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ABSTRACT Processing-in-memory (PIM) has attracted attention to overcome the memory bandwidth
limitation, especially for computing memory-intensive DNN applications. Most PIM approaches use the
CPU’s memory requests to deliver instructions and operands to the PIM engines, making a core busy and
incurring unnecessary data transfer, thus, resulting in significant offloading overhead. DMA can resolve the
issue by transferring a high volume of successive data without intervening CPU and polluting the memory
hierarchy, thus perfectly fitting the PIM concept. However, the small computing resources of DRAM-based
PIM devices allow us to transfer only small amounts of data at one DMA transaction and require a large
number of descriptors, thus still incurring significant offloading overhead. This paper introduces PIM
Instruction Set Architecture (ISA) using a DMA descriptor called PISA-DMA to express a PIM opcode
and operand in a single descriptor. Our ISA makes PIM programming intuitive by thinking of committing
one PIM instruction as completing one DMA transaction and representing a sequence of PIM instructions
using the DMA descriptor list. Also, PISA-DMA minimizes the offloading overhead while guaranteeing
compatibility with commercial platforms. Our PISA-DMA eliminates the opcode offloading overhead and
achieves 1.25x, 1.31x, and 1.29x speedup over the baseline PIM at the sequence length of 128 with the
BERT, RoBERTa, and GPT-2 models, respectively, in ONNX runtime with real machines. Also, we study
how our proposed PISA affects performance in compiler optimization and show that the operator fusion of
matrix-matrix multiplication and element-wise addition achieved 1.04x speedup, a similar performance gain
using conventional ISAs.

INDEX TERMS Processing-in-DRAM, direct memory access, instruction set architecture, PIM offloading.

I. INTRODUCTION
Most modern computers are based on a stored-program
concept, i.e., the von Neumann architecture [1], where
instructions and data are stored in a separate memory and
handled the same. Therefore, when processing low-locality
data-intensive applications, such as recently emerging DNN
(Deep Neural Network) [2], e-commerce [3], [4], [5], [6]
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graph applications [7], [8], and so on, the memory perfor-
mance determines the overall system performance.

Processing-in-Memory (PIM) architectures have been
actively studied by placing computing units close to [9], [10],
[11], [12], and [13] or inside memory [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26] to overcome
the memory bandwidth limitation. PIM can maximize inter-
nal memory bandwidth for the computation using bank-level
parallelism [14], [15], [17], [18], [22], [23], [24], [25], [26],
thus providing high computation performance. For example,
the decoupled PIM [26] achieved a speedup of 75.8x and
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1.2x over CPU and GPU at the Level-3 BLAS, respectively.
Samsung FIM [23] achieved a speedup of 11.2x and 3.5x
over CPU for memory-bound neural network kernels and
applications [27], [29], [32], respectively.

Despite the PIM’s performance advantages, in-DRAM
PIM has yet to be commercially available because of the fol-
lowing two factors. First, most designs have pursued ‘‘accel-
erator the first approach’’ instead of ‘‘memory the first,’’
affecting all architecture layers’ design, such as cores [9],
[11], [12] and memory controllers [14], [15], [17], [18], [24],
thus incompatible with our current computing platforms. For
example, the latest PIM studies from Samsung [23] and
UPMEM [30] separated the PIM memory area from the
non-PIM memory to avoid incompatibility with the JEDEC
memory standard [31] for supporting all-bank execution. Our
recent work and baseline for this research, the decoupled
PIM [26] satisfies the standard memory interface. However,
its performance is lower than the all-bank PIMs due to its per-
bank execution.

Second and more importantly, the PIM instruction set
architecture (ISA) is unavailable, which fully supports
compatibility with commercial computing platforms and
perfectly fits the PIM concept and the PIM-target application
characteristic. Most PIMs developed their own PIM instruc-
tions [11], [12], [22], [23], [30] and offloaded them to the
PIM engine bymodifying the bus interface and using the CPU
load/store instructions. It increases the hardware cost and
raises the system performance issues, such as making the core
very busy and incurring high latency to access uncacheable
PIM areas. Recent PIMs use Direct Memory Access (DMA)
as the offloading mechanism [22], [25], [26], [30], [32] to
resolve the performance issue by transferring opcodes and
large-size operands without CPU intervention.
However, the DMA-based offloading method for in-DRAM

PIM has only been used to reduce the offloading over-
head. From a performance point of view, due to the PIM’s
design characteristics, the approach still introduces signif-
icant offloading overhead. There is little space available
in commercial DRAMs where we can implement the PIM
engines, i.e., only a 64-byte register for one source operand
and a 16-byte latch for the other are allowed. The tiny
resource limits one DMA descriptor’s data transfer size
(in general, 64-bytes×number of banks), thus requiring a
significantly large number of DMA descriptors for fetch-
ing PIM-targeted large-size operands. One PIM execution
stream, in general, alternately fetches two source operands,
differently performing in the datapath, thus consisting of
one opcode descriptor, two source operand descriptors, and
one destination operand descriptor per OS page. Therefore,
a smaller DMA data transfer size requires more operand
descriptors and, consequently, more opcode descriptors, thus
incurring significant operand and opcode offloading over-
head, which would substantially degrade the performance.
An evenworse problem is that the opcode size is only 64-byte,
which does not fit well with the characteristics of DMA

transfers. Our experiment shows that the opcode descriptors
occupy about 25% of the total.
In this paper, we propose the first Processing-in-Memory

Instruction Set Architecture (PIM ISA) to guarantee full
compatibility with current commercial computing platforms,
which is critical to the success of the PIM products in the
market, and make the following contributions.

• Contribution 1: We introduce PIM ISA using a DMA
descriptor called PISA-DMA and use the DMA engine
as the PIM ISA offloading engine.

Most fields of the DMA descriptor are already
well-defined to fit the PIM concept and the PIM-target
application characteristic, i.e., not involving CPU execu-
tion and repeatedly executing the large-size data with the
same operation. We specify the PIM operands in the source
and destination fields of the DMA descriptor and the PIM
opcode in the unused bit fields of the DMA descriptor.
As a result, we can depict the PIM operand and opcode in
one DMA descriptor and use the DMA engine as the PIM
offload engine, thus neither adding any hardware components
nor modifying computing platforms. Our approach is very
cost-effective in implementation.

• Contribution 2: Our PISA-DMA makes PIM program-
ming intuitive.

We can think of committing one PIM instruction as com-
pleting one DMA transaction and representing a sequence of
PIM instructions using the DMA descriptor list. Therefore,
the PIM programming is the same as the DMA programming.
Also, since the DMA transactions are serviced one by one,
we can think of PIM ISAs as being processed in order as
well. When processing a transaction, i.e., each PISA-DMA,
we can execute memory requests in parallel across banks by
exploiting the bank-level parallelism and in-order inside a
bank. The separate opcode and operand offloading in the pre-
vious works [22], [32] asked a user to carefully program for
synchronizing the PIMmemory requests between the opcode
and the operand execution, thus incurring high programming
complexity and related execution overhead.

• Contribution 3: Our PISA-DMA minimizes the offload-
ing overhead.

We cannot reduce the operand fetching for the PIM execu-
tion, i.e., difficult to reduce the operand descriptors. However,
if we express the opcode and operands in a single descrip-
tor together, we can eliminate the opcode descriptors. The
elimination allowed us to reduce the total number of descrip-
tors by 25.8%, 26.1%, and 24.9%, thus achieving significant
speedups of 1.25x, 1.31x, and 1.29x compared to the baseline
PIM [26] in BERT [33], RoBERTa [34], and GPT-2 [35]
models, respectively, with a sequence length of 128.

• Contribution 4: We can apply traditional compiler opti-
mization techniques to our PIM code generation.

We fused the matrix-matrix multiplication with the follow-
ing element-wise addition operators in BERT and found that
PISA reduced 2.9% descriptors and achieved 1.04x speedup
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FIGURE 1. The decoupled PIM datapath [26].

compared with the unfused PISA execution, similar to the
CPU parallel execution. Therefore, we decided that we would
apply various compiler optimization techniques to our PIM
code generation without concerns.

This paper consists of the followings: Section II describes
decoupled PIM, the baseline architecture of this paper, and
Section III proposes PISA-DMA instructions using DMA
descriptors and describes the PISA-DMA execution flow.
Section IV shows the performance evaluation, and Section V
discusses the related works. Then, we present the conclusion
in Section VI.

II. BACKGROUND: DECOUPLED PIM
We propose the PISA-DMA based on the decoupled
PIM [26], so we review its datapath, interface unit, and exe-
cution flow of matrix-matrix multiplication.

A. DATAPATH
Fig. 1 shows the decoupled PIM datapath with the 128-bit
DRAM bank data bit-width [25], [26]. We could not afford
abundant computing resources due to the space limitation
in DRAM for the PIM development. Nevertheless, to com-
pute with the 4-cycle burst standard read/write requests,
each bank embeds the datapath including 8 bfloat MACs
for the 8-way vector computations, one 128-bit general
vector register (vecA), one 128-bit×4 general vector regis-
ter (vecB[3:0]), and one 176-bit×4 accumulator register
(vACC[3:0]). vecB[3:0] stores the whole burst, and
vecA stores only 1-cycle burst from the whole burst. The
datapath consists of 4 pipeline stages: FE stage for fetching
operands from a bank, EX0/EX1 stages for the MAC com-
putations (multiplication in the first stage and addition in the
second stage), and WB stage that writes vACC to the bank.

The control unit configures the datapath before one DMA
transaction fetches and stores the PIM operands by decod-
ing the information in control registers in the decoupled
PIM Interface Unit, provided by the PIM opcode offloading.
The pre-configured datapath allows us to significantly lower
power consumption by avoiding instruction decoding at every
computation.

B. INTERFACE UNIT
Fig. 2 shows the decoupled PIM Interface Unit, which
is inside the PIM DRAM and shared by all banks,
complying with the JEDEC standard memory interface,
receiving Command, Address, and Data signals from
standard memory requests as a conventional DRAM device.
A programmer (PIM library) offloads the opcode, i.e., stores
either the PIM source or destination operand address, its
size, and the datapath configuration information of the
PIM engine in uncached memory-mapped Control Regs
(REG A/B/C/D) before the PIM execution. After initializ-
ing all the registers, we ask the CPU to initiate theDMA trans-
fer, and the DMA engine issues memory requests to the PIM
device. After completing the transfer, the DMA engine inter-
rupts the CPU to notify the completion of the PIM execution.

During the PIM execution, the PIM Request Identifica-
tion Unit (RIU) distinguishes the PIM memory requests by
matching the PIM operand information in the operand regis-
ters (REG A/B/C) from the incoming memory requests and
provides the data to the engine if matched. Each bit of the
configuration register (REG D) corresponds to one control
signal of the PIM datapath.

The decoupled PIM performs two execution phases of
memory and computation by controlling each bank’s PimS
switch in Fig. 2 by the PIM memory requests. All memory
requests use the DataS switch to connect to the global bus,
i.e., to place data on the bus for read requests and acquire
data from the bus for write requests. At the memory phase,
we read the bank-private operands from a bank and turn
on the corresponding bank’s DataS switch to place them
on the global bus. At the same time, RIU recognizes the
bank-private operands and turns on the bank’s PimS switch
to store them in its PIM engine’s registers. After performing
the memory phase bank-by-bank, at the computation phase,
we read the bank-shared operands from a bank and turn
on the corresponding bank’s DataS switch to place them
on the global bus. At the same time, RIU recognizes the
bank-shared operands and generates the BC match signal
to notify the broadcast to all banks’ engines. The signal turns
on all banks’PimS switches so that all banks’ engines receive
the broadcast data from the global data bus and perform the
computation [26]. The broadcast makes all banks perform
the computation simultaneously, thus reaching the computing
throughput of the all-bank PIM without any data conflict on
the global bus.

C. MATRIX-MATRIX MULTIPLICATION ALGORITHM
Fig. 3 shows the decoupled PIM’s matrix-matrix multiplica-
tion using an optimal tiling size of (32×32)× (32×16) [26].
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FIGURE 2. The decoupled PIM [26] device interface. The graded component was modified for our work.

FIGURE 3. Matrix-matrix multiplication algorithm of the decoupled
PIM [26].

Each bank j (j = 0, 1, . . . , 15 where j is a bank number)
multiplies pairs of (a0:31,0, b0,j), (a0:31,1, b1,j), · · · , (a0:31,31,
b31,j) and accumulates the multiplication results one-by-one
to calculate c0:31,j. The execution performs the following
phases in order:

1) Memory phase for fetching bank-private operands:
Each bank reads 64-byte (a burst size) columns of the
bank-private operandMatB from its memory cell array
and stores them to vecB.

2) Computation phase for all-bank execution: We reuse
theMatB elements in vecB and broadcast a column of
MatA one by one for the all-bank execution. We repeat
32 times during Ti where i = 0, 1, . . . , 31 for broad-
casting a0:31,i. At T0, the first element of vecB is mul-
tiplied with a0:31,0 to generate the partial sum of c0:31,j.
The DRAM burst broadcasts 64-byte a0:31,i and stores
its 16 bytes per cycle to vecA, i.e., a0:7,i, a8:15,i, a16:23,i,
and a24:31,i in order. At every cycle, the storing triggers
MAC operations; 8 ALUs multiply vecA with b0,j and
produce a partial sum of c0:31,j through 4 cycles; c0:7,j,
c8:15,j, c16:23,j, and c24:31,j. The element b0,j is reused
for the multiplication with a0:31,0, i.e., 32 times. After
repeating the operations from T0 to T31, c0:31,j is avail-
able in vACC of each bank. We return to the previous
memory phase whenever requiring a new bank-private
operand MatB if the k > 32.

3) Memory phase for storing the results into memory:
Each bank stores a 64-byte vACC in the memory cell
array.

We transposed all the matrices considering the DRAM’s
read/write granularity of 64 bytes and followed the conven-
tional address mapping, locating 9 to 6 address bits as bank
id [25]. In other words, the continuous data distributes in all
16 banks with interleaved 64 bytes.

III. PISA-DMA: PIM INSTRUCTION SET ARCHITECTURE
USING DIRECT MEMORY ACCESS
In this section, we describe how to design and execute the
PISA-DMA, which represents both the PIM opcode and
operand in one descriptor without modifying any architecture
layers.

A. PIM EXECUTION BEHAVIOR VS. DMA
We should carefully handle the PIM opcode and operands
for the correct execution, requiring the following methods:
1) The control registers in the PIM Interface Unit should
be uncached memory-mapped, as discussed in Section II-B.
2) The most up-to-date source operands should be in DRAM
before the PIM execution. 3) Similarly, the valid destination
operands should be in DRAM after the PIM execution.

To support the second and third methods, we should flush
cached PIM operands into DRAM before the PIM execu-
tion and invalidate them. The cache flush and invalidation
incur significant overhead, so most PIM studies declared
the PIM operands as uncached attributes [22], [23], [24],
[25], [26]. However, the CPU access to the uncached data
is too slow because of their strictly ordered memory opera-
tions. The slowness also affects the first method in terms of
performance.

Most PIM-target application performs the computation
using bulk and continuous memory requests. Therefore, the
memory requests generated by the CPU incur significant
overhead due to their large amount and slow uncached
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FIGURE 4. The PISA-DMA instruction format using the DMA descriptor.

attribute, which degrades the overall performance. A DMA
engine is designed to transfer bulk and successive data with-
out CPU intervention from one memory to another, i.e., suit-
able for uncached data. Therefore, when considering the PIM
opcode and operand management and the PIM application
characteristics, we can conclude that the DMA engine is well
suited for the PIM operation.

B. PISA-DMA INSTRUCTIONS
1) FORMAT
Fig. 4 represents a PISA-DMA format using a DMA descrip-
tor [36]. Each PISA-DMA consists of an opcode and one
source and destination operands (their start addresses and
size) like most ISAs, i.e., x86, ARM, RISC-V, etc. The
descriptor already contains the fields for specifying the
operands (64-bit source and destination addresses, 32-bit
transfer size), so we use 14 bits of the unused descriptor
field for storing the opcode. Also, the descriptor contains the
next descriptor address, allowing us to represent a sequence
of PISA-DMA instructions. We can represent both the PIM
opcode and operands information together in one DMA
descriptor without modifying a DMA descriptor format, thus
not requiring modification of a DMA engine.When the DMA
engine fetches a descriptor, the PISA-DMA Interface Unit
recognizes a PISA-DMA instruction and configures the PIM
datapath using the PIM opcode specified in the descriptor.
Then, the DMA engine fetches the operands.

In the data transfer operation, the DMA engine issues both
read requests using the source address and write requests
to store the read data using the destination address with the
transfer size. However, PIM is different, i.e., it needs only one
operand. The DMA engine issues only read requests to fetch
the PIM operand from memory and provide the read data to
the datapath for the computation; therefore, we do not need
to specify the destination operand, which the DMAdescriptor
requires. For this purpose, we reserve eight pages (32KB), the
maximum size of the consecutive memory accesses by the
PIM math library. Similarly, we assign the source operand as
the reserved space for storing the PIM operands in memory.

2) OPCODES
Table 1 shows the PISA-DMA opcodes to configure the PIM
datapath. We divide them into MOVE, ALU, and CLR types.

TheMOVE type specifies operand fetch and store between
a memory bank and registers. MOVA/MOVB configures

the movement path of incoming data from a bank to the
vecA/vecB register by the PIM read request, respectively.
MOVC configures the movement path for storing data in the
vACC register to a bank by the PIM write request. MOVD is
an opcode to configure the data movement from the vecB
register to the vACC register for element-wise ADD/SUB
operations, requiring two source operands from vACC and
vecA. BCAST is an opcode to broadcast the data from one
bank to all banks.

The ALU type specifies arithmetic operations, such as
MAC/ADD/SUB/MUL. CSTB is an opcode for constant
value broadcasting, and k represents a counter value. k is
auto-incremented by 1 for every PIM read request, and a
16-bit constant value is selected from the 512-bit vecB regis-
ter. The selected 16-bit is broadcast to each input of the entire
8-way 16-bit MAC unit. When k is 31, it is initialized because
all data of the 512-bit vecB register have been used. All the
computation outputs are stored only in the vACC register.

The CLR type is an opcode for clearing the broadcasting
counter, control registers, and general registers.

C. INTERFACE UNIT
In the decoupled PIM, we store the information of two source
operands (src0 and src1) and one destination operand (dest) at
one time, i.e., using one write memory command, representing
the execution of ‘‘src0 op src1 → dest.’’ Then, we read src0,
read src1, and store dest in order for the execution using
memory requests. In PISA-DMA, we represent one operand
and one opcode in one descriptor. Therefore, we reshape the
execution of the decoupled PIM into ‘‘read src0; op src1 →

acc; store acc into dest,’’ needing only one operand at one
time.

Therefore, we can reduce two source registers (REG A/B)
and one destination register (REG C) in RIU [25] to one
(Rop). However, we need one more register (Rdesc) to store
the address information about the PISA-DMA descriptors.
As a result, we could reduce 64-bit×4 registers to 64-bit×3
registers and 3 address matching logics to 2 address logics.
The configuration register of the decoupled PIM (REG D)
was renamed to (Rconf) for PISA-DMA.

D. EXECUTION
The PISA-DMA execution steps are as follows, and Fig. 5
shows them:

① Offloading the PIM instructions: CPU stores the
PISA-DMA descriptors (i.e., instructions) in DRAM
and its address in Rdesc of the PIM device’s
PISA-DMA IU.

② Enabling the DMA engine: CPU stores the descriptor
address in the DMA control register and activates the
DMA engine.

③ Identifying and decoding the PISA-DMA descriptors:
When the DMA engine fetches the descriptors from
DRAM, the PISA-DMA interface unit in DRAM iden-
tifies the PISA-DMA descriptor by comparing all the
incoming read request addresses with Rdesc. When
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TABLE 1. PISA-DMA opcodes.

FIGURE 5. The execution flow of the PISA-DMA instructions.

identified, the interface unit decodes the descriptor and
stores the decoded information in the interface unit, i.e.,
the PIM opcode in Rconf to configure the PIM engine
datapath and the operand in Rop.

④ Executing the PIM computation: Then, the DMA
engine transfers memory requests and, thus, fetches the
PIM operands. PISA-DMA IU recognizes the incom-
ing memory requests as the PIM memory requests by
matching with the Rop register and performs the PIM
computation by the configured PIM datapath.

⑤ Completing and continuing more PISA-DMA descrip-
tors: After completing the fetched PISA-DMA descrip-
tor, the DMA engine fetches the subsequent descriptors
in order, if available. After completing all the descrip-
tors, the DMA engine interrupts the CPU, and we finish
the execution.

E. REPRESENTING A SEQUENCE OF PISA-DMA
INSTRUCTIONS
A DMA engine generally supports a descriptor list opera-
tion to reduce the overhead of handling multiple descriptors.

FIGURE 6. The overall architecture of the experimental platform. The
graded components were added and modified for our work from the
decoupled PIM [26].

The descriptor list can be one or multiple descriptors; each
descriptor in the list means a single DMA transaction.

CPU stores the descriptor list, i.e., a sequence of descrip-
tors, before a DMA transfer. Then, when the CPU initiates
a DMA transfer, a DMA engine fetches the descriptor from
memory one by one and generates a DMA transaction. When
completing a DMA transfer corresponding to one descriptor,
a DMA engine fetches the next descriptor using the next
descriptor address, as shown in Fig. 4. When completing
the DMA transfer of all descriptors in the descriptor list,
a DMA engine sends a completion interrupt to the CPU only
once.

PISA-DMA represents both an opcode and an operand
in one DMA descriptor; therefore, we can represent the
sequence of PISAs as the descriptor list. One PISA-DMA
instruction commit is equivalent to completing one DMA
transaction; the commit of all PISA instructions stored in the
descriptor list is the same as completing the code sequence.
It allows a programmer to express the PIM codes intuitively
and reduces the PISA-DMA execution overhead.
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FIGURE 7. The number of the DMA descriptors for the PIM execution when varying the sequence length from 32 to 128 in (a) BERT, (b) RoBERTa, and
(c) GPT-2. The percentage numbers represent the PISA’s descriptor reduction from the baseline+per-page.

TABLE 2. Experiment configurations.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL ENVIRONMENT
Fig. 6 represents our experimental platform to use the
PISA-DMA, extended from the decoupled PIM [26] on
HTG-Z920 (Xilinx Virtex UltraScale board), and Table 2
describes the experiment configuration. Our baseline archi-
tecture targets one channel of HBM [25], [26], where all
banks are connected to one shared bus inside the chip.

We measured the performance of three DNN application
models, BERT, RoBERTa, and GPT-2, using the decoupled
PIM (baseline), the CPU serial execution (CPU_S), and the
CPU parallel execution using OpenMP (CPU_P).
We did not modify any hardware components except the

PIM device, including the Xilinx DDR4 memory controller
and Xilinx CDMA IP, as shown in Fig. 6. We only modi-
fied the interface unit from the decoupled PIM device [26]
in Section II-B and the PIM library to represent the
PISA-DMAs. We developed the PIM in the Programmable
Logic (PL) area, i.e., we used the PL memory as the PIM
memory. Since the operating frequencies of the PS and PL
memory controllers were different, we scaled them for a
fair performance comparison with the CPU execution. The

decoupled PIM and PISA-DMA PIM used Xilinx CDMA
(Central Direct Memory Access) IP [36] as their offloading
engine, supporting coalesce of up to 255 descriptors’ comple-
tion interrupt. We allocated the PISA-DMA descriptors into
the PL memory.

Also, we developed the PIM MemPool to provide large
contiguous physical pages by utilizing a huge page [39]
mechanism at an application level without modifying the OS
(+MemPool) in order to see the strength and weakness of
the PISA-DMA with and without huge contiguous physical
pages. The support of the huge contiguous physical pages can
allow us to reduce operand descriptors.

B. PIM DESCRIPTORS: OFFLOADING OVERHEAD
The PIM execution consists of three factors, as mentioned
in Section III-D: 1) the offloading to generate and store the
DMAdescriptors inDRAM, 2) the computation by read/write
operands using DMA, and 3) the notification to CPU after
completing the PIM execution. Since we used the same PIM
math algorithm and PIM architecture for all the PIM’s per-
formance studies, only 1) and 3) determine their performance
difference. More precisely, the number of the DMA descrip-
tors for the PIM offloading determines the performance, and
Fig. 7 shows the numbers when varying the sequence length
of 32 to 128. The higher the sequence length (SL), the larger
the operand size and the more descriptors. The sequence
length represents p in the matrix-matrix multiplication of
(p× q) × (q× r).
Our PISA completely eliminated the opcode descriptors by

combining themwith the operand descriptors; thus, it reduced
the total descriptors by 25.8%, 26.1%, and 24.9% com-
pared to baseline+per-page, i.e., without MemPool, in BERT,
RoBERTa, and GPT-2, respectively. The MemPool library
provides contiguous physical pages, thus significantly reduc-
ing the opcode descriptors to specify the operand’s address
range. However, the library still needs the opcode descriptors,
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FIGURE 8. The speedup and the execution time breakdown when varying the sequence length from 32 to 128 in (a) BERT (b) RoBERTa, and (c) GPT-2.
The numbers represent the speedup with respect to PIM’s baseline+per-page.

FIGURE 9. The breakdown of row buffer hit/miss/conflict ratio in the PIM executions when varying the sequence length from 32 to 128 in (a) BERT,
(b) RoBERTa, and (c) GPT-2. The percentage numbers represent the row buffer hit, miss, and conflict ratio.

and PISA further removes them by 4.8%, 6.8%, and 5.7%
compared to baseline+MemPool. As a result, we conclude
that we do not need the MemPool function, which shows the
strength of our PISA-DMA.

C. SPEEDUP AND EXECUTION TIME
Fig. 8 shows the speedup of total execution time with
the PIM’s execution time breakdown. When varying the
sequence length from 32 to 128, CPU_P achieved the
speedups of 2.90∼3.04x, 3.27∼3.37x, and 3.45∼3.63x in
BERT, RoBERTa, and GPT-2, respectively, with respect to
CPU_S. The speedup was saturated at about 3.5x due to its
4-core execution.

The number of descriptors in Fig. 7 directly affected the
PIM performance, and PISA achieved the highest in all the
experiments. Memcpy in the PIM execution represents data
copy between the CPU and PIM for providing data coherence.
The CPU execution in PIM represents that the CPU performs
operations not supported by the PIM device. Therefore, they
are the same in all cases of the baseline and PISA.

PISA achieved a significant speedup; 6.22x and 5.48x,
7.63x and 6.31x, and 9.15x and 7.98x at the sequence
lengths of 32 and 128 in BERT, RoBERTa, GPT-2, respec-
tively, comparing with CPU_S. PISA consistently achieved
higher speedup than the baseline PIM with per-page and
MemPool approaches by remarkably reducing the offloading
time: PISA+per-page achieved the speedups of 1.21∼1.25x,
1.30∼1.31x, and 1.27∼1.29x compared to the baseline+per-
page in the three models, respectively. Also, we found that
MemPool did not contribute any performance improvement
with PISA since the per-page operand descriptor transfers
sufficiently large data, at least 4KB at one time. The large
size can diminish the timing gap between multiple per-page
operand descriptors by providing many memory requests to
a memory controller.

D. DRAM BEHAVIOR
Fig. 9 shows the breakdown of the row buffer hit/miss/conflict
of the baseline decoupled PIM and our PISA-DMA. The
row buffer behaviors are related to 1) the CPU’s storing
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descriptors, 2) the DMA engine’s fetching descriptors, 3) its
offloading opcodes, and 4) its fetching and storing operands.
We implemented the performance counter inside the Xilinx
memory controller for profiling the DRAM behaviors.

The row miss or conflict occurs whenever the different
sequence of 1) to 4) occurs. In the case of PISA eliminat-
ing the offloading opcode, the row buffer conflict occurs
when starting to read a different operand or consuming all
data of the opened row buffer. However, in the decoupled
PIM, if re-configuration is needed, the row buffer conflict
is encountered because the DMA engine reads the opcode
descriptor from different DRAM rows and writes the opcode
to control registers in the interface unit to configure the PIM
engine. Therefore, the baseline PIM incurs higher conflict
row misses than PISA. As a result, the row buffer hit ratio
of PISA-DMA was about 8.2%, 2.7%, and 2.7% higher, and
the row buffer conflict ratio was about 8.4%, 2.8%, and 3.0%
lower than of baseline+per-page in BERT, RoBERTa, and
GPT-2, respectively. MemPool reduces the number of engine
re-configurations in the decoupled PIM, so DRAM behavior
was almost similar to PISA.

E. OPERATOR FUSION
Traditionally, a compiler’s code optimization on CPU
improves performance by executing fewer instructions, and
thus, we study how our proposed PISA affects performance
in a compiler’s code optimization.

We applied the operator fusion to a pair of the
matrix-matrix multiplication and its following element-wise
addition popularly used for improving performance [40] by
removing storing the multiplication results and reloading
them for the addition, i.e., spills. We measured the per-
formance variant by fusing 24 matrix multiplications with
element-wise additions among 32 matrix multiplication oper-
ators in BERT with a sequence length of 128.

Fig. 10(a) shows the number of descriptors in each exe-
cution without and with the operator fusion. Without PISA,
in the baseline+per-page and baseline+MemPool executions,
the fusion totally decreased the descriptors by 0.8% and 2.0%
in each execution, reducing the operand descriptors by 3%
and 3% but increasing the opcode descriptors by 5% and
25%, respectively. The fusion increases the opcode descrip-
tors due to their interleaved execution (alternatively executing
multiplication and addition), thus increasing the PIM device
re-configuration. On the other hand, PISA does not require
the opcode offloading, thus further reducing the PISA
descriptors by 2.9% in both the per-page and MemPool
executions.

Fig. 10(b) shows the speedup of the fused execution
with respect to the unfused one with their execution time
breakdown. The CPU_P improved the performance by 3%
compared with the unfused CPU_P execution. Also, the base-
line+fusion improved the performance by 3% and 2% in the
per-page and MemPool executions, respectively, compared
with the unfused baseline execution. On the contrary, the
PISA took more performance advantage from the fusion by

FIGURE 10. The execution with a sequence length of 128 in BERT without
and with the operator fusion. (a) The number of descriptors. The
percentage numbers represent the fusion execution’s descriptor reduction
from the unfused execution. (b) The speedup of the fused execution with
respect to the unfused one with the execution time breakdown.

not needing descriptors for the device re-configuration; 4%
and 4% in the per-page and MemPool executions, respec-
tively, comparedwith the unfused PISA execution. Therefore,
PISA directly improved the performance by reducing the
operand descriptors, i.e., by removing spills. The fusion did
not improve the performance noticeably since the multiplica-
tion requiredO(N 3), and the fusion removed the spillsO(N 2)
with N × N matrices.

F. AREA OF THE PIM INTERFACE UNIT
Table 3 compares the interface unit area of the decoupled
PIM and PISA-DMA, consisting of control registers and
address matching logics, as discussed in Section III-C. For
the comparison, we used the 65nm logic process, similar to
the DRAM fabrication characteristics [25].

PISA-DMA reduced the total area by about 29% compared
to the decoupled PIM, from 36% and 26% reduction in con-
trol registers and address matching logics, respectively. The
reduction is crucial since there is little space available for
implementation in commercial DRAM. The area of control
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TABLE 3. Area of the PIM interface unit (um2). The percentage numbers
represent the PISA-DMA’s area reduction from the decoupled PIM.

registers occupies two times more than the address-matching
logic.

V. RELATED WORK
Most PIM studies [11], [12], [22], [23], [30], [32] have
proposed their own PIM ISAs. However, they neither fit
the PIM concept, i.e., not involving the CPU execution,
nor PIM-target application characteristics, i.e., expressing
large-size operands with the same operation. Also, they
require hardware modification and are incompatible with
current commercial computing platforms.

PEI [11] and GraphPIM [12] needed to modify the core
pipeline for their own PIM ISAs, thus lacking compatibility
with commercial computing platforms.

In AiM [22] based on GDDR6, a host offloads the AiM
instructions to the ISR register inside the memory controller.
Then, the controller decodes them into DRAM commands
called AiM commands to perform all-bank execution with the
DMA-offloaded operands. It requires modifying the memory
controller, thus incurring incompatibility with current com-
mercial computing platforms. Also, the separate offloading of
the opcode and operands incurs the execution overhead and
makes the PIM programming difficult.

UPMEM [30] separates the PIM memory area (MRAM)
from the main memory to avoid the memory controller modi-
fication and includes the accelerator inside the PIM memory.
The DMA engine in the UPMEMdevice offloads instructions
and operands from MRAM to IRAM (instruction memory)
and WRAM (scratchpad memory), respectively. The limited
resource of IRAM and WRAM incur frequent offloading. Its
design and execution follow the traditional accelerators, not
PIM handling large-size operands with the same operation.

Samsung FIM [23] also embedded a core to execute
PIM-HBM instructions to support the all-bank execution and
separated the PIM memory from the main memory. FIM
stores the PIM-HBM instructions in the CRF instruction
buffer, and the CPU load/store instructions trigger DRAM
commands for the execution. Samsung-FIM issues the mem-
ory commands in a user-defined order, and the memory
requests to PIM can be reordered while passing through the
memory hierarchy and a memory controller. RNN-T [32]
based on Samsung-FIM utilizes a DMA engine to guarantee
memory ordering. However, it still uses separate opcode and
operand offloading, thus incurring the execution overhead
and increasing the program complexity.

VI. CONCLUSION
This paper proposed PIM ISAs that represent both the PIM
opcode and operand in one data structure using the DMA

descriptor while providing full compatibility with commer-
cial platforms. Committing one PIM instruction is the same as
completing one PISA-DMA transaction. Also, we can repre-
sent a sequence of PIM instructions using the DMA descrip-
tor list. It allows a programmer to express the PIM codes
intuitively and reduces the PISA-DMA execution overhead.

We measured the performance of PISA with BERT,
RoBERTa, and GPT-2 in ONNX runtime on real machines.
The PISA’s opcode descriptor elimination allowed us to
achieve speedups of 1.25x, 1.31x, and 1.29x in the models,
respectively, from the decoupled PIM in the per-pagememory
layout. Also, we showed that PISA diminished the neces-
sity of MemPool to provide large contiguous physical pages
and incurred fewer DRAM row buffer misses. Additionally,
we studied the performance variants when applying the oper-
ator fusion. We found that the PISA execution took a higher
fusion advantage than the baseline PIM execution.
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