [3].
Methods with similar structural defect risks in the low-
dimensional vector are similar [3]. Code metrics count the
values of the various properties of each method in the pro-
gram source code and the different characteristics of the code.
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The network metrics extract features of the MCN from the
perspective of network analysis. These features are richer
than the NEM, for example, power (which measures the
connections of methods in the method-calling network). The
combination of network metrics and NEM can better charac-
terize the MCN, and the combination of CM can improve the
performance of defect prediction.

This study responds to the hypothesis and answers
RQ1 based on the experimental results. This study rejects
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TABLE 8. Comparison of the results of the non-effort-aware evaluation metrics between approaches that combined other metrics with NEM under
different parameter settings and our NENCM (Statistical Significance: ++ p < 0.01, + p < 0.05, o p > 0.05.).

Ours vs AUC MCC F1 Precision Recall PF

Baseline  %Diff E.Size %Diff E.Size %Diff E.Size %Diff E.Size %Diff E.Size %Diff E.Size
DC 4.4 S* 23.3 S* 26.1 M** 18.9 M** 27.1 S* -24.8 N#*
BC 34 S 20.9 S 27.5 M** 20.4 M** 19.7 Sk -23.6 N*
ED 4.7 M** 335 M* 26.4 M** 20.2 M** 30.3 S** -20 S**
GD 3.8 M** 29.3 S** 18 Sx* 16.2 M** 21.9 S** -29.5 SH*
EB 3.5 S** 17.1 S* 21.8 Sk 17.4 M** 21.1 Sk -11.6 So
GB 3.6 M** 25 M** 19 SH* 14 M** 21.2 SH* -20.7 N*
EBC 4 SH* 19.2 S** 16.2 S** 7.5 S** 25.2 S* -15.5 No
GBC 3.8 SH* 21 S* 16.9 Sk 15.2 M** 23.6 Sk -15.7 N*
EDC 4 M* 18.2 So 17.8 SH* 14 S** 24.6 S* -16.9 N*
GDC 4 SH* 28.1 S* 24.2 M** 15.9 M** 17.9 S* -22.7 N#*

the hypothesis of RQ1. The richer structural features of the
method call network help to improve the performance of the
method-level defect prediction model, and the improvement
is not so significant under the non-effort-aware evaluation
metrics and is significant under the effort-aware evaluation
metrics.

RQ2: How are the performances of the defect predic-
tion models after combining other metrics with NEM
under different parameter settings?

The purpose of RQ?2 is to investigate the influences of com-
bining different metrics with NEM under different parameter
settings on the performances of defect prediction models.
This study formalizes a hypothesis for RQ2: The defect pre-
diction models performances can be improved by combining
other metrics with NEM under different parameter settings.
The network metrics include EN and GN, which reflect
the importance of nodes in the ego and global networks,
respectively. Node2vc controls the sampling of nodes in the
network through two important parameters, p and g. Here,
p determines the probability of returning to the last sampled
node in the sampling process, and g determines whether the
sampling process is biased toward DFS or BFS, as described
in Section II-D. Different NEM were obtained by setting
different values of p and ¢. The value of p was set between
1 and ¢, as this does not always return the last sampled
node during node sampling, making node sampling richer.
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The value of g was set to either 0.25 or 4 because node2vec
will achieve a good performance with parameters p and g
in the interval of 0.25 and 4 [7]. When the value of p is
0.5 and the value of ¢ is 0.25, the NEM is called the DFS
network embedding metric (DFS-NEM). When the value
of p is 2 and the value of ¢ is 4, the NEM is called the
BFS network embedding metric (BFS-NEM). Subsequently,
different NEM were combined with CM or different net-
work metrics. Their specific combinations are the follow-
ing: EN+DFS-NEM+CM (EDC), GN+DFS-NEM+CM
(GDC), EN+BFS-NEM+CM (EBC), GN+BFS-NEM+CM
(GBC), DFS-NEM+CM (DC), BFS-NEM+CM (BO),
EN+DFS-NEM (ED), GN+DFS-NEM (GD), EN+-BFS-
NEM+CM (EB), and GN+DFS-NEM (GB).

NEM-DFS favors depth-first sampling in the node-
sampling process, which allows method nodes that are not
directly connected in the MCN to be close to each other in
the NEM. This can be considered as a structural feature of
the method nodes in the global network obtained by means
of network embedding. NEM-BFS favors breadth-first sam-
pling in the node-sampling process, which allows method
nodes in the MCN and their domain method nodes to be
close to each other in the NEM. We can consider this a
structural feature of the method nodes in the ego network
obtained by means of network embedding. The network met-
rics include EN and GN, which reflect the importance of the
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F. Yang et al.: Method-Level Defect Prediction Approach Based on Structural Features of MCN

IEEE Access

0.700
0.675 - . I
0.650 -
0.625

0.600

0.575 4

0.550 I
0.525 4 I

DC BC ED GD EB GB EBC GBC EDC GDC NENCM

(a) AUC

0.5 1

0.4 4

0.3 4

0.2 4

0.1 4

DC BC ED GD EB GB EBC GBC EDC GDC NENCM

(c)F1

0.5 1 ¢

0.4 4

0.3 4

w

0.2 1

N

0.1

-

T T T T T T T T T T T
DC BC ED GD EB GB EBC GBC EDC GDC NENCM

(e) Recall

0.6 ¢

0.5 - ¢ _ ¢

0.4

0.3 9

T

0.2 4

0.19

DC BC ED GD EB GB EBC GBC EDC GDC NENCM

(b) MCC

0.8 4

0.7 4

0.6 4
0.5 4

0.4 4

0.3 4

0.2 4

DC BC ED GD EB GB EBC GBC EDC GDC NENCM

(d) Precision

0.04 4

&

0.03

[

0.02

[N}

0.01 4

=

T T T T T T T T T T T
DC BC ED GD EB GB EBC GBC EDC GDC NENCM

(f) PF

FIGURE 6. Distribution of the values of AUC, MCC, F1, Precision, Recall, and PF for the approaches that combined other metrics with

NEM under different parameter settings and our NENCM.

method nodes in the ego and global networks, respectively.
ED denotes the combination of EN and global network
features obtained from the network embedding, and GD
denotes only the combined features of the global network.
GB denotes the combination of the GN and ego network
features obtained from the network embedding, and EB
denotes only the combined features of the ego network. EDC,
GDC, EBC, and GBC are combined methods after adding
the CM.
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As shown in Figure 6, The AUC, MCC, F1, precision,
and recall values of the approaches after combination of the
other metrics with NEM under different parameter settings
are overall lower than those of our NENCM. The PF values
of the approaches after combination of the other metrics with
NEM under different parameter settings are overall similar to
the PF values of our NENCM. As shown in Table 8, in the
results of AUC, MCC, F1, and precision, our NENCM shows
small or medium amounts of differences compared to the
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under different parameter settings and our NENCM.

TABLE 9. Comparison of the results of the effort-aware evaluation
metrics between approaches that combined other metrics with NEM
under different parameter settings and our NENCM (Statistical
Significance: =+ p < 0.01, * p < 0.05, 0 p > 0.05.).

Ours vs PofB20 Precision@20%
Baseline %Diff E.Size %Diff E.Size
DC 21 M** 21.9 S**
BC 22.6 M** 16.8 Sk
ED 30.9 M** 45.8 S**
GD 15.2 Sk 458 M#**
EB 17.1 Sk 29.3 Sk
GB 13.7 Sk 37.4 Sk
EBC 313 M** 39.4 Sk
GBC 19.3 M** 15.1 Sk
EDC 19 M** 19.4 N
GDC 25.1 M** 19.6 SH*

approaches that combined other metrics with NEM under
different parameter settings, and the results of the Wilcoxon
signed-rank test indicate significant differences (p-value <
0.05). In the results of recall and PF, our NENCM shows
negligible or small amounts of difference.

As shown in Figure 7, Our NENCM has higher val-
ues of PofB20, Precision@20% overall compared to other
approaches. As shown in Table 9, in the results of PofB20,
Precision@20%, the amounts of differences in our NENCM
are small or medium compared to the other approaches, and
the results of the Wilcoxon signed-rank test indicate signifi-
cant differences (p-value < 0.05).

From the experimental results, it can be observed that com-
bining other metrics with the NEM under different parame-
ter settings does not improve the performance of the defect
prediction models, with NENCM still showing an overall
better performance. The network metrics integrate the EN and
the GN and add the NEM obtained by node2vec to balance
DFS and BFS. Finally, the integrated features obtained by
connecting the CM can better characterize the methods in
the program, thus improving the performance of the defect
prediction model.

This study responds to the hypothesis and answers RQ2
based on the experimental results. This study rejects the
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hypothesis of RQ2. The performances of the defect prediction
models cannot be improved by combining other metrics with
NEM under different parameter settings.

G. TIME CONSUMPTION

To understand the time complexity of our approach, this
study measured the time of our approach and the baselines
in building defect prediction models and predicting defects.
This study did not calculate the time for other processes,
including constructing method-calling network, obtaining
network metrics, obtaining network embedding metrics, and
obtaining code metrics. This study measured the average
time consumed by all projects for 30 times of repeating the
experiments on different approaches, with the same number
of repetitions as in the previous parts. We calculated the
average time consumed by the different approaches on all
studied projects. The time calculations were performed on the
computer with Intel Core i5 2.5GHz and 16GB of RAM.

TABLE 10. Computation time in building models and predicting defects
of our NENCM and baselines.

Approach Time (s)
CM 0.45
NM 0.49
EN 0.41
GN 0.39

NEM 0.9
NENM 0.95
NECM 0.98

NENCM 1.03

As shown in Table 10, CM, NM, EN, and GN spend less
time in building models and predicting defects. The number
of input features for these approaches are smaller. The aver-
age time consumed by our NENCM is 1.03 seconds, without
much increase. As shown in Table 11, the approaches that
combined other metrics with NEM under different parameter
settings consumed similar time as our NENCM in building
models and predicting defects.
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TABLE 11. Computation time in building models and predicting defects
of the approaches that combined other metrics with NEM under different
parameter settings and our NENCM.

Approach Time (s)
DC 0.9
BC 0.91
ED 0.93
GD 0.96
EB 0.91
GB 0.96

EBC 0.97
GBC 0.98
EDC 0.98
GDC 1.0

NENCM 1.03

V. THREATS TO VALIDITY

A. INTERNAL VALIDITY

Several parameters in node2vec must be set manually and
the setting of these parameters may affect the effectiveness
of the prediction model. This study aims to investigate the
extraction of structural features in MCNs through network
embedding techniques and network metrics and to improve
the performance of defect prediction at the method-level.
Therefore, the dimensionality of the method mapping to
low-dimensional vectors in this study was referenced from
Qu et al. [3] in the class dependency network. In addition, this
study used the various parameters in the publicly available
source code of Grover et al. [12] in the embedding process of
the network nodes using the node2vec technique.

B. EXTERNAL VALIDITY

The proposed approach may exhibit inconsistent performance
in other software systems. To mitigate such threats, this
study conducted some experiments using 13 software sys-
tems disclosed by Shippey et al. [40]. The positive results
for these systems suggest that the adaptability of the pro-
posed approach will also be stronger. The performance of
our approach is better overall. The results of Wilcoxon signed
rank test and effect size analysis also show significant perfor-
mance improvement of our approach under some evaluation
metrics, which to some extent proves the generalizability of
our approach.

VI. CONCLUSION AND FUTURE WORK

This study characterized the dependencies between methods
by constructing an MCN and analyzed it to obtain the NEM
and network metrics of the methods. The CM were then com-
bined to achieve method-level defect prediction. Specifically,
network embedding technology mapped each method in the
MCN to a low-dimensional vector space and automatically
learned the structural features in the MCN. The network
metrics could obtain more static features by analyzing the
MCN, and a combination of the two metrics could better char-
acterize the MCN. Finally, the two metrics are combined with
CM to construct a defect prediction model. The experimental
results using 13 open-source systems show that the proposed
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method has a better overall predictive performance than the
baselines. In future research, we will focus on combining
structural and semantic features in method-calling networks
at the method-level. The application of this study to defect
prediction across versions and projects can also be explored.
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