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ABSTRACT The Gilbert-Varshamov (GV) lower bound is used to provide indications and prescriptions for
the outer code coding parameters for a memory synchronisation model that focuses solely on the internal
resynchronisation process. The binary and q-aryGVbounds are utilised in this analysis to indicate parameters
to remove the remaining substitution errors and provide a complete framework. Procedures and examples
are provided to determine optimal outer code parameters for given inner-entropies and residual substitution
errors produced during resynchronisation. In particular, using the non-binary GV bounds allows us to match
the best alphabet size for given parameters. For the cases explored, a 16-ary GV bound provides the best
results, with an (n, k , d) code of (120, 57, 37) being a possible outer code when the inner entropy is 0.1.
Using GV bounds for outer code parameter considerations frees the system from using stringent codes and
instead allows any outer code to be utilised to meet the required error correction needs.

INDEX TERMS Alphabet size matching, channel bounds, Gilbert-Varshamov bounds, synchronisation
finite-state Markov channel.

I. INTRODUCTION
Reliable communication is a necessity in today’s world with
its ever-increasing data transmission demands. Communica-
tion channels should be able to recover from errors produced
during the transmission process easily. The fundamental prin-
ciple in allowing communication systems to recover from
errors is redundancy [1]. Adding more bits or symbols to a
data stream based on predefined rules provides the power
to detect and correct errors in the received sequence. It is
easy to see that the more additional data is truncated onto
the information, the more chance there is to recover from the
erroneous transmission. These error correction capabilities,
however, come with the cost of wasted transmission band-
width and, consequently, inefficient use of the channel. This
naturally leads to a fundamental problem in information the-
ory where trade-offs between redundancy (and consequently
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error-correcting capabilities) are contrasted against the effi-
cient use of the channel [1].

In Achari and Cheng [2], consider a channel model and
decoding scheme to correct insertion and deletion errors in
a system based on a Synchronisation Finite-State Markov
Channel (S-FSMC) where Insertion-Deletion-Substitution
(IDS) errors are present. The paper presented restricts its
focus to the inner decoding of the communication system,
where the purpose of the inner decoder is to regain syn-
chronisation by removing the insertion and deletion errors
detected. However, this resynchronisation process does not
account for substitution errors caused by the channel or the
incorrect decoding of the inner decoder. This paper aims to
provide considerations and suggestions for the outer code
coding parameters of the S-FSMC presented in [2] to ensure
reliable communication and provide a framework for a com-
plete system.

There are three main contributions to this paper. Firstly
the binary GV lower bound is used to give indications
on the parameters of the outer code to ensure reliable
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communication for the S-FSMC. Secondly, these bounds
are extended to q-ary symbols, which seek to reduce bursty
errors’ effects and provide a more efficient coding scheme.
Lastly, using GV bounds to indicate parameters for the outer
code frees the synchronisation decoder from stringent outer
substitution codes such as LDPC. This allows any code con-
struction and substitution Error Correction Codes (ECC) to be
utilised as the outer code, so long as it satisfies the necessary
communication requirements.

The rest of the paper is structured as follows. The black
box inner process and basics of the GV bounds are outlined
in Section II. The methodology and general case studies for
both the binary and q-ary cases are described and discussed
in Section III. Section IV then uses simulations of the inner
decoder to give practical results and analysis of the described
procedure. Conclusions are finally drawn in Section V.

II. BACKGROUND AND LITERATURE REVIEW
A. SYNCHRONISATION-FSMC (S-FSMC)
In general, research has either looked at synchronisation
errors or memory effects of a channel in isolation. The mod-
elling and analysis of synchronisation errors can be found in
references such as [3], [4], [5], and [6] and more recently
in [7] and [8]. Likewise, the modelling of memory within
channels can be found in literature such as [9], [10], and [11]
with an extensive review of these memory channels with error
control techniques presented in [12].

In [2], Achari and Cheng have incorporated both of these
channel effects and properties and describe a synchronisation
channel based on a Finite-State Markov Channel (FSMC).
FSMC - also referred to as discrete finite-state channels, are
primarily based on Markov processes and was presented by
Claude Shannon in his landmark paper in 1948 [13].

In addition to the channel model in [2], the paper pro-
vides an algorithm to regain synchronisation by removing the
effects of insertions and deletions encountered during data
transmission. However, this leaves substitution errors from
the decoding process and inherent substitution errors from the
channel itself. The work in [2] is based on the memoryless
synchronisation channel, and watermark decoding scheme
presented by Davey and MacKay in [5], which has been used
in various fields such as DNA barcoding in medicine [14],
[15] to data hiding in watermarking applications [16].

This paper treats the synchronisation channel and inner
decoder workings as a black box illustrated in Figure 1.
The inputs to this system will include a block-coded frame
of length n. The outputs of this black box will be the Bit
Error Rate (BER) or Symbol Error Rate (SER) for the q-
ary case, which are the substitution errors that remain after
the synchronisation process. Additionally, the corresponding
entropy of the synchronisation channel, or inner channel
entropy, denoted by HI, is also an output of this black box
system. The sole focus of this paper remains on the outer
decoding process to ensure reliable communication for the
given system.

FIGURE 1. Black box approach for resynchronisation process.

B. GILBERT-VARSHAMOV (GV) BOUNDS
Numerous bounds are used to analyse channel models to
determine the system performance, where the main trade-off
of code rate and error-correction capabilities are explored.
The best known and most notable lower bound is the GV
bound described independently by Edgar Gilbert [17] and
later by Rom Varshamov [18] where the bound was slightly
improved [19]. As this is a lower bound, it is a positive result
and, as such, provides a definite achievable bound [1], [20].
The GV bound states that for a q-ary code of length n and
minimum Hamming distance d , the maximum number of
codewords, Aq(n, d) must satisfy Equation (1) [1], [21], [22].

Aq(n, d) ≥
qn

Vq(n, d − 1)
(1)

Here Vq(n, l) is the volume or number of strings in a
Hamming ball of radius l and is equal to

∑l
j=0

(n
j

)
(q − 1)j

which gives rise to Equation (2) [1], [20], [21], [22].

Aq(n, d) ≥
qn∑d−1

j=0

(n
j

)
(q− 1)j

(2)

Using Stirling’s approximation and simplifying, the GV
bound can be written in its asymptotic form shown in Equa-
tion (3) where R(δ) is the corresponding code rate as a
function of δ, Hq is the q-ary entropy function defined in
Equation (4) [22] and, δ is the relative distance, or fractional
minimum distance, which is equal to d

n and is restricted to
0 ≤ δ ≤ 1 −

1
q [1], [20], [21], [22]. It is worth noting that

Equation (4) is derived by making use of the change of base
formula, and as such, any logarithm base may be used so long
as it is consistent throughout.

R(δ) ≥ 1 − Hq(δ) (3)

Hq(x) = x
log(q− 1)
log(q)

− x
log(x)
log(q)

− (1 − x)
log(1 − x)
log(q)

(4)

Formally, the GV Bound is defined in Theorem 1 [1], [21],
[22].
Theorem 1 (GV Bound): Let q ≥ 2. Then for any 0 ≤ δ ≤

1−
1
q , and any 0 < ϵ ≤ 1−Hq(δ), there exists a q-ary family
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FIGURE 2. BER after resynchronisation process for various HI values.

of codes C where:

δ(C) ≥ δ

and

R(C) ≥ 1 − Hq(δ) − ϵ

III. OUTER CODE PROCEDURE
A. METHOD
As this paper employs a black box approach for the inner
decoder, the only information needed to determine the outer
decoder parameters is the residual SER and the corresponding
inner entropy (entropy of the S-FSMC).

Figure 2 recreates the results from the inner synchroni-
sation process in [2], and in particular, the corresponding
BER for various inner entropy values are plotted. From
Figure 2, the residual BER and, consequently, the number
of substitution errors remaining after resynchronisation can
easily be identified. Thus a corresponding outer code can be
prescribed.

It is well known in coding theory that the maximum
number of errors a block code can correct, denoted by t ,
is dependent on d , and this inequality is described in Equation
(5). From this, it is easily shown that the required minimum
distance of our prescribed code should be at least 2t + 1.

t ≤ ⌊
d − 1
2

⌋ (5)

Consequently, Equation (6) shows the corresponding rela-
tive distance that should be chosen given the number of errors
we wish to correct.

δ ≥
2t + 1
n

(6)

B. BINARY CASE STUDY
We use an example that utilises the data reproduced in Fig-
ure 2 to solidify the procedure outlined. For example, if the
entropy of the S-FSMC system, HI, is 0.1, then the average

FIGURE 3. Binary GV bound with parameters for given case study.

residual BER is at worst 0.1. Using a frame length or coded
data size of 480 bits (as in the case of the parameters used
in [2]) implies there will be an average of roughly 48 substi-
tution errors that the outer code should try to correct. Using
Equation 6 implies that our outer code should have a relative
distance of at least 0.2021. Assuming a normal binary data
sequence allows the use of the binary entropy function and
produces Figure 3, which shows the relationship between
code rate,R(δ), and relative distance for the binary GV bound.
As is indicated by the highlighted data point and red line
in Figure 3, a maximum outer code rate, Ro, of 0.2741 is
achievable for the given relative distance. Additionally, any
point below the curve and to the right of the red dotted
line would have the required error correction capabilities for
the given parameters. However, to ensure the best code rate
for the given scenario, it is recommended to stay as close
to the curve and the required δ line as possible. Using the
maximum Ro of 0.2741, the number of message bits can be
calculated by k = ⌊Ro×n⌋. This gives a value of 131message
bits. As this number is rounded down to ensure whole bits
are used, the actual Ro is recalculated to be 0.2729. Thus
providing possible parameters in terms of an (n, k, d) code,
we have (480, 131, 97). Lastly, the overall code rate, RT ,
is determined by multiplying the inner code rate and outer
code rate together. In this case, the Ri is solely dependent on
the sparsifier used during the resynchronisation process, and
in the simulations in [2], a 4 to 5 sparsifier is used, making
Ri = 0.8. Therefore the corresponding RT in this example is
approximately 0.2183. Again, this is not the only possible set
of parameters that can be used to correct the given errors for
this example.

C. EXTENSION TO q-ARY
In the previous example, the scenario was limited to that
of the binary case. However, the remaining errors produced
during the inner resynchronisation process may likely occur
in bursts. This is expected as the channel model used during
the inner portion is a FSMCwhich has correlated errors. Since
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FIGURE 4. GV bound for various q-ary values.

the errors may be clumped together in bursts, extending the
outer code to a q-ary GV function would be more effective.
Figure 4 shows the GV bounds for different q values. Not all q
values will be directly beneficial to our application, and only
values of q = 2b, where b is a positive integer, will be utilised;
however, q values that fall outside of this constraint are shown
for completeness. It is easily seen from Figure 4 that higher
code rates are achievable for corresponding δ values as larger
q values are utilised. In other words, we can obtain similar
or better error-correction capabilities by utilising symbols
compromised of more bits while having a more efficient code
rate. This is common knowledge in the field, as now the focus
is on symbol-level data communication, and as such, we can
correct up to t ′ symbols and consequently t ′ × log2(q) bits.

D. Q-ARY CASE STUDY
Using the values from the binary example, the idea of utilising
q-ary codes is further illustrated. We use k ′ to denote the
symbol message length and n′ to denote the symbol block
length, which is further quantified in Equation (7). This
gives rise to n′

= 120 symbols for a value of q = 16 as
we still require 480 coded bits at the input of the inner
resynchronisation process for the scenario described. Sup-
pose 48 substitution errors remain after resynchronisation;
as a worst-case, this will affect 48 separate symbols once
the bits are converted to their corresponding symbols. This,
in turn, using the symbol equivalent values in Equation (6),
suggests that the outer code’s relative distance should now be
approximately 0.808 as we have t ′ = 48 symbols to correct.
This relates to approximately Ro = 0.0335 as shown by the
red dotted line in Figure 5. At first glance, this may seem
like an inferior result when compared with the binary case,
as a lower code rate is achieved. However, it is crucial to
keep in mind that this is the worst-case scenario, and when
looking at the number of bits that can be corrected, the given
code can correct up to 192 bits. On the opposite end of
the spectrum, a best-case scenario is when all the bit errors
occur in one large burst. In this scenario, that would mean

FIGURE 5. 16-ary GV bound with parameters for given case study where
red line indicates worst-case and blue indicates best-case scenarios.

12 symbols overall would be affected, and as such, we would
only require a relative distance of approximately 0.208. This
corresponds to Ro = 0.61 and is indicated by the blue dotted
line in Figure 5. The procedure follows as in the binary case
study to find the overall code parameters. This gives us a
worst-case code of (120, 4, 97) with a corresponding Ro of
0.033 and RT of 0.027, respectively. The best-case scenario
gives a (120, 73, 25) code where the Ro is 0.608, and RT is
0.487.

n′
=

n
log2(q)

(7)

IV. RESULTS AND ANALYSIS
A. RESULTS FROM SIMULATED CHANNEL
This Section runs simulations using the entire process, includ-
ing inner synchronisation. Consequently, the practicality of
the method discussed is illustrated by using different q-ary
divisions. Figure 6 shows the SER obtained after the inner
resynchronisation process when various q-ary values are
employed. As seen in this figure, while all the plots follow a
similar trend, at higher HI values, there is generally a higher
chance of errors. Additionally, as the q value increases, the
higher the SER becomes. This is especially true at inner
entropies exceeding 0.1, where the higher the entropy of the
S-FSMC, the more evident the difference in SER obtained for
corresponding q-ary groupings. This intuitively makes sense
as more errors are expected at higher entropies due to more
uncertainty within the channel. The various drops in the plot
occurring at approximately HI = 0.1 and HI = 0.2 are due
to the method used to generate the different inner channels
and are again further detailed in [2]. It is evident from these
plots that the inner system does cause more sporadic errors
as the SER increases with an increase in q size. If the results
obtained saw an equal SER with an increasing size of q, this
would suggest the errors affect consecutive bits and thus be
more situated towards the best-case scenario described in the
method.
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FIGURE 6. SER at the output of inner decoder for various q-ary values
across various HI.

FIGURE 7. Error-run plots for various HI values after resynchronisation.

It is also worth noting that the plots for q = 8 and q =

16 in Figure 6 are reasonably similar in SER performance
which further suggests that it is unlikely to have groupings
of more than three or four consecutive error bits. This is
explored further by looking at the error-run plots shown in
Figure 7. Here Pr(1m|0) is the probability of having at least
m errors after an error-free communication state. It is noticed
that in the case of HI = 0.014, the probability of at least
four consecutive errors is 0.08, which drops to approximately
0.03 for at least five consecutive errors, reiterating the notion
of having a low chance of getting more than four consecutive
error bits. This is confirmed at higher entropy values too.
In the case of HI = 0.292, the probability of at least four
consecutive errors is 0.096, the probability of at least five
consecutive errors is approximately 0.04, and the probability
of six consecutive errors drops to 0.02, again reemphasising
this idea. It is worth remarking that the error-run plots are
all based on a binary case (q = 2), as this provides the
consecutive raw errors before any symbol segmentation.

FIGURE 8. Code rate and gain obtained for various q-values.

Table 1 shows the coding gain achieved at various inner
entropy values for corresponding q-ary values. The values of
R(δ) are chosen by looking at the corresponding minimum δ

value rounded to the nearest hundredth. The values obtained
show that using a q value of 16 provides the best results in
terms of code rate (outer and total) for the given channel
simulations. This appears optimal for the given channel as
increasing to q = 32 starts to incur a decreasing performance
in code gain. The potential reason a 16−ary code performs the
best in these tests could be attributed to using a 4-5 sparsifier
during the resynchronisation process. Intuitively, the number
of bits used at the input of the sparsifier can be seen as the
bits that constitute a single symbol at the outer q-ary code.
As such, matching these values inherently makes sense as
errors are contained and thus decoded within each individual
symbol. Choosing an outer code such that the makeup of
each symbol exceeds the number of bits at the sparsifier input
potentially allows errors to affect more symbols during resyn-
chronization, thus producing a poorer error rate performance.
Definite indications of the effect of the sparsifier on the outer
code require further research. Figure 8 illustrates a graphical
representation of Table 1 where the red dotted lines and
arrows show the code gain between q = 2 and q = 16 for
an HI of 0.043. In this figure, the corresponding symbols
show the code gain for a given HI using the various q-ary
GV bounds. Again, it is fairly evident for respective values of
HI that using q = 16 provides the best code rate for the given
error correction requirements.

B. SIMULATED CHANNEL CASE STUDY
To further illustrate the method described, the use of the sim-
ulation results is explored in order to give a more real-world
case study. Again, using HI = 0.1 in this example, the
SER, no matter the number of bits composing a symbol,
will always be less than 0.2 according to Figure 6. As pre-
viously mentioned, using a q value of 16 would be the best
option for the described channel, and thus symbols consisting
of 4 bits are opted for in this example. Not forgetting the
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TABLE 1. Comparison of code rates and code gain using different q values for a given inner entropy.

multitude of 16-ary code constructions available in practice
makes this option the easy choice. Again, from Figure 6,
using a 16-ary value/code at an entropy of 0.1 for the scenario
gives a SER of approximately 0.1437. Overcompensating,
an SER of 0.15 can be coded for, which means 18 (four-bit)
symbol errors can be corrected, giving rise to δ = 0.308 and
consequently gives Ro = 0.4739 and k ′

= 57. This gives an
overall rate of approximately 0.38 and a code of (120, 57, 37).
While not the absolute best case for the 16-ary instance, these
parameters tend more towards the blue dotted line in Figure 5
and again shows that the simulated channel benefits from
using the q-ary case over standard binary.

C. SIMULATED CHANNEL WITH REED-SOLOMON OUTER
CODING
Finally, the complete framework, including a choice of outer
code, is simulated to show the application of the methods dis-
cussed. In this case, the Reed–Solomon (RS) code is chosen
due to its multiple use cases in practical systems, especially in
applications where burst errors are prevalent. Again various
q-ary segmentations are tested, corresponding to the various
RS parameters outlined in Table 2. As RS codes are non-
binary, here N corresponds to the symbol codeword length or
block length, andK is the length of the symbol-wise message.
A RS coding scheme can correct up to t ′ =

N−K
2 symbols.
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FIGURE 9. SER and corresponding BER after RS decoding.

FIGURE 10. BER after resynchronisation process and corresponding BER
after RS decoding.

To keep a fair comparison, we resume from the previous
section and choose the RS parameters in such a way as to
keep Ro as close to 0.4739. The number of blocks sent, nb,
is chosen to ensure that the inner resynchronisation process
receives 480 bits (padding may be required to get exactly
480 bits). For the given case, nb = ⌊

480
q×N ⌋. Figure 9 shows

the SER and corresponding BER after the RS decoding. The
BER is calculated by converting its symbol data stream into
its binary counterpart based on the number of bits for that
specific q-ary code. As can be seen from the figure, the q =

16 and q = 32 have relatively similar performances in lower
HI values. The q = 16 coding scheme shows substantial
coding gains after an inner entropy of around 0.1. Figure 10
highlights these effects further by plotting both the BER at
the output of the inner decoder (after the resynchronisation
process) and finally the BER after the RS decoding. It is
clearly seen that the BER after resynchronisation is relatively
the same no matter the segmentation of bits that compromise
a symbol, again reiterating the usefulness of the black box
approach. Again at lower inner entropy values, the capabili-

TABLE 2. Parameters used for RS outer code.

ties of the q = 16 and q = 32 cases have very similar results,
with the q = 32 case having slightly better performance.
After an inner entropy of around 0.1, which corresponds
to BER values of above 0.1 after resynchronisation, we see
substantial performance improvements for the 16-ary coding
scheme. Again, this agrees with intuition as the parameters in
this example application were chosen for these corresponding
regions of interest.

V. CONCLUSION
The S-FSMC is presented as a black box implementation
along with the theory of GV bounds. From this, a method
is presented to deduce the relevant substitution outer code
parameters that will, in essence, correct the remaining substi-
tution errors produced from the synchronisation channel and
the resynchronisation process. Firstly, indications are given
based on a binary setting, but it is shown that depending
on the distribution of errors, the system may benefit from
using the q-ary GV bounds. This, however, depends on the
structure of the errors and in fact, the system may indeed
suffer from utilising the q-ary counterpart if the errors pro-
duced are spread out in the data frame. From simulations of
the synchronisation channel, it is shown that using a q-ary
value of 16 will see the best results in terms of coding gain.
Increasing higher than q = 16 starts to provide diminishing
results for the given channel. The simulated channel case
study shows that the system benefits from using the q-ary GV
bounds, and a good indication of the outer code parameters
for an inner entropy of 0.1 would be (120, 57, 37) for a 16-ary
partition. The proposed use of GV bounds for outer code
parameter considerations liberates the coding construction
and decoder from specialised outer error correction codes.
It thus allows any code to be implemented as long as the
coding requirements and parameters are met.
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