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ABSTRACT This study addresses the problem of real-time tracking of high-speed ballistic targets. Particle
filters can be used to overcome the nonlinearity of motion and measurement models in ballistic targets.
However, applying particle filters (PFs) to real-time systems is challenging since they generally require a
significant computation time. So, most of the existing methods of accelerating PF using a graphics processing
unit (GPU) for target tracking applications have accelerated computation weight function and resampling
part. However, the computational time per part varies from application to application, and in this work,
we confirm that it takes a lot of computational time in the model propagation part and propose accelerated
PF by parallelizing the corresponding logic. The real-time performance of the proposed method was tested
and analyzed using an embedded system. And compared to conventional PF on the central processing unit
(CPU), the proposed method shows that the proposed method significantly reduces computational time by

at least 10 times, improving real-time performance.

INDEX TERMS Ballistic target tracking, graphics processing unit, particle filter, real-time systems.

I. INTRODUCTION
The performance of ballistic target interception highly
depends on accurate target tracking. For high-accuracy track-
ing under measurement uncertainties, state estimation must
be adopted based on various filtering algorithms. Generally,
measurement model noise is assumed as a Gaussian distri-
bution for mathematical simplicity. However, owing to the
nonlinear and non-Gaussian characteristics of the measure-
ment noise caused by the seeker random and scintillation,
the assumption of a Gaussian distribution is invalid [1], [2].
In nonlinear and non-Gaussian uncertainties, conventional
filtering algorithms may perform unsatisfactorily. For this
reason, linear Kalman filter-based target tracking filters may
not converge properly or even diverge during interception.
Accordingly, various nonlinear filters have been previously
applied to target state estimation, including the extended
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Kalman filter (EKF), particle filter (PF), and unscented
Kalman filter (UKF). Compared to the EKF, PF performs
more consistently under nonlinear and non-Gaussian noise
[3], [4], [S]. This is because the PF has an inherent capability
and flexibility to deal with various types of error distributions.
However, the primary difficulty of a PF in a real-time system
is the heavy computational burden, as the required number
of particles exponentially increases with the number of state
variables. The computational issue is a crucial constraint and
must be solved for real-time application.

The PF takes more time because the number of iterations
increases as the number of particles increases due to the
nature of the sampling-based algorithm. However, this rep-
etition is necessary to find an appropriate value using particle
information and the particle resampling process, the algo-
rithm progress time can be reduced if the parts that require
many calculations are parallelized [6]. Therefore, algorithms
such as PFs, which require a significant time to find target
information, can be accelerated by parallelization using a
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TABLE 1. Related works to particle filter for target tracking.

Related works GPU-based Parallelization Parallelization Part Missile Application
(11],[12] X N X
[4],[13] X - O
[14][17],[18],[20] ©) Weight computation X
[19],[20] O Resampling X
[15] O rendering / normalized X
[16],[17],[19] O Likelihood calculation X
Ours O Model propagation O

graphics processing unit (GPU) [7]. PFs are accelerated using
GPU in studies that require quick results, such as target
tracking using sensors or fields used in real-time.

To achieve high-speed target tracking, the PFs are acceler-
ated in Compute Unified Device Architecture (CUDA) with
a GPU. If the entire process of the PF algorithm is converted
to CUDA, all parts regardless of their computation time are
converted. Then to use a PF in a GPU, the data can be handed
over to a PF running on the CPU to the GPU required. But
this is inefficient. It can lead to a considerable overhead time.
Therefore, the identification of parts of the PF requiring a
considerable amount of computational time is accelerated
using a GPU. Calculation parts that require a considerable
amount of computational time are parallelized using a GPU.
Thus, the computational time can be further reduced even if
overhead is generated.

As the PF algorithm is suitable for tracking, it is widely
used. From Table 1, it is used for various tracking tasks
such as target tracking [11] and [12], object tracking, and
motion tracking. In [4] and [13], they used a PF for missile
applications. Acceleration studies were conducted using a
GPU to perform the PF algorithm in real-time. In [14] and
[18], the PF that is parallelized for the weight computation
is proposed. A GPU was used to improve the PF estimation
for target tracking rather than acceleration [14], And in [18],
a GPU was used to accelerate IoT applications. The tracking
algorithm was accelerated by approximately 55 % compared
to the CPU-based algorithm. In [16], they proposed a PF that
parallelized the likelihood function calculation and reduced
the calculation time of that. However, it required time to
generate random values, such studies have conducted paral-
lelization in environments with a considerable change in the
signal or amount of information of particles, such as image
tracking. In [17], [19], and [20], more than one part requiring
a long computation time in the research environment or those
that could be parallelized independently were parallelized.
Examples include weight computation, likelihood function
evaluation for calculating the particle state, and resampling.
When two or more parts of a PF are parallelized in the GPU,
more overhead is generated. Therefore, tasks reducing the
overhead time, such as kernels, can be shared. So, unlike
previous related works, we propose a method that parallelized

12140

part of the measurement acquisition, especially the model
propagation part, using GPU.

This paper explains a high-speed target tracking system
and the necessity for the PF algorithm acceleration. Paral-
lelization is used in parts of the PF requiring a consider-
able amount of calculation time to accelerate. This achieves
high-speed for target tracking. Methods using a GPU to accel-
erate parts of the PF and reasons for accelerating those parts
are described. The results and analysis of the target-tracking
algorithm with the accelerated PF to that of the original target-
tracking algorithm with un-accelerated PF are compared.

The contributions of this paper are as follows:

oThis is the first approach to accelerate a PF for ballistic
target tracking under glint noise.

eTo the best of our knowledge, this is the first study to
address and analyze the problem of long computation time
for the model propagation of the sampling process.

o A new parallelization method was developed for real-time
PFs for ballistic target tracking.

eThe computation time of the PF was significantly reduced
even with the overhead time for the CUDA initialization on a
widely-used embedded system.

The remainder of this paper is organized as follows.
Section II describes the target missile tracking system based
on PFs and the real-time problems of PFs. In Section 11, after
the computation times for the PF are profiled block-wise,
anew parallelization method for the model propagation of the
sampling process is proposed. In Section IV, the evaluation
results of the proposed method are presented and quantita-
tively compared with those of other methods using a widely
used embedded system. Finally, conclusions are presented in
section V.

Il. PROBLEM DESCRIPTION

The objective of the target-tracking filter is the real-time esti-
mation of the true target states. To evaluate the performance
of the tracking filter and accelerate the system, the target
trajectories of ballistic missiles are generated. We consider
a target-tracking filter for the reentry phase of a ballistic
missile. In the reentry phase, atmospheric drag is a significant
force determining the path of the missile. Accordingly, the
forces acting on the target during reentry arise from gravity
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and aerodynamic drag. A ballistic missile is represented as a
point mass in three-dimensional Cartesian coordinates. Since
we only consider target tracking for the reentry phase, the
thrust force is set to zero and the mass of the tracking target
is constant. Aerodynamic drag D is expressed as a function of
the air density p, target velocity V, aerodynamic coefficient
Cp, and reference area S.

1 2
D=2pV?-Cp-S (1)

A. MOTION AND MEASUREMENT MODEL FOR PARTICLE
FILTER

Since target-tracking estimations are based on the target
motion model, several target models have been proposed.
In this study, the well-known Singer model was used [§]
and [9]. The Singer model assumes that the target acceler-
ation is a zero-mean, first-order, stationary Markov process.
The state-space representation of the continuous-time Singer
model is:

x =Fx+ Gw 2)
where
03z O3 03
F=]10303 I3 and G = | 03 3)
03 03 —13/1' I3

Here, x is the state of target, w is the zero-mean white
Gaussian noise. And t and /3 in F represent the maneuver
time constant and identity matrix of order 3. Its discrete-time
equivalent is as follows:

X = QX1 +wr_1, withwg_1 ~ N (0, Op)
“4)

®p ~ 1+ FAt ©)

AP Art AL
1015 515 % 1
~ _ At At At
Ok = SwQo = Sw | S-15 5515 514 ©)

3 2
AL, A, At
where ®; and At represents state transition matrix and sam-
pling time interval. Covariance Qy in Eq. 6 consists of the
power spectral density S, and white noise jerk model Qy.
The acceleration increment over a time period is the integral
of the jerk over the period.

For the state-space representation in Eq. 2, x denotes the
associated variable of the target position, velocity, and accel-
eration. P, V, and A in Eq. 7 are the target position, velocity,
and acceleration, respectively, in Cartesian coordinates.

x=[PT VT AT] @)
P=[xyz]" ®

where (x, y, z) represent the target position in the Carte-
sian coordinate system. Three measurements achieved by the
radar were assumed: elevation, azimuth, and range. The mea-
surements were acquired with respect to the target and radar
position. In Eq. 9, the subscript r denotes the relative position
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between the target and radar. m represents the position of
the radar. Consequently, two bearing angles z4, zy and the
relative range zg can be represented as nonlinear equations as
Eq. 10 using states in Cartesian and radar noises.

[ v 2] =[xy z]" = [m ym 2] ©)

29 tan™! (Zr/\/xr2 +y3) +ngG,6 +ne
= tan~! (v, /x.) 4+ ng,y +ny

(10)

where ng, ny, and ng represents the receiver noise of the
radar, and ng ¢ and ng,y are non-Gaussian glint noises gen-
erated in radar measurements [3].

B. THE PROBLEM OF ALGORITHM ACCELERATION

For high-speed targets such as ballistic missiles, the filter
update rate and estimation accuracy are crucial. Because pre-
cision guidance and control lead to a successful interception,
accurate target tracking is an indispensable element. In this
study, a PF was used for higher estimation accuracy and
consistency. However, the heavy computational burden of
PF should be solved for real-time application. To cope with
the problem, we propose a GPU-based acceleration method
for PFs.

The iterations of the parts in the PF algorithm were pro-
cessed as many times as the number of particles. And the
entire PF algorithm was iterated a predetermined number
of times by the user. If the PF is iterated 300 times, the
model propagation and weighting function are calculated by
iterating as many times as the number of particles for each
iteration.

If the PF algorithm proceeds using a CPU, the calculations
are sequentially performed as the number of iterations. As the
number of particles increases, the computation time increases
accordingly. In the CPU, the repetitive calculation in the PF
algorithm was carried out as many times as the number of
particles. Whereas in the GPU, the same calculation could be
parallelized and calculated simultaneously. Therefore, when
using a GPU, the parts requiring a considerable amount of
calculation time in the iterations can be significantly reduced.
If the appropriate parallelization technique is applied, the
larger the number of particles, the shorter the calculation time
compared to that of the CPU.

Ill. PROPOSED METHOD

A. OVERVIEW OF THE PROPOSED METHOD

The PF flowchart for target tracking is shown in Fig. 1. Ini-
tially, the particles were sprinkled at random intervals within
the measurement range. The model propagation step predicts
how the target will move. The movement is estimated using
Eq. 11. In Eq. 11, x, is the acceleration, speed, and location
information of the initial particles; randnum is a matrix of
random values; Oy is a 9 x 9 matrix of the filter covariance
and can be represented by Eq. 13.In Eq. 13, sig,.. is the signal
accuracy of the filter covariance; dt is the time the state of the
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target change. and the matrix A is the target state transition
matrix, which is defined in Eq. 5. x;,;41 was obtained using
these values. The matrix was used to estimate the state of
the target. This process is performed for each particle. All
the obtained information in xp,- is added and used in the
filter update part. After the model propagation step, glint and
sensor noise models generated values.

Xpar = (A X xp) + (A x \/ék x randnum) (11)
Or =2 x sigaccz/tau X

dr’ /20 x eye (3) dt*/8 x eye (3) dt> /6 x eye (3)
dr*/8 x eye (3) dt?/3 x eye (3) dr*/2 x eye (3)

dr3 /6 x eye (3) dr?/2 x eye (3) dt x eye (3)
(12)
Propagation
for nth particle
n=n+1
n = num of particles?
no
n=
S S
for nth particle
\ J
(" N
Likelihood n=n+1
Functions
\ v
n = num of particles?

no

[ Resampling ]

FIGURE 1. Flowchart describing the PF algorithm for target missile
tracking using only CPU.

B. COMPUTATION TIME PROFILING

To accelerate the PF, the part of the PF algorithm requiring a
considerable amount of calculation time should be identified.
Computation time measurement for each part was performed
in Nvidia Jetson Xavier, and the results are summarized in
Table 2, showing that the model propagation part takes more
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time than the other parts. The computation time for each part
of PF shown in Table 2 is the result of an experiment with
5000 particles.

The calculation proceeded in the model propagation part
consists of obtaining the square root of the filter covariance
value, adding, and multiplying matrixes. The matrix A and
Oy are matrixes of size 9 x 9. The x,, is a matrix with 9 rows
and columns as large as the number of particles. The model
propagation part is calculated for one column of the x,, matrix
at one iteration. As shown in Fig. 1, the matrix calculation
process in the model propagation part is repeated as many as
the number of particles. Since the matrix calculation process,
which is iterated as many as the number of particles, is per-
formed every single iteration of the particle filter algorithm,
the model propagation part is taken the most computation
time. The filter update part and likelihood function part in
Fig. 1 are also iterated as many as the number of particles,
but since the two parts are simple numerical operations rather
than matrix operations, so the computation time of the two
parts is not taken much time compared to the model propaga-
tion part.

TABLE 2. The Computation time for each part of PF in only the CPU.

Part Computation time(s)
Create a true target model and

0.102

measurement
Generate particles 0.102
Model propagation 24.841
Create noise 0.002
Calculate weight function 0.972
Resampling 1.902
Confidence 0.127

C. PARALLELIZED PARTICLE FILTER 1.0

The PF was accelerated by performing parallel calculations
using Eq. 11, which progresses in the model-propagation part.
As described in Part B, when the number of particles used
in the PF algorithm is large, the calculated matrices become
large. Therefore, a significant amount of calculation time is
required for the model propagation part. However, Eq. 11
does not consist of complex equations compared to time-
consuming equations. Thus, it is easy to parallelize using a
GPU and can be accelerated effectively.

For CUDA, tasks such as CUDA initialization and malloc
are executed first. The matrices to be used for input are
copied to the variables defined by CUDA to be used. The
GPU memory is required as shown in Fig. 2, according to
the size of the matrices calculated. The matrix has 9 rows
and 1024 threads in one block, and the more particles are
used, the more GPU memory uses. As shown in Fig. 2, the
memory usage of the GPU must be defined to store values
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in the memory designated when using the CUDA kernel and
calculate them in parallel.

Block (0,0) Block (0,1) Block (0, Np/Nihread)
rvol T F-forsoes [ T T H T | -1 [(TTHT]
Block (1, 0) Block (1,1) | f----------1 Block (1, Np/Nihread)
[ I [F---------- 7
Block 8.0) | Book(@ 1) | |- 100k . Mo

FIGURE 2. GPU memory allocation for CUDA kernel use.

Fig. 3 shows a flowchart when performing the model
propagation part using CUDA. The kernels are calculated in
parallel using GPU. In the first kernel, as shown in Fig. 2,
the random values according to the normal distribution are
generated using the “‘curand_normal” function provided by
the CUDA library. To put different seeds for each thread, the
time when the kernel is performed and the thread ID that
is generated by using ParticleID in Fig. 2 are used as seeds
and applied to the “curand”. The random value, which is
the result of kernel execution, is generated as a matrix in
which rows are 9 and columns are as many as the number of
particles. Because the size of the random value matrix should
be adjusted for matrix operation to be applied in Kernel 4.
Kernel 1 is also used in the parallelized PF 2.0 described in
section III-D.

‘ Generate ParticlelD : block.y * size of thread + threadID ‘

v

( CUDA initial )
v

CUDA malloc & copy ’
v

‘ CUDA memcpy : host to device ]

v
In GPU

‘ Kernel1 : generate random value ’

Kernel2 : calculate equations
(all of the model propagation part)

v
CUDA memcpy : device to host ]

FIGURE 3. Flowchart of parallelized model propagation using integrated
kernels in PF algorithm.

To deal with the matrixes using Kernel 2, it is necessary
to generate IDs that specify the addresses of the values of the
matrixes. Fig. 5 is shown how to create IDs, which are defined
equally within all kernels used in this part and the D part.
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‘ Kernel_random ‘

[ make tid : (block.x * num of threads in one block) + id ]
num of threads in one block
r - N
-
thread = rececesereneenes
block.x
(-
[ make seed : tid + clock() ]
[ make random_vec ]

FIGURE 4. Random values generated in CUDA Kernel 1 are shown in
Fig. 3. We define it as the number of particles and store the generated
random value in each tid.

The target matrixes of the kernels have a size of 9 x 9 or asize
in which rows are 9 and columns are as many as the number
of particles. It is the same as the ParticleID in Fig. 3,and its
size is the same as the number of particles. Therefore, ID can
assign as many addresses as the number of particles in the
column. StatelD assigns the address of a matrix row that has
9 rows and StateIDy assigns the address of a matrix column.
The generated IDs in Fig. 5 are used to assign addresses to
elements of the matrixes to be targeted by kernels so that the
values of each address can be calculated in parallel. In this
part, the parallelized PF 1.0 which is a method of using a
kernel integrated with all the functions used in Eq. 11 is
described. Kernel 2, all equations in Eq. 11 are calculated,
which is described in detail in Fig. 6. The addresses of the
matrixes calculated in Kernel 2 are assigned as the size of the
target matrixes of calculations in Eq. 11. Since the CreateIDs
in Fig. 5 are declared in the first order in Kernel 2, addresses
for the values of the matrixes can be assigned using statelD,
StateIDy, and ID according to the size of the matrixes used
in each calculation. It is difficult to calculate Eq. 11 as one
equation as in CPU because the size of the result matrixes
of each calculation is different. This is also the reason for
defining the IDs with different sizes and addresses in Fig. 5.
The variables x,,;41, Xmiqd2, and X,,,;43 defined within Kernel 2
in Fig. 6 are necessary for storing the result matrixes having
a different size for this reason. After performing Kernel 2,
the x,,;, matrix can be obtained as a result of the parallelized
model propagation.

D. PARALLELIZED PARTICLE FILTER 2.0
Eq. 11 consists of a square root operation of a matrix,
multiplication, and addition between matrixes. The method
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{ create 1Ds l

id : ParticlelD ]

make stateld : block.x ’

make stateldy : stateld % Lstate ]

FIGURE 5. Create IDs used to calculate matrixes. Each id is defined to
obtain the values’ addresses of the matrixes.

described in Part C performs parallel calculations by ker-
nelizing Eq. 11 by integrating it into one kernel. As shown
in Fig. 2, this method was used by defining two kernels.
Thus, the variables to store the results of each equation are
defined in the kernel. Therefore, each time the particle filter
is iterated, the task of defining variables within the kernel
for storing the result matrixes is iterated. This means that the
task of allocating the space in GPU to store the values of the
variables is performed every iteration.

To reduce the time required for these tasks, a method of
securing the space in GPU by declaring variables in advance
before using the kernel was devised. Declared variables
should be used as inputs or outputs of the CUDA kernels.
Since the calculations constituting Eq. 11 are not compli-
cated, Kernel 2 in Fig. 5 was subdivided, and parallel calcula-
tions were performed. Subdivided kernels are defined so that
predefined variables can be used as inputs and outputs of the
kernels described in this part. The particle filter of this method
is proposed 2.0, and Fig. 7 reconstructs the kernel of Fig. 6
and proposes three kernels. The proposed PF 2.0 is performed
by subdividing Kernel 2 in the proposed PF 1.0 into three
kernels.

The subdivided kernels are shown in Fig. 8, 9, and 10.
In Kernel 2 in this part, as shown in Fig. 8, the matrix

12144

Kernel2
[ createlDs }
[ Define : x_mid1, x_mid2, x_mid3 ]

x_mid1[stateld][stateldy] +=
Alstateld][stateldy] * sqrt(Qk[stateldy][stateld])

\%

x_mid2[stateld][id] +=
Alstateld][stateldy] * x_p[stateldy][id]

x_mid3[stateld][id]+=
x_mid1[stateld][stateldy] * random[stateldy][id]

x_mp[stateld][id] =
X_mid2[stateld][id] + x_mid3[stateld][id]

FIGURE 6. The Kernel is defined for using CUDA to compute Eq. 11.

Kernel : calculate equations
(all of the model propagation part)

A 4

Kernel 2 : multiply (xp and A matrix)

Kernel 3 :
multiply (A, root of Qk, random value)

A 4

A 4

Kernel 4 : add (result of kernel 2 and 3)

\ J

FIGURE 7. Presents Kernel 2 in Parallelized PF 1.0 as three kernels.

multiplication of A and x,, is calculated in parallel. Since the
size of A matrix is 9 x 9, the address of the row is assigned
using stated and the address of the column is assigned using
state]Dy. The multiplication of matrixes is added after the
values of the rows in the preceding matrix and the columns
in the following matrix are multiplied. Therefore, the row
address of x,, which is the following matrix, is assigned as
stateIDy to calculate the multiplication of matrixes. And the
size of the column in the x,, is the number of particles, so the
addresses of the columns are assigned using ID. And then,
as shown in Fig. 9, three matrixes are multiplied in Kernel 3.
First, multiply A matrix by the square root of Q matrix and
store it in x,,,;41 matrix. The size of the two matrixes is 9 x 9,
so the size of x,,y; matrix is the same. And the random
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matrix is multiplied by a random value matrix generated by
Kernel 1 and stored in x,,;43. In Kernel 4, result matrixes
of Kernel 2 and Kernel 3 are added in parallel, as shown in
Fig. 10. Since both resultant matrixes have a size that rows
of 9 and columns are as many as the number of particles, the
result matrix, xp,,, is obtained as a matrix of the same size.

Kernel2
[ createlDs }
x_mid2[stateld][id] +=
Alstateld][stateldy] * x_p[stateldy][id]
A matrix X_p matrix
stateld stateld stateld id
ﬂ_l eldy | stateldy |
-
0 1 ey 7 8 } 0 L 0 id id/ 0
1 | 1 ‘
.......................... 8 8

FIGURE 8. Multiplication A matrix and x, matrix in Eq. 11.

Kernel3

[ createlDs ]

x_mid1[stateld][stateldy] += A[stateld][stateldy] * sqrt(Q[stateldy][stateld]) }

s
stateld stat‘eldy stateldy stateld
1 |
0 810 0 8 i 0
] 0 0
7 7
8 8

\%

[ x_mid3[stateld][id] += x_mid1[stateld][stateldy] * random[stateldy][id] }

stateld stateldy stateldy id
I " [

0 J 8 l 0 0 idj 0
L 0 o
7 7
8 8

FIGURE 9. Multiplication A matrix, square root of 0y, matrix and x,
matrix in Eq. 11. After calculating the multiplication of the two matrixes,
the resulting matrix and random value matrix are multiplied.

Anyway, since the sequential particle filter method pro-
ceeds to calculate Eq. 11 and verifies whether it has been
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Kernel4

[ createlDs ]

[ x_bar[stateld][id] = x_mid2[stateld][id] + x_mid3[stateld][id] ]

staltelq i(li *S’talt.’el d | i(li
0 id L 0 0 ‘ idL 0

0 0

7 7

8 8

FIGURE 10. Addition of result matrixes from Kernel 2 and Kernel 3. The
Xpqr Matrix, the result of Kernel 4, is the result matrix of the model
propagation part.

Algorithm 1 Parallelized Particle Filter 2.0
procedure X g imated = PPF(xp)
o Generate particles
for i = 1: simulation time do
e Model propagation:
do in parallel:for N = 1: num of particles
N
Xpiay = AXXp
do in parallel:forN = 1: num of particles
x%idl =Ax /O
Xppia3 = Xpig X randnum
do in parallel:for N = 1: num of particles

X = Xian + X3

o Create sensor noise
e Create glint noise
e Measurement acquisition
e Calculate weight function
for j = 1: Particles do

o Filter update

e Associated likelihood functions
end for
e Resampling

end for
end procedure

repeated as many as the target number of particles, it can be
said that the time complexity is determined by the number
of particles. An algorithm with linear time complexity can
reduce calculation time by eliminating overlapping calcu-
lations, so a parallelized particle filter will show excellent
performance. In addition, from the perspective of space com-
plexity, the optimal memory required for the algorithm is
allocated in advance according to Fig. 2. However, in the
proposed PF 1.0, we reallocate space to store the resulting
matrix in the process of all operations in Eq. 11 at once, which
results in poor space complexity. Therefore, the proposed
PF 2.0 pre-allocates a place to store computational results,
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which makes space complexity better, and efficiently uses
GPU resources.

IV. RESULTS

In this study, GPU-based accelerated PF for high-speed target
tracking was performed by parallelizing the model propaga-
tion process in PF. First, the simulation results of ballistic
target tracking can be described by glint noise. Furthermore,
the proposed PF algorithm performs faster calculations com-
pared to the results of the CPU based on the acceleration
of various GPUs. Compared to the other methods of PF to
parallelize resampling or likelihood functions, the only way
to show good performance in our applications was ours.

A. RESULTS OF HIGH-SPEED TARGET TRACKING

The effectiveness of the proposed acceleration method is
assessed in a ballistic target tracking scenario. For the numer-
ical simulation, the dynamic model in Eq. 1 and Eq. 2 were
used to set the true reference trajectory. The aerodynamic
drag and weight of the missile were set as in [10]. The
sampling interval was set to At = 0.01s, with 200 intervals,
yielding a total simulation time of 2s. The standard deviations
of the radar receiver noise models ng, ny, and ng were 0.1°,
0.1°, and 1 m, respectively. Glint noise ng ¢ and ng,y are
mixtures of Gaussians, which follow the distribution.

p=0—-¢)pg, +épg, (13)

where ¢ is the glint probability. pg, and pg, are Gaussians
in pg, ~ N(O, 0.52)° and pg, ~ N(0, 12)° at the range of
100m in respectively [3]. The tracking motion model follows
the Singer model in Eq. 5 and the measurement model is
expressed by Eq. 13. The position of the radar is assumed to
be fixed on the ground. Whereas the ballistic target moves at
a high speed, considering the gravity and aerodynamic drag.
As a result, the velocity of the ballistic target varies with the
simulation time.

The resulting trajectory and the estimated results are repre-
sented in Fig. 11-13. The number of particles is 15000, which
shows a satisfactory tracking performance.

B. RESULTS OF ALGORITHM ACCELERATION WITH GPU
We constructed the following experiments on the embedded
system, Jetson Xavier NX: computational time measurements
of each algorithm for the number of particles. The parallelized
algorithms have significantly faster performance, And the
larger the number of particles used in the particle filter algo-
rithm, the less time the particle filter calculated in parallel
using GPU takes to computation. The performance of the
PF algorithm for the entire algorithm is shown in Table 3.
Here, for parallelized computation using CUDA, overhead
is inevitable, the overhead includes CUDA initialization,
variables definition for using CUDA, kernels definition, etc.
However, even if the overhead time is included, it takes more
time when the algorithm is performed using only the CPU.
Fig. 15 shows a comparison of the calculation time of the
entire algorithm using only CPU and using both CPU and
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FIGURE 13. Estimated target altitude compared to altitude calculated by
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GPU with CUDA when the number of particles is 5000. The
PF algorithm takes almost the same amount of time to per-
form the entire algorithm, and the other parts, except the PF,
have a short time. This result shows that the calculation time
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FIGURE 14. Performance time of the entire algorithm in a Xavier
environment. The parallelized PF algorithm using GPU kernels required
much less performance time.

TABLE 3. Comparison of PF computation times.

Number Only Proposed Proposed Overhead(s)
of CPU 1.0 2.0

Particles (s) (s) () 1.0 2.0
1000 5.598 0.575 0.568 0.100 0.098
2000 11.438 1.485 1.035 0.100 0.105
3000 17.117 1.991 1.422 0.101 0.099
4000 23.468 2.651 1.920 0.098 0.105
5000 28.048 3.843 2.669 0.109 0.117
6000 33.680 5.091 3.111 0.104 0.114

decreases significantly when parallelization using CUDA is
used in the model propagation part, where it takes the most
time. And Fig. 15 shows the speedup between the conven-
tional PF and the parallelized PF algorithm 2.0. The differ-
ence in the performance time between the conventional PF
and the proposed PF 2.0 is the largest in the model propaga-
tion part.

m overhead
30 target init
gen particels

25 model propagation
m glint noise
2 m weight func

H resampling

15 m others

computation time [s]

Parallelized PF 1.0

Parallelized PF 2.0

Conventional PF
(only CPU)

FIGURE 15. Time of the entire algorithm in a Xavier environment. When

the target tracking algorithm was applied, the method performed only the
CPU required the longest calculation time in the model propagation part.
The calculation time using the GPU was dramatically reduced in this part.
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Other methods include parallelization of resampling or
parallelization of likelihood functions, which are compared
and shown in Fig. 16. In conclusion, other methods have not
only very slow computational time for model propagation,
but also show that the performance may be lower than that of
conventional PF due to overhead, and our method achieves
optimal performance by selectively parallelizing the parts that
need acceleration through computational time profiling in
advance. Most importantly in this result, comparing different
parallelization methods by applying them to our applications
may result in unfair results. Other methods are designed for
applications that are different from ours, and the input of
the application may be different, finally, they will eventually
show optimal performance in their applications. After all,
what this shows is that parallelize for computation should be
applied differently for each application. In other words, each
acceleration algorithm can ensure optimal results when con-
figured with the appropriate acceleration algorithm through
profiling of its applications. So, we conducted profiling about
conventional PF, and we found that the model propagation
part takes most of the whole computation time. And the
parallelization of model propagation has shown better per-
formance in our applications.

m others
u confidence

a0 o resampling
- - |——] = weight func
B m glint noise
f:‘ model propagation
£2 gen particels
< L
8 target init
]
Is ® overhead
£
8
10
5
0 — — -

Conventional PF Parallelized likelihood i i ized PF 2.0

(only CPU)

FIGURE 16. Time of the algorithms including other PF methods in a
Xavier environment. The calculation time in the proposed PF 2.0 was
dramatically reduced in this part.

Table 4 is an extension of the above experiments, and is
the result of profiling the performance of a particle filter with
5000 particles using other embedded boards, Jetson AGX
Orin, and several GPU cards. The hardware specification was
higher, the better performance was shown. For example, the
computation time with Jetson AGX Orin was smaller than
the computation time with Jetson Xavier NX because Jet-
son AGX Orin has higher hardware specification than Jetson
Xavier NX. Instead, the local memory usage with Jetson
AGX Orin was larger than the local memory usage with
Jetson Xavier NX, which indicates that there exists a trade-off
relation between the computation time and the local memory
usage. In addition, the computing peak performance values
on the Geforce RTX 3070 and 3090 were 2.57 % and 2.54 %,
respectively, resulting in bottlenecks due to the robust perfor-
mance of the GPU compared to the performance required by
the proposed method. Therefore, one should select carefully
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TABLE 4. Comparison results of evaluation in various GPUs.

Peak-Perf 9 i
SM Memory Computation eak-Performance (%) Local Achieved Speedup
Model Count Size (GB Ti . Memory Occupancy
oun ize (GB) ime(s) Computing Memory Usage (MB) (%) ()
Intel i7-10700
- - 28.048 - - - 1.000
CPU
NVIDIA Jetson
6 7.59 2.669 57.75 63.52 6.750 89.52 10.513
Xavier NX
NVIDIA Jetson
) 16 29.82 1.559 27.36 28.33 13.500 63.33 17.991
AGX Orin
NVIDIA Geforce
46 7.79 1.063 2.57 19.10 38.812 62.51 26.386
RTX 3070
NVIDIA Geforce
82 23.68 1.066 2.54 5.38 69.187 68.17 26.311
RTX 3090

a hardware for algorithm acceleration by considering the
hardware cost and the trade-off relation. The most important
point in Table 4 is that the conventional particle filter only on
CPU can be highly speeded up by the proposed parallelized
particle filter regardless of the selection of the GPU-based
hardware system.

C. DISCUSSION

The computation time of the target tracking algorithm was
compared when using only the CPU and when using paral-
lelized particle filter 1.0 and 2.0. the result is that the entire
algorithm to which the parallelized particle filter was applied
had much less computation time than when the algorithm was
performed using only the CPU. And when comparing two
methods using GPU, it took less time to compute when using
the proposed PF 2.0 method.

The reasons for the result of comparing the proposed PF
1.0 and 2.0 are as follows. First, since most of the overhead
time occurs in CUDA initialization, if the number of kernels
or variables used is not significantly different, the overhead
time is similar. For the difference to occur in overhead time,
used kernels that perform more complex computations are
integrated, or inputs and outputs are defined a lot compared
to the experimental environment of this paper. however, the
difference in the number of used kernels and variables in
the two methods described in this paper is not significant.
Therefore, the occurrence time of the overhead is similar.
The parallelized particle filter 2.0 uses predefined variables
in which the values of the result matrix will be stored to move
the result matrixes of the kernels. By defining variables to be
used in advance, the area where the values will be stored has
been set. However, the parallelized particle filter 1.0 method
defines variables every iteration when the kernel is executed
to sets the area where the variables will store. Therefore, the
second reason is a difference in that variables are defined
in advance, or the variables are defined every iteration. For
this reason, the parallelized particle filter 1.0 method takes
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more computation time in the model propagation part than
the proposed PF 2.0 method.

V. CONCLUSION

In this study, the first approach was developed to accelerate
a PF for target missile tracking. A PF algorithm was used to
track the high-speed moving ballistic target, and acceleration
was performed using a GPU to achieve real-time perfor-
mance. For the ballistic target, a PF was used to track the
state of the target, such as its movement and angle, and it was
successfully estimated without significant differences.

Most of the time was spent in the PF algorithm in the
target tracking algorithm, especially in the model propaga-
tion part of the information held by the particles. The part
identified as requiring a lot of computation time was paral-
lelized by CUDA using a GPU. The result of parallelization
was that the computation time was reduced compared to the
algorithm using only a CPU, even considering the overhead
time inevitably occurring when using CUDA. The algorithms
with the parallelized PF proposed in this study using a GPU
require less computation time than estimating the state of the
ballistic target using only the CPU. Both methods using GPU
can be said to have much more real-time performance than
when the entire algorithm is performed using only the CPU.
Comparing the two methods using GPU, using the proposed
PF 2.0 method is more effective because the calculation is
not complicated and the variables to be used in GPU are
predefined.
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