
Received 15 December 2022, accepted 11 January 2023, date of publication 23 January 2023, date of current version 26 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3238711

Scalable and Fast Algorithm for Constructing
Phylogenetic Trees With Application to IoT
Malware Clustering
TIANXIANG HE 1, CHANSU HAN 2, RYOICHI ISAWA2, (Member, IEEE),
TAKESHI TAKAHASHI 2, (Member, IEEE), SHUJI KIJIMA1,
AND JUN’ICHI TAKEUCHI 1, (Member, IEEE)
1Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
2National Institute of Information and Communications Technology, Koganei 184-8795, Japan

Corresponding author: Tianxiang He (he@me.inf.kyushu-u.ac.jp)

This research was conducted under a contract of ‘‘MITIGATE’’ among ‘‘Research and Development for Expansion of Radio Wave
Resources (JPJ000254),’’ which was supported by the Ministry of Internal Affairs and Communications, Japan. This research was also
supported in part by JST SPRING, Grant Number JPMJSP2136.

ABSTRACT With the development of IoT devices, there is a rapid increase in new types of IoT malware
and variants, causing social problems. The malware’s phylogenetic tree has been used in many studies for
malware clustering or better understanding of malware evolution. However, when dealing with a large-scale
malware set, conventional methods for constructing a phylogenetic tree is very time-consuming or even
cannot be done in a realistic time. To solve this problem, we propose a high-speed, scalable phylogenetic tree
construction algorithm with a clustering algorithm to cluster it. The proposed method involves the following
steps: (1) Calculating the similarity of the specimen pairs using the normalized compression distance.
(2) Creating a phylogenetic tree containing all specimens, instead of calculating the similarity of all pairs of
a specimen, our algorithm only calculates a small part of the similarity matrix. (3) Dividing the phylogenetic
tree into clusters by applying the minimum description length criterion. In addition, we propose a new online
processing algorithm to add new malware specimens into the existing phylogenetic tree sequentially. Our
goal is to reduce the computational cost of constructing the phylogenetic tree and improve the clustering
accuracy of our previous research. We evaluated our method’s clustering accuracy and scalability with
65,494 IoT malware specimens. The results showed that our algorithm reduced the computation by 97.52%
compared with the conventional method. Our clustering algorithm achieved accuracies of 95.5% and 99.3%
for clustering family name and architecture name, respectively.

INDEX TERMS Clustering, IoT malware, MDL criterion, phylogenetic tree.

I. INTRODUCTION
IoT malware has seen rapid proliferation in recent years, and
a large amount of malware is newly spread every day. Honey-
pots and anti-malware platforms (such as VirusTotal 1) collect
large amounts of malware samples to keep track of popu-
lar malware trends. By analyzing these malware samples,
it is possible to know the threat of malware to cyberspace.

The associate editor coordinating the review of this manuscript and

approving it for publication was Easter Selvan Suviseshamuthu .
1https://www.virustotal.com

To analyze the massive amount of malware specimens, effi-
cient malware analysis methods are required.

Clustering is a compelling method to analyze these
large-scale malware sets efficiently. In this paper, we focus
on constructing a phylogenetic tree for malware clustering.
We have a particular interest in malware’s phylogenetic tree
because it can not only cluster malware but also investigate
the evolutionary relationships of malware specimens. How-
ever, conventional methods for constructing a phylogenetic
tree are very time-consuming when facing a large malware
set. Therefore, Our goal is to achieve automatic clustering
from a large-scale malware specimen set by constructing a

8240 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8767-817X
https://orcid.org/0000-0002-1728-5300
https://orcid.org/0000-0002-6477-7770
https://orcid.org/0000-0002-5819-3082
https://orcid.org/0000-0002-8584-5947

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

phylogenetic tree. Our method is outlined as follows: we
first calculate the distances between malware specimens and
then use these distances to create a phylogenetic tree. Finally,
we divide the phylogenetic tree into clusters.

We use the normalized compression distance (NCD) to
measure the similarity (distance) between execution-type
malware binaries. NCD does not require domain knowledge
and can be applied to many file formats. NCD measures
the distance based on the similarity of two malware’s binary
sequences. The higher the similarity between the two binary
sequences, the smaller the NCD [6], [8]. Specimens of the
same IoTmalware family are often created based on the same
source code with minor modifications [2]. Therefore, these
specimens have high binary similarities and can be expected
to be divided into close clusters.

A typical method for creating a phylogenetic tree is the
neighbor-joining method [26]. The neighbor-joining method
takes a distance matrix as an input and outputs a phyloge-
netic tree with tree distance approximating the input distance
matrix. However, the neighbor-joining method requires cal-
culating all pairs of distances, which means (N 2

+N)/2 times
of compression attempts in our case. Here, N is the number
of data samples. The computation time of the NCD matrix
is problematic when N is large. Therefore, our previous
work proposed a scalable method for clustering malware by
constructing a phylogenetic tree [12].2 Our previous method
consisted of a fast phylogenetic tree construction algorithm
and a clustering algorithm. By calculating only a tiny part
of the distance matrix, we achieved good scalability while
maintaining the accuracy of clustering. Instead of creating
large phylogenetic trees all at once, our basic idea was to
create small phylogenetic trees and combine them into one
big phylogenetic tree. Using the abovementioned algorithm,
we can create a phylogenetic tree with far fewer NCD com-
putations than (N 2

+ N)/2 times. Clustering was achieved
by appropriately dividing the phylogenetic tree into subtrees.
We applied our method and constructed a phylogenetic tree
of 4,109 IoT malware specimens in [12].

But when we applied our previous method to a much
larger, multi-architecturemalware set, the clustering accuracy
dropped significantly. Hence, in this paper, we applied a new
clustering algorithm: the minimum description length (MDL)
criterion as the division criterion [25]. Based on the infor-
mation criterion, the MDL Criterion decides whether to
divide a cluster (subtree) into smaller clusters. We not only
improved the clustering accuracy but also used a much larger
dataset containing 65,494 malware specimens to evaluate our
method’s scalability. Furthermore, considering that new spec-
imens are added to the dataset daily or weekly, reconstructing
the phylogenetic tree every time new specimens are collected
is time-consuming and resource-intensive. Therefore, we also
proposed an online processing algorithm that directly adds

2This paper was partly presented at the International Conference onNeural
Information Processing (ICONIP), 2019 [12]. The clustering algorithm and
experiments were updated.

new specimens to the phylogenetic tree without fully recon-
structing it.

Our contributions are threefold:

• We present a scalable and fast algorithm to construct
phylogenetic trees, which significantly reduces the com-
putational cost.

• We present a scalable clustering algorithm applying
the MDL Criterion. 95.5% and 99.3% accuracies
of clustering family name and architecture name were
achieved, respectively.

• We present an online processing algorithm that succes-
sively adds new specimens into the phylogenetic tree
while maintaining the clustering accuracy.

The rest of this paper is organized as follows. The sec-
ond section introduces the related studies. The third section
introduces existing methods we applied in our study. The
fourth section presents our newly proposed algorithm, i.e.,
clustering algorithm and online processing algorithm. In the
fifth section, we discuss the application of our algorithm with
65,494 specimens of IoT malware. In particular, we show
how much we reduce the computational cost and the extent
to which we improve the clustering accuracy. Finally, the
last section discusses the limitations and directions for future
research.

II. RELATED WORK
A. BINARY-LEVEL STATIC ANALYSIS
We applied NCD for feature extraction that directly calculates
the similarities between malware’s byte sequences. Details
about NCD will be introduced in subsection III-A. Other
binary-level feature extraction methods include N-grams
[16], [23], [35], entropy-based [11], [22], and image-based
techniques [5], [7], [20], which convert a file’s entire
sequence of bytes into a picture, where each byte represents
the grayscale of a pixel.

Compared to N-gram, N-gram lacks long-term depen-
dence, because it only considers the N-1 bytes before the
current byte. Moreover, in practice, N is usually ranged
from 2 to 8 due to the computation complexity [16].
On the contrary, NCD’s feature extraction is based on
the compression algorithm. In our method, we chose
Lempel–Ziv–Markov chain algorithm (LZMA) as the com-
pression algorithm. Markov chain algorithm has much
longer-term dependence than N-gram so that Markov chain
algorithm can match more same patterns in the bytes
sequences. Furthermore, N-gram can only use N-byte words
as the dictionary, but LZMA has a more flexible dictionary.

In the entropy-based feature extraction, information in the
bytes sequences will lose while converting the byte sequences
into entropy. Different byte sequences can result in the same
entropy value.

The image-based method converts byte sequences to an
image. Each byte represents the grey scale [0-255] of a
pixel. The image can later be used as input for Neural Net-
works or other methods. The advantage of this method is its

VOLUME 11, 2023 8241

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

TABLE 1. Summary of the studies constructing phylogenetic tree for malware clustering.

TABLE 2. Summary of the studies about large-scale malware clustering.

robustness [1]. Our method and N-gram match exactly the
same pattern between byte sequences, while Neural Networks
can deal with minor alterations.

B. PHYLOGENETIC TREE FOR MALWARE CLUSTERING
Many studies have applied the phylogenetic tree to cluster
malware samples and help the analyst to better understand
the evolutionary relationships between malware. But almost
all of these studies analyzed small malware sets. Because
their methods require the computation of the whole distance
matrix, the O(N 2) complexity makes it impossible to apply
these methods to a large malware set. A summary table of
related study constructing a phylogenetic tree is shown in
Table 1.
Karim et al. [17] proposed a method to calculate the

distance between all malware pairs using n-perms and cre-
ated a phylogenetic tree. Wehner [33] also used NCD to
calculate the distance between 790 malware samples. They
did not mention their method for constructing the phyloge-
netic tree, but they noted that they calculated all pairs of
malware’s distance. In [14], Hsiao et al. extracted malware
features based on dynamic analysis, and the unweighted pair
group method with arithmetic mean was used to construct
their phylogenetic tree. The size of the dataset was 1,200.
Vinod et al. [32] used IDA, a binary code analysis tool for
reverse engineering, to transfer executable malware to assem-
bly code and calculated the similarity based on it. They used
the neighbor-joining method to construct the phylogenetic
tree. Their experiment contained 1,200 malware specimens.
Bailey et al. [3] proposed a representative automatic cluster-
ing method based on the dynamic analysis of malware. Using
the dynamic analysis log of 3,700Windows malware samples
as input, the NCDmatrix between the operation log data of all
the samples was calculated, and then a phylogenetic tree was
created using the shortest distance method. In addition, they
proposed a clustering criterion called Inconsistency

Coefficient and performed hierarchical clustering based
on it.We also used it in previous studies. However, there was a
problem in that the clustering accuracy dropped significantly
for a large-scale, multi-architecture phylogenetic tree. There-
fore, in this study, we improved the clustering method and
performed clustering using the MDL Criterion. All these
studies calculated all pairs of malware distance, because any
O(N 2) algorithm does not scale well, they are not suitable for
constructing large-scale phylogenetic trees.

To the best of our knowledge, [9] is the only related
study on the construction of large-scale phylogenetic trees.
Cozzi et al. separately constructed phylogenetic trees for dif-
ferent architectures, and the largest one contains 36 thousand
malware samples. They used hierarchical navigable small
world graphs (HNSW) to reduce the distance computation
significantly. Compared to their study, our phylogenetic tree
almost doubles their size.

C. LARGE-SCALE MALWARE CLUSTERING
Although there is only one related study about large-scale
phylogenetic tree construction, there exist several approaches
to reduce the computational cost of large-scale malware clus-
tering. A summary table of large-scale malware clustering is
shown in Table 2.
Bayer et al. [4] proposed a large-scale clustering method

based on dynamic analysis. They used the malware dynamic
analysis log as input for clustering and performed clustering
by calculating approximately 2% of the distance matrix with-
out calculating the distance between all data pairs using the
locality sensitive hash (LSH). However, like Bailey et al.’s
method, dynamic analysis requires several minutes to run
each malware specimen. By contrast, our static analysis
method does not require the malware to be executed.

Oliver et al. [21] proposed a clustering method based on
a static analysis that uses trend locality sensitive hashing
(TLSH) to transfer every malware binary into fixed-length

8242 VOLUME 11, 2023

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

hash digests. They then clustered all digests into clusters
using a clustering method called HAC-T within O(N logN)
time. Torabi et al. [31] proposed a strings-based method
to analyse and cluster 49,272 IoT malware. They extracted
useful strings and calculated its similarities using Jaccard
and overlap similarity coefficients. Moreover, they applied
ClusterONE [34] algorithm to perform clustering analysis.
Rieck et al. [24] and Hu et al. [15] took a different approach:
a prototype-based clustering algorithm that reduces runtime
complexity by performing clustering only on representative
samples (prototypes). The remaining malware specimens are
associated with their closest prototype in the feature space.
Dam et al. [10] also took a very different approach: they use
IDA pro to extract system call graph for each malware and
transfer graphs into vectors applying LSTM.

III. PRELIMINARIES
In this section, we introduce two existing methods we applied
in our study.

A. NORMALIZED COMPRESSION DISTANCE
In this study, we used NCD to measure the similarity
(i.e., distance) between IoT malware binaries. NCD is an
information-theoretic measure of the similarity between two
objects [19]. The similarity is calculated based on the com-
pression rate of the objects. NCD measures the similarity
of objects regardless of their format or structure, e.g., doc-
uments, pictures, programs, music, etc.

For two objects x and y, NCD is defined as follows:

NCD(x, y) =
C(xy) − min{C(x),C(y)}

max{C(x),C(y)}
,

where C(x) is the length of x that is compressed by com-
pression program C , and xy is the concatenation of objects
x and y. When compressing xy, the compression program
will first compress x and then use the information of x to
compress y. Thus, the more similar x and y are, the higher
is the compression rate of xy. This means that the value of
C(xy) will be similar to that of C(x) or C(y) and result in the
NCD value close to zero.

B. NEIGHBOR-JOINING METHOD
The neighbor-joiningmethod [26] is an algorithm for creating
a phylogenetic tree T using a distance matrix d defined on
a finite set L as input. Every leaf of the phylogenetic tree
represents an object of L. The tree distance between two
nodes of T is defined by the total branch length of the path
between the two nodes. The tree distance is an approximation
of the input distance matrix d .
In the neighbor-joining method, two nodes i and j that

minimize d ′
ij, defined below, join a newly created node p.

d ′
ij = dij −

∑
k∈L(dik + djk)

|L| − 2
,

where dij is the (i, j) entry of the given distance matrix d .
Nodes i and j are deleted from the set L, and node p is added

Algorithm 1 Neighbor-Joining Method
Require: finite dataset L with a distance matrix (dij) over

L × L
Ensure: phylogenetic tree T
1: while |L| ≥ 2 do
2: choose (u, v) (u ̸= v) which minimizes d ′

u,v
3: create a new node p, V := V ∪ {u, v, p}, E = E ∪

{{u, p}, {v, p}}
4: branch length of{u, p} is defined as:

Du,p = (du,v+
∑

k∈L\{u,v}(duk−dvk)
|L|−2)/2, L := (L\{u, v})∪

{p}
5: branch length of {v, p} is defined as:

Dv,p = (du,v +

∑
k∈L\{u,v}(dvk−duk)

|L|−2)/2
6: for w ∈ L \ {p}, d(w, p) := (1/2)(du,w + dv,w − du,v)
7: end while
8: return T = (V ,E),D

instead. This step is repeated until all the nodes are linked.
The pseudocode of the neighbor-joining method is shown in
Algorithm 1, where D is the set of branch lengths.

IV. PROPOSED METHOD
In this section, we introduce the fast algorithm for construct-
ing a phylogenetic tree, the new clustering algorithm applying
the MDL Criterion and the online processing algorithm.

A. FAST ALGORITHM FOR CONSTRUCTING A
PHYLOGENETIC TREE
The neighbor-joining method requires a complete distance
matrix to construct a phylogenetic tree. The O(N 2) computa-
tional cost is a problem when the dataset is large. Therefore,
we proposed a fast and scalable algorithm that only needs to
calculate a small part of the distance matrix to construct a
phylogenetic tree.

The algorithm is outlined as follows. The schematic dia-
gram and the flow chart are shown in Fig. 1 and Fig. 2,
respectively. First, the algorithm randomly selects a seeds set
S ⊂ L (|S| = k, |L| = N) with k (k ≪ N). Then, it calculates
the distance matrix between S and L, and, using the distance
matrix over S × S, creates a phylogenetic tree T using the
neighbor-joining method. For each element z in L \ S, using
the distance matrix over (L \ S)× S, it links it with the leaf e
of T , which is nearest to the element z.
To increase the approximation accuracy of the tree distance

between set L \ S, it recalculates the tree distance recursively
for each Z (e). If |Z (e)| < h, it calculates the distance matrix
over Z (e) ∪ {e} and creates a phylogenetic tree TZ (e) with
it. It then combines TZ (e) and T . Here, h is a predefined
threshold. e is included in the recomputation to know which
part of TZ (e) corresponds to T . If |Z (e)| > h, then it
recursively uses this algorithm for Z (e) ∪ e. The pseudocode
of the phylogenetic tree construction algorithm is shown in
Algorithm 2, where ∂T denotes a set of all leaves of T .

VOLUME 11, 2023 8243

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

FIGURE 1. The schematic diagram of the phylogenetic tree construction
algorithm.

FIGURE 2. The flow chart of the phylogenetic tree construction algorithm.

Instead of calculating all pairs of distances, only the col-
ored parts in Fig. 1 are calculated in Algorithm 2. As a
randomized algorithm, Algorithm 2’s computational cost is
O(N 2) in the worst case. But in usual cases, the computational
cost is reduced from O(N 2) to O(N logN). Details of the
computational cost are presented in the appendix.

B. CLUSTERING ALGORITHM
Since the burden on the analyst cannot be reduced by
simply constructing the phylogenetic tree, it is necessary
to divide the phylogenetic tree into appropriate clusters.
In our previous study, we achieved a good clustering
accuracy by using the clustering method based on the
Inconsistency Coefficient [3], but when it was
applied to a larger, multi-architecture dataset, performance
decreased considerably. To solve this problem, we changed
the clustering method to MDL Criterion [25].

The MDL Criterion is a model selection criterion
based on information theory [25]. MDL Criterion is
defined as below:

MDL = −2 logL(θ̂; x) + mj log(n). (1)

Algorithm 2 Fast Algorithm for Constructing a Phylogenetic
Tree
Require: finite dataset L, size k of seeds set, threshold h
Ensure: phylogenetic tree T
1: choose a certain seeds set S ⊂ L with |S| = k
2: calculate the distances dij for (i, j) ∈ S × L
3: create a phylogenetic tree T for S by the

Neighbor-joining method using dij
4: for e ∈ ∂T do
5: Z (e) = ∅

6: end for
7: for z ∈ L\S do
8: Z (e) = Z (e) ∪ {z} where e is nearest to z
9: end for
10: for e ∈ ∂T do
11: if |Z (e)| > h then
12: recursively use Algorithm 2 for Z (e) ∪ {e}
13: end if
14: if 1 < |Z (e)| < h then
15: calculate dij for (i, j) ∈ (Z (e) ∪ {e})2 and create a

phylogenetic tree TZ (e) with it.
16: replace the corresponding parts of T with TZ (e)
17: end if
18: end for

where L is the likelihood function, θ is the maximum like-
lihood estimate, mj is the number of dimensions of θ , n is
the number of data samples. The description length includes
the description length of the model and the description length
of the data when the model is given. When using a compli-
cated model, the data description length can be short, but
the description length of the model becomes long. When
using a simple model, the description length of the model is
short, but the description length of the data becomes long.
An appropriate model should be selected by balancing both
and minimizing the total description length.

The outline of the clustering algorithm is shown below.
First, given one cluster C, it is assumed that the data x
contained in the cluster follows a normal distribution, and
the description length (DL) of the cluster is calculated by the
following.

DL(C) = −2 logL(θ̂; x) + mj log(n)

= n log(
1
n

n∑
i=1

|xi − x̄|2) + mj log n+ n(log 2π + 1).

Here, L is the likelihood function, θ is the maximum likeli-
hood estimate, n is the number of data samples in the cluster,
and mj is the number of dimensions of the parameter.
In our model, this equation cannot be directly calcu-

lated because it is originally designed for Euclidean space.
We must approximate it as follows: xi − x̄ is calculated
using the tree distance between the malware i and the central
malware x̄. The central malware is defined as themalware that
has the smallest sum of squares of the column elements in the

8244 VOLUME 11, 2023

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

Algorithm 3 Algorithm for Clustering a Phylogenetic Tree
Require: Phylogenetic tree T
Ensure: Clusters Tc
1: Function Cluster(C)
2: find the central node of C .
3: divide the cluster C into C1,C2,C3 at the central node.
4: if DL(C1,C2,C3) > DL(C) then
5: Tc = Tc ∪ C
6: end if
7: if DL(C1,C2,C3) < DL(C) then
8: Cluster(C1)
9: Cluster(C2)

10: Cluster(C3)
11: end if
12: EndFunction
13: Tc = ∅

14: Tc = Cluster(T)
15: for Ti ∈ Tc do
16: if |Ti| < 100 then
17: Tn= Ti’s nearest cluster
18: C= merge Ti and Tn
19: while count < 10 do
20: if DL(Ti,Tn) > DL(C) then
21: Tc= Tc− Ti − Tn
22: Tc = Tc ∪ C
23: break
24: else
25: Tn=Ti’s next nearest cluster
26: count++1
27: end if
28: end while
29: end if
30: end for

cluster’s tree distance matrix. mj becomes a free parameter
that determines the fineness of the division of the phyloge-
netic tree. Note that different information criteria like Akaike
information criterion (AIC) or Bayesian information criterion
(BIC), or MDL Criterion are only different at the weight
of mj, so since we regard mj as a free parameter and use
parameter tuning to choose the bestmj, apply any information
criterion is actually the same.

The phylogenetic tree is a 3-regular graph (which means
every node has three neighbors); therefore, when dividing a
cluster (subtree), it will be divided into three subtrees, viz.,
C1,C2, and C3. We divide a cluster at its central node, which
is defined as the node which has the smallest sum of the
squares of the column elements in the tree distance matrix.
The description length of the divided cluster is calculated by:

DL(C1,C2,C3) =

3∑
k=1

nk log(
1
nk

n∑
i=1

|xki − x̄k |2)

+ 3mj log n+ n(log 2π + 1).

Here, xk is the malware sample contained in the cluster Ck ,
and nk is its number.

Algorithm 4 Algorithm for Online Processing
Require: Phylogenetic tree T , clustering result Tc, newmal-

ware set L
Ensure: New phylogenetic tree T ′

1: S = ∅

2: for each Ti ∈ Tc do
3: S = S ∪ {e}, where e is the central malware of cluster

Ti
4: end for
5: calculate the distances dij for (i, j) ∈ S × L
6: for each malware l ∈ L do
7: insert l into nearest cluster
8: end for
9: for each Ti ∈ Tc do
10: re-construct the phylogenetic tree of Ti
11: end for
12: join all clusters into new phylogenetic tree T ′

If DL(C1,C2,C3) > DL(C), the cluster before the
division is considered better, and the division is rejected.
If DL(C1,C2,C3) < DL(C), the cluster after division is
considered to be better, and the cluster will be divided into
three clusters. The determination of division will continue for
each small cluster.

While dividing the phylogenetic tree, many small clusters
are formed. After completing the division, we merge these
small clusters into their respective close clusters. The distance
between clusters is defined by the tree distance between their
central nodes. The merging process was conducted targeting
the clusters containing one hundred or fewer specimens with
other clusters in the order of closer distance. The merg-
ing is only done when the description length DL(C) of the
cluster after merging is smaller than the description length
DL(C1,C2) of the clusters before merging. The pseudocode
of the algorithm is shown in Algorithm 3.

C. ONLINE PROCESSING ALGORITHM
Since new malware specimens are collected by honeypots
every day, reconstructing the phylogenetic tree each time new
specimens are added to the dataset will be time-consuming.
Therefore, we propose an online processing algorithm that
adds new specimens to the existing phylogenetic tree.

After creating a phylogenetic tree and clustering it, we cal-
culate the distance between center specimens of every cluster
and all new specimens. The center specimen of a cluster is
the specimen that has the minimum sum of the square of the
distance to other specimens in the cluster. We assign each
new specimen to its nearest cluster. To determine where the
new specimens should be inserted, we re-create the phyloge-
netic tree of each cluster using the neighbor-joining method.
Note that the distance matrix of the original cluster has been
calculated; therefore, the new distance matrix only requires
an extremely small amount of NCD computations. Finally,

VOLUME 11, 2023 8245

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

TABLE 3. Breakdown of ISA and malware family names of the dataset.

FIGURE 3. Experimental results with 4,000 specimens and comparison between our algorithm, the
neighbor-joining method, and the Inconsistency Coefficient.

all clusters are joined back to a phylogenetic tree. The pseu-
docode of the algorithm is shown in Algorithm 4.
The evaluation of the proposed algorithm is introduced in

the next section.

V. EXPERIMENT AND RESULTS
In this section, we evaluate our algorithm with 64,494
IoT malware. In particular, it shows 1) how well our
fast algorithm reduces the computational cost com-
pared with the neighbor-joining method, 2) how much
the MDL Criterion improves the clustering accuracy
compared with Inconsistency Coefficient, and
3) how well our online processing algorithm reduces
the computation time while maintaining the clustering
accuracy.

A. DATASET
We collected 65,494 Linux malware specimens (mostly
IoT malware) from VirusTotal, from November 2018 to
February 2019. The breakdown of the dataset is shown in
Table 3. The malware family name was decided by AVClass
[28]. AVClass is implemented as a Python tool to label mal-
ware samples using VirusTotal JSON reports as input.

B. EXPERIMENTAL SETUP
In this subsection, we introduce the detailed setup and evalu-
ation metrics of our experiments.

1) SETUP
For performance comparison, we constructed phylogenetic
trees with both the our fast algorithm and the neighbor-joining

8246 VOLUME 11, 2023

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

FIGURE 4. Experimental result and comparison between our algorithm, the neighbor-joining method and the
Inconsistency Coefficient.

method. We then clustered them with both the MDL
Criterion and the Inconsistency Coefficient,
which is the method we applied previously. To evaluate the
clustering performance, we used 10-fold cross-validation.
After clustering 90% of the specimens, we assigned the
remaining 10% to their nearest cluster to calculate the
accuracy.

Moreover, to investigate the impact of dataset size on
computational cost reduction and clustering accuracy, the
experiment included two parts: First, we evaluated our algo-
rithm with a similar number of specimens as in our previous
study: 4,000 specimens, which are randomly selected from
the malware set. Second, we evaluated our algorithm with
65,494 specimens.

In the online processing experiment, we compared it to
batch processing. The results show that we saved the time
of reconstructing the phylogenetic tree when new specimens
are added to the dataset while maintaining the same level of
clustering accuracy.

2) PARAMETER TUNING
The size k of the Seed set S was set to 1% of the number of
specimens. The recursive computation threshold h was set to
5000. The clustering parameter mj was chosen from 4, 5, 7,
10, 15, 20, 25, 30.

3) IMPLEMENTATION
We implemented our algorithm using R. The compres-
sion program xz command (version 5.1.0 alpha) of Linux

was used to compress malware binaries for computing
NCDs. xz adopted the Lempel-Ziv-Markov chain algorithm
(LZMA) [27] for compression.

As a benchmark for our algorithm, we used a conven-
tional scheme: it first compressed every pair of 65,494 mal-
ware binaries to compute the NCDs between them, and
then constructed the phylogenetic tree of the malware with
the neighbor-joining method described in subsection III-B.
Because of the large size of the dataset, using R’s library to
run the neighbor-joining method was impossible; therefore,
we used the library available for the textttJulia programming
language as an alternative [29].

The experiment was conducted on a 2.6 GHz Intel-Xenon-
Gold-6126 CPU. In our algorithm and the conventional
scheme, the compression of NCD was computed in parallel
with 80 threads.

4) EVALUATION METRICS
1) RCR: To measure how well the compression attempts

are reduced by our fast algorithm, we define the rate of
compression-attempt reduction RCR as follows:

RCR = (1 −
of compression attempts by ours

(N 2 + N)/2
)

× 100%

where N is the number of specimens, which equals
65,494. The RCR decreases as the compression
attempts are further reduced by our algorithm.

VOLUME 11, 2023 8247

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

TABLE 4. Confusing matrix of test malware specimens.

2) clustering accuracy: The clustering accuracy was eval-
uated by a 10-fold cross-validation. Specifically, the
malware set was divided into ten parts, and clusters
were created using 90% of the specimens. Each of the
remaining 10% test specimens was assigned to their
nearest cluster. If the family name of the cluster and the
family name of the test specimen is the same, then the
test specimen is correctly clustered. The architecture
name accuracy is calculated in the same way. The
distance between a specimen and cluster is defined by
the NCD between the specimen and cluster’s center
specimen. The cluster’s family name is decided by the
majority specimen’s family name in that cluster.

C. EVALUATION RESULTS
1) SMALL-SCALE EXPERIMENT WITH 4,000 SPECIMENS
This experiment is designed to investigate the impact of
dataset size on RCR and clustering accuracy, which will
be introduced in next subsubsection. In the experiment
using 4,000 specimens, the RCR was 94.01%. The cluster-
ing accuracy is shown in Fig. 3. The red line represents
our algorithm, and the green line represents the neighbor-
joining method. After constructing the phylogenetic trees,
they were both divided into clusters based on the MDL
Criterion. In Fig. 3(a) and Fig. 3(b), the horizontal axis
is the parameter mj introduced in subsection IV-B that deter-
mines how finely the phylogenetic tree is divided. As mj
becomes smaller, the phylogenetic tree is divided into smaller
clusters, whose number increases exponentially, and the clus-
tering accuracy also increases simultaneously. Our algorithm
achieved a slightly higher family name clustering accuracy
than the neighbor-joining method, especially when mj is
large.

For the same mj, a slightly smaller number of clusters
were created using the neighbor-joining method. Because the
larger number of clusters, the more choices for test speci-
mens, and the higher clustering accuracy, we changed the
horizontal axis variable to the number of clusters in Fig. 4(c)
and Fig. 4(d) to show the difference better. However, our
algorithm still achieves a slightly higher accuracy.

Fig. 3(c) and Fig. 3(d) show the accuracy achieved by our
algorithm in clustering family name and architecture name,
respectively. For comparison, we used different methods to
construct and cluster the phylogenetic tree. The combinations
of different methods are:

• Our fast algorithm and MDL Criterion, represented
by the red line.

• Our fast algorithm and the Inconsistency
Coefficient, represented by the blue line.

• The neighbor-joining method and MDL Criterion,
represented by the green line.

• The neighbor-joining method and the
Inconsistency Coefficient, represented by
the purple line.

Our fast algorithm combined with the MDL Criterion
achieved the best clustering accuracy among the four
methods. The results show that our proposed algorithm
successfully maintains the clustering accuracies of the
neighbor-joining method while significantly reducing the
computational cost. Moreover, the clustering algorithm
applying the MDL Criterion successfully improved
the clustering accuracies than our previous work. The
Inconsistency Coefficient is a clustering criterion
designed by Bailey et al. [3] based on experience. We believe
our method achieved a better result because we have a better
theoretical basis.

8248 VOLUME 11, 2023

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

FIGURE 5. Phylogenetic tree constructed using our algorithm.

2) LARGE-SCALE EXPERIMENT WITH 65,494 SPECIMENS
The phylogenetic tree constructed using 65,494 specimens
is shown in Fig. 5, where every malware is colored accord-
ing to its family name. The red points represent Bashlite,
the green points represent Mirai, and other colors repre-
sent other families. Our fast algorithm reduced the num-
ber of compression attempts by 97.52 % compared with
the neighbor-joining method. This result shows that the
larger the dataset, the higher the RCR achieved. This is
because our fast algorithm reduces the computational cost
from O(N 2) to O(N logN), and N/ logN increases with
N . To calculate the input NCD matrix of the neighbor-
joining method, (65, 4942 + 65, 494)/2 pairs of malware
specimen are compressed in 80 threads with a 2.6 GHz
Intel-Xenon-Gold-6126 CPU, which took 110 days. As for
the neighbor-joining algorithm, we used the PhyloNetworks
[29], a library of Julia, to construct the phylogenetic tree. The
neighbor-joining algorithmwas executed in 1 thread and took
ten days. On the contrary, our method calculated only 2.48%
of the NCD matrix. Including the time for tree construction,
it only took three days.

It can be seen from Fig. 4(c) and Fig. 4(d) that our algo-
rithm achieved a slightly higher clustering accuracy than
the neighbor-joining method. In addition, it achieved the
best accuracy among the four methods. Comparing the red
and the blue lines, our clustering algorithm based on MDL
Criterion significantly improved the family name clus-
tering accuracy and architecture clustering accuracy. For
instance, when mj = 7, the phylogenetic tree was divided
into 1808 clusters. The family name accuracy of the MDL
Criterion was 94.1%, and the architecture name accu-
racy was 99.1%. Compared with the Inconsistency
Coefficientwith the same number of clusters, the family
name accuracy was 89.6%, and the architecture name accu-
racy was 96.1%, which is an improvement of 4.5 percentage
points of family name accuracy and 3.0 percentage points of

architecture name accuracy. This result also shows that the
larger the dataset, the higher the clustering accuracy achieved.
We believe this is because the size of the seed set is set to 1%
of the size of the dataset. The larger dataset can result in a
smaller variation of the seed set, which means the randomly
picked seed set can better represent the whole dataset.

We randomly pick one case in the 10-fold cross-validation
experiment and show the confusionmatrix of the test malware
set in Table. 4. Although we used an unbalanced dataset, the
proportion of the Bashlite and Mirai family groups is over
86%, but our algorithm can cluster minor families success-
fully. Table. 4 shows that we achieve high accuracy for most
minor families.

3) EXPERIMENT OF ONLINE PROCESSING ALGORITHM
For the purpose of simulating the continuous addition of
new specimens to the dataset, we used 54% specimens to
construct the phylogenetic tree and added 9% specimens into
the phylogenetic tree using our proposed algorithm at one
time. After online processing for four times, which adds 36%
specimens into the phylogenetic tree, we used the last 10%
specimens to test the clustering accuracy.

Fig. 6(a) shows that our online processing algorithm
achieved close accuracy compared to batch processing, the
clustering accuracy was only reduced by about 1%. Fig. 6(b)
shows that our online processing algorithm not only saved the
time of re-construct a new phylogenetic tree but also reduced
the computational cost of the NCD matrix. When mj = 7,
the malware family name accuracy of batch processing was
94.1%, the accuracy of the online processing was 93.2%,
and the computation rate of the NCD matrix was reduced
from 2.48% to 1.66%. In Fig. 6(b), batch processing is a
straight line because its computational cost does not rely on
clustering, in another word, the parameter mj will not affect
its computational cost. The computation rate is determined
when the phylogenetic tree is constructed.

Our online processing algorithm saves the time of recon-
structing the phylogenetic every time some new specimens
are added to the dataset while maintaining the clustering
accuracy.

We also investigated if the size of the phylogenetic tree or
the properties of the specimens to be inserted will influence
the clustering accuracy. We designed two different kind of
experiments.

In experiment 1, we investigated how the size of the
phylogenetic tree affects the online processing algorithm’s
accuracy. The specimens for constructing the phylogenetic
tree and the specimens to be inserted into the phylogenetic
using the online processing algorithm are both randomly
selected from our 65,494 specimens dataset. The size of the
phylogenetic tree and the size of the specimens to be inserted
to the phylogenetic tree at one time are set up as follows:

• 1) 5000 and 1000, the experiment result is shown in
Fig. 8(a).

• 2) 10000 and 2000, the experiment result is shown in
Fig. 8(b).

VOLUME 11, 2023 8249

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

FIGURE 6. Results of online processing algorithm compared with batch processing.

• 3) 20000 and 4000, the experiment result is shown in
Fig. 8(c).

The larger size of the phylogenetic tree is, the higher clus-
tering accuracy is achieved. This is because the larger size of
the phylogenetic tree contains more clusters, which provides
a higher probability for the test malware to find the nearer
cluster. But the clustering accuracy did not fall as the online
processing going on. We believed this is because that the
online processing malware set has the similar properties with
the malware in the phylogenetic tree.

In the experiment 2, we investigated how the properties
of the new specimens affects the online processing algo-
rithm’s accuracy. Fig. 7 shows the average distance among
specimens in different periods. We can see from Fig. 7 that
specimens collected from May 2017 to February 2018 have
smaller distances. And the distances between specimens col-
lected from March 2018 to February 2019 and specimens
collected from May 2017 to February 2018 are larger, which
means specimens in these two periods have different prop-
erties. Therefore, in the second experiment, we choose the
specimens collected from May 2017 to February 2018 for
constructing the phylogenetic tree and the specimens col-
lected from March 2018 to February 2019 for online pro-
cessing. The result is shown in Fig. 9: if the properties of
the online processing specimens changed from the original
specimens, the clustering accuracy of the family name was
decreased to under 70%. The accuracies rise as the online
processing goes on because the more specimens are inserted
into the phylogenetic tree, the more similar the specimens
in the phylogenetic tree and the specimens to be inserted
are. After inserting enough specimens, the specimens in the
phylogenetic tree and the specimens to be inserted will have
similar properties, which lead to the accuracies being steady,
like in experiment 1. The purple and blue lines show the
clustering accuracies when recreating the phylogenetic tree
after adding new specimens to the dataset (batch processing).
Therefore, when the properties of the online processing spec-
imens change from the original specimens, a recreation of
the phylogenetic tree to maintain the clustering accuracy is
needed.

VI. DISCUSSION
A. PERFORMANCE GUARANTEE
Our phylogenetic tree construction algorithm is a random-
ized algorithm; therefore, there is no performance guaran-
tee. However, we measured the standard deviation of the
clustering accuracy of the 10-fold cross-validation in Fig. 4.
As shown in the figure, the standard deviations of the cluster-
ing accuracy are small. For instance, the standard deviation is
0.33% when mj = 7, and the accuracy of the malware family
name is 94.07%. Therefore, it is reasonable to believe that the
randomness does not significantly affect the clustering result.

B. LIMITATION
Since the similarity of malware specimens is measured by
NCD, it depends on the binary similarity between the two
specimens. Thus, encrypted or packed malware whose binary
has been significantly changed is difficult to cluster. Although
unpack tools can solve this problem to some extent, we cur-
rently cannot deal with those packed malware that cannot be
unpacked.

C. NCD’s ADVANTAGES
We applied NCD for feature extraction that directly calculates
the similarities between malware’s binary code. Compared
to other Sota feature extraction methods, our method does
not need the dynamic analysis environment or the time to
analyze each malware. Sota feature extraction method using
dynamic analysis is effective but it takes time to collect a
large amount of data because themalwaremust be executed at
least once before the logs can be collected. Moreover, static
analysis using the disassembler tool IDA pro is also a Sota
feature extraction method. However, it also takes a long time
to disassemble all the malware. Another advantage of the
NCD approach is its flexibility. It does not require any domain
knowledge and can apply to many other data formats, such as
text, video, and music, without requiring re-designed.

D. PHYLOGENETIC TREE’s ADVANTAGES
Our method created the largest phylogenetic tree and
achieved a high clustering accuracy at about 94% to 95%.

8250 VOLUME 11, 2023

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

FIGURE 7. Average distance among specimens in different period.

FIGURE 8. Results of online processing experiment 1.

FIGURE 9. Result of online processing experiment 2.

But if only regarding the clustering scalability and regardless
of the phylogenetic tree construction, many studies have
achieved better scalability. Compared to these studies, the
advantage of constructing a malware’s phylogenetic tree is
that clustering using a phylogenetic tree can provide more
information about the malware’s evolution path, which is
connected to our future work.

E. FUTURE WORKS
For our future works, we are attempting to build a hybrid
platform that integrates various cyber threat analysis meth-
ods [30]. As part of this project, we are working on the
challenge of static analysis of malware.

Kawasoe et al. [18] have proposed investigating malware
specimen functions by generating Function Call Sequence
Graphs (FCSG). Our future work aims to combine themethod

FIGURE 10. The schematic diagram of the computation cost of our
algorithm.

of Kawasoe et al. and the clustering results of this study to
capture the functionality transition and evolution of malware
variants.

As another future work, we are using information theory to
choose the seed smartly in the recursion part of the phyloge-
netic tree construction to reach a better computation reduction
rate.

Moreover, we are also using active learning to develop a
new algorithm for constructing a phylogenetic tree [13]. The
active learning algorithm allows us to smartly select the most
informative part of the distancematrix to calculate.We expect
this method would achieve better scalability.

VOLUME 11, 2023 8251

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

VII. CONCLUSION
In this paper, we proposed a scalable, efficient, and automatic
method for large-scale malware clustering. We presented a
fast algorithm for constructing the phylogenetic tree and an
algorithm applying the MDL Criterion to clustering it.
The computational cost of the fast algorithm is O(N logN),
which significantly reduced the computational cost than the
conventional method. Furthermore, we proposed an online
processing algorithm that can reduce the computation cost in
actual operation by skipping the phylogenetic tree reconstruc-
tion while maintaining the clustering accuracy. We evaluate
our algorithms’ scalability and clustering accuracy using a
large-scale IoT malware set.

Our experiments using 65,494 IoT malware speci-
mens show that our fast algorithm reduced the computa-
tional cost by 97.52 % compared to the neighbor-joining
method. By improving the clustering algorithm using MDL
Criterion, our clustering algorithm achieved significantly
higher accuracy than our previous method. In the best case,
the family name clustering accuracy was 95.5% and the archi-
tecture name accuracy was 99.3%. Furthermore, the online
processing algorithm reduced 33% of the computational cost
than the batch processing algorithm while maintaining a
clustering accuracy of 94%. Our experiment results show
that our method successfully reduces a significant amount
of computational cost. The O(N logN) complexity makes
our algorithm scalable for large-scale malware sets. To the
best of our knowledge, our work constructed the largest mal-
ware phylogenetic tree. Moreover, it was previously impos-
sible to construct a malware phylogenetic tree at our size
in a realistic time. Now, we can construct and cluster it in
real-time.

APPENDIX. COMPUTATION COST
In this appendix section, we will show the detailed explana-
tion of how our algorithm reduces the computation cost. As a
randomize algorithm, In the worst case, the time complexity
of our algorithm is O(N 2) and the computation reduction rate
is 0%. But in most case, the time complexity of our algorithm
isO(N logN) and the computation reduction rate is over 95%.
Let N be the size of dataset L, k be the size of seeds set

S and h be the threshold. The worst case is that all data in
set L\S are assigned to a single subset, for example Z (e0),
and other subsets Z (e1) to Z (ek−1) remain empty. And if this
happens every time we recursively applying our algorithm for
subset Z (e0), our algorithm will finally calculate the whole
distance matrix.

However, in usual case, these k data randomly picked
from the dataset can represent the whole dataset to some
extent. for the convenience of computation, we assume that
data in set L\S are splited into Z (e0) to Z (ek−1) equally.
N data are recursive divided into k subsets until the size
of the subset is smaller than h, so the recursive calcula-

tions will totally be log
N
h
k −1 times. The computation cost of

seed set is represented by the red parts in Fig.10, and it is

calculated as:

1
2
k2(1+k+k2+, . . . ,+k log

N
h −1
k) =

1
2
k2 ∗

h− N
h(1 − k)

=O(N).

The computation cost for assigning the L\S is represented
by the green parts, and it is calculated as:

k(N − k + N − k2+, . . . ,+N − k log
N
h
k)

= kN log
N
h
k −k2

h− N
h(1 − k)

= O(N logN).

Finally, the computation cost of neighbor-joining method
is represented by the blue parts, and it is calculated as:

1
2
h2 ∗ k log

N
h
k =

1
2
hN = O(N).

ACKNOWLEDGMENT
The authors are grateful to Kohei Kubo, Takumi Yone,
Yukiko Yamauchi and Masafumi Yamashita for discussions
about the algorithm for estimating a phylogenetic tree of big
data.

REFERENCES
[1] A. Abusitta, M. Q. Li, and B. C. M. Fung, ‘‘Malware classification

and composition analysis: A survey of recent developments,’’ J. Inf.
Secur. Appl., vol. 59, Jun. 2021, Art. no. 102828. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212621000648

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, and Z. Durumeri, ‘‘Understanding the Mirai botnet,’’ in Proc.
26th USENIX Conf. Secur. Symp., 2017, pp. 1093–1110.

[3] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, ‘‘Automated classification and analysis of internet malware,’’
in Proc. 10th Int. Symp. RAID, Gold Coast, QLD, Australia, Sep. 2007,
pp. 178–197.

[4] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda,
‘‘Scalable, behavior-based malware clustering,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., San Diego, CA, USA, 2009, pp. 8–11.

[5] N. Bhodia, P. Prajapati, F. Di Troia, and M. Stamp, ‘‘Transfer learning for
image-based malware classification,’’ 2019, arXiv:1903.11551.

[6] M. Cebrian, M. Alfonseca, and A. Ortega, ‘‘The normalized compression
distance is resistant to noise,’’ IEEE Trans. Inf. Theory, vol. 53, no. 5,
pp. 1895–1900, May 2007.

[7] R. Chaganti, V. Ravi, and T. D. Pham, ‘‘Image-based malware
representation approach with EfficientNet convolutional neural networks
for effectivemalware classification,’’ J. Inf. Secur. Appl., vol. 69, Sep. 2022,
Art. no. 103306. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214212622001570

[8] R. Cilibrasi and P. M. Vitányi, ‘‘Clustering by compression,’’ 2003,
arXiv:0312044.

[9] E. Cozzi, P.-A. Vervier, M. Dell’Amico, Y. Shen, L. Bilge, and
D. Balzarotti, ‘‘The tangled genealogy of IoT malware,’’ in Proc. Annu.
Comput. Secur. Appl. Conf., New York, NY, USA, Dec. 2020, pp. 1–16.

[10] K. H. T. Dam, T. Given-Wilson, and A. Legay, ‘‘Unsupervised behavioural
mining and clustering for malware family identification,’’ in Proc. 36th
Annu. ACM Symp. Appl. Comput., New York, NY, USA, Mar. 2021,
pp. 374–383, doi: 10.1145/3412841.3441919.

[11] D. Gibert, C. Mateu, J. Planes, and R. Vicens, ‘‘Classification of malware
by using structural entropy on convolutional neural networks,’’ in Proc.
32nd AAAI Conf. Artif. Intell. 30th Innov. Appl. Artif. Intell. Conf. 8th AAAI
Symp. Educ. Adv. Artif. Intell., 2018, pp. 1–6.

[12] T. He, C. Han, R. Isawa, T. Takahashi, S. Kijima, J. Takeuchi, and
K. Nakao, ‘‘A fast algorithm for constructing phylogenetic trees with
application to IoT malware clustering,’’ in Neural Information Processing,
T. Gedeon, K. W. Wong, and M. Lee, Eds. Cham, Switzerland: Springer,
2019, pp. 766–778.

[13] T. He, C. Han, T. Takahashi, S. Kijima, and J. Takeuchi, ‘‘Scalable and fast
hierarchical clustering of IoTmalware using active data selection,’’ inProc.
6th Int. Conf. Fog Mobile Edge Comput. (FMEC), Dec. 2021, pp. 1–6.

[14] S.-W. Hsiao, Y. S. Sun, and M. C. Chen, ‘‘Behavior grouping of Android
malware family,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,
pp. 1–6.

8252 VOLUME 11, 2023

http://dx.doi.org/10.1145/3412841.3441919

T. He et al.: Scalable and Fast Algorithm for Constructing Phylogenetic Trees With Application to IoT Malware Clustering

[15] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, ‘‘MutantX-S: Scalable
malware clustering based on static features,’’ in Proc. USENIX Annu. Tech.
Conf. San Jose, CA, USA: USENIX Assoc., Jun. 2013, pp. 187–198.

[16] S. Jain and Y. K. Meena, ‘‘Byte level n–gram analysis for malware detec-
tion,’’ in Computer Networks and Intelligent Computing, K. R. Venugopal
and L. M. Patnaik, Eds. Berlin, Germany: Springer, 2011, pp. 51–59.

[17] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, ‘‘Malware phy-
logeny generation using permutations of code,’’ J. Comput. Virol., vol. 1,
nos. 1–2, pp. 13–23, 2005.

[18] R. Kawasoe, C. Han, R. Isawa, T. Takahashi, and J. Takeuchi, ‘‘Investigat-
ing behavioral differences between IoTmalware via function call sequence
graphs,’’ in Proc. 36th Annu. ACM Symp. Appl. Comput., New York, NY,
USA, Mar. 2021, pp. 1674–1682, doi: 10.1145/3412841.3442041.

[19] M. Li, X. Chen, X. Li, B.Ma, and P.M. B. Vitányi, ‘‘The similaritymetric,’’
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3250–3264, Dec. 2004.

[20] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware
images: Visualization and automatic classification,’’ in Proc. VizSec, 2011,
pp. 1–7.

[21] J. Oliver, M. Ali, and J. Hagen, ‘‘HAC-T and fast search for similarity in
security,’’ in Proc. Int. Conf. Omni-Layer Intell. Syst. (COINS), Aug. 2020,
pp. 1–7.

[22] J. Paik, R. Jin, and E. Cho, ‘‘Malware classification using a byte-
granularity feature based on structural entropy,’’ Comput. Intell., vol. 38,
no. 4, pp. 1536–1558, Aug. 2022, doi: 10.1111/COIN.12521.

[23] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. McLean, and C. Nicholas, ‘‘An investigation of byte n-gram features for
malware classification,’’ J. Comput. Virol. Hacking Techn., vol. 14, no. 1,
pp. 1–20, Feb. 2018.

[24] K. Rieck, P. Trinius, C. Willems, and T. Holz, ‘‘Automatic analysis of
malware behavior using machine learning,’’ J. Comput. Secur., vol. 19,
no. 4, pp. 639–668, Jun. 2011.

[25] J. Rissanen, ‘‘Modeling by shortest data description,’’ Automatica, vol. 14,
no. 5, pp. 465–471, 1978, doi: 10.1016/0005-1098(78)90005-5.

[26] N. Saitou and M. Nei, ‘‘The neighbor-joining method: A new method
for reconstructing phylogenetic trees,’’ Mol. Biol. Evol., vol. 4, no. 4,
pp. 406–425, Jul. 1987.

[27] D. Salomon, Data Compression: The Complete Reference, 4th ed. Cham,
Switzerland: Springer, 2007.

[28] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, ‘‘AVCLASS: A tool
for massive malware labeling,’’ in Research in Attacks, Intrusions, and
Defenses, F. Monrose, M. Dacier, G. Blanc, and J. Garcia-Alfaro, Eds.
Cham, Switzerland: Springer, 2016, pp. 230–253.

[29] C. Solís-Lemus, P. Bastide, and C. Ané, ‘‘PhyloNetworks: A package for
phylogenetic networks,’’ Mol. Biol. Evol., vol. 34, no. 12, pp. 3292–3298,
Dec. 2017, doi: 10.1093/MOLBEV/MSX235.

[30] T. Takahashi, Y. Umemura, C. Han, T. Ban, K. Furumoto, O. Nakamura,
K. Yoshioka, J. Takeuchi, N. Murata, and Y. Shiraishi, ‘‘Designing com-
prehensive cyber threat analysis platform: Can we orchestrate analysis
engines?’’ in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Work-
shops Affiliated Events, Mar. 2021, pp. 376–379.

[31] S. Torabi, M. Dib, E. Bou-Harb, C. Assi, and M. Debbabi, ‘‘A strings-
based similarity analysis approach for characterizing IoT malware and
inferring their underlying relationships,’’ IEEE Netw. Lett., vol. 3, no. 3,
pp. 161–165, Sep. 2021.

[32] P. Vinod, V. Laxmi, M. S. Gaur, and G. Chauhan, ‘‘MOMENTUM: Meta-
mOrphic malware exploration techniques usingMSA signatures,’’ in Proc.
Int. Conf. Innov. Inf. Technol. (IIT), Mar. 2012, pp. 232–237.

[33] S. Wehner, ‘‘Analyzing worms and network traffic using compression,’’
J. Comput. Secur., vol. 15, no. 3, pp. 303–320, Mar. 2007. [Online].
Available: http://content.iospress.com/articles/journal-of-computer-
security/jcs287

[34] R. Yin, K. Li, G. Zhang, and J. Lu, ‘‘Detecting overlapping protein com-
plexes in dynamic protein-protein interaction networks by developing a
fuzzy clustering algorithm,’’ inProc. IEEE Int. Conf. Fuzzy Syst., Jul. 2017,
pp. 1–6.

[35] E. Zhu, J. Zhang, J. Yan, K. Chen, andC.Gao, ‘‘N-gramMalGAN: Evading
machine learning detection via feature n-gram,’’ Digit. Commun. Netw.,
vol. 8, no. 4, pp. 485–491, Aug. 2022.

TIANXIANG HE received the B.Sc. degree in applied mathematics from the
Beijing University of Posts and Telecommunications, in 2017, and the M.S.
degree in informatics engineering fromKyushuUniversity, in 2020, where he
is currently pursuing the Ph.D. degree. His research interest includesmalware
analysis.

CHANSU HAN received the B.E. degree in com-
puter science and the M.S. and Ph.D. degrees in
informatics engineering from Kyushu University,
in 2016, 2018, and 2021, respectively. He is cur-
rently a Researcher with the National Institute
of Information and Communications Technology
(NICT), Japan. His research interest includes
analyzing and solving problems in the cybersecu-
rity field (especially networks and malware) using
machine learning.

RYOICHI ISAWA (Member, IEEE) received the
B.E. and M.E. degrees from the University of
Tokushima, Japan, in 2004 and 2006, respectively,
and the Ph.D. degree from Kobe University, Japan,
in 2012. He is currently a Senior Researcher with
the National Institute of Information and Commu-
nications Technology (NICT), Japan. His current
research interests include malware analysis, net-
work security, and hardware security.

TAKESHI TAKAHASHI (Member, IEEE) received
the Ph.D. degree in telecommunications from
Waseda University, in 2005. He was a Researcher
at the Tampere University of Technology,
from 2002 to 2004; a JSPS Research Fellow
at Waseda University, from 2004 to 2006; and
a Business Consultant at Roland Berger Ltd.,
from 2006 to 2009. Since 2009, he has been with
the National Institute of Information and Com-
munications Technology, where he is currently

an Associate Director. Further, he was a Visiting Research Scholar at
the University of California, Santa Barbara, Santa Barbara, CA, USA,
from 2019 to 2020. His research interests include cybersecurity and machine
learning.

SHUJI KIJIMA received the Ph.D. degree in mathematical informatics from
The University of Tokyo, in 2007. He is currently an Associate Professor
with Kyushu University. His research interests include analysis of algorithms
and discrete mathematics.

JUN’ICHI TAKEUCHI (Member, IEEE) received
the B.Sc. degree in physics and the Dr.Eng.
degree in mathematical engineering from The
University of Tokyo, in 1989 and 1996, respec-
tively. From 1996 to 1997, he was a Visiting
Research Scholar with the Department of
Statistics, Yale University, New Haven, CT, USA.
From 1989 to 2006, he worked with NEC
Corporation, Japan. In 2006, he joined Kyushu
University, Fukuoka, Japan, where he is currently a

Professor of mathematical engineering. His research interests include math-
ematical statistics, information geometry, information theory, data science,
and machine learning. He is a member of IEICE and JSIAM.

VOLUME 11, 2023 8253

http://dx.doi.org/10.1145/3412841.3442041
http://dx.doi.org/10.1111/COIN.12521
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1093/MOLBEV/MSX235

