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ABSTRACT Chronic heart failure, pulmonary hypertension, acute respiratory distress syndrome (ARDS),
coronavirus disease (COVID), and kidney failure are leading causes of death in the U.S. and across the globe.
The cornerstone for managing these diseases is assessing patients’ volume fluid status in lungs. Available
methods for measuring fluid accumulation in lungs are either expensive and invasive, thus unsuitable for
continuous monitoring, or inaccurate and unreliable. With the recent COVID-19 epidemic, the development
of a non-invasive, affordable, and accurate method for assessing lung water content in patients became
utmost priority for controlling these widespread respiratory related diseases. In this paper, we propose a
novel approach for non-invasive assessment of lung water content in patients. The assessment includes
quantitative baseline assessment of fluid accumulation in lungs (normal, moderate edema, edema), as well
as continuous monitoring of changes in lung water content. The proposed method is based on using a pair
of chest patch radio frequency (RF) sensors and measuring the scattering parameters (S-parameters) of a
915-MHz signal transmitted into the body. To conduct an extensive computational study and validate our
results, we utilize a National Institute of Health (NIH) database of computerized tomography (CT) scans of
lungs in a diverse population of patients. An automatic workflow is proposed to convert CT scan images
to three-dimensional lung objects in High-Frequency Simulation Software and obtain the S-parameters of
the lungs at different water levels. Then a personalized machine learning model is developed to assess lung
water status based on patient attributes and S-parameter measurements. Decision trees are chosen as our
models for the superior accuracy and interpretability. Important patient attributes are identified for lung
water assessment. A “‘cluster-then-predict’ approach is adopted, where we cluster the patients based on their
ages and fat thickness and train a decision tree for each cluster, resulting in simpler and more interpretable
decision trees with improved accuracy. The developed machine learning models achieve areas under the
receiver operating characteristic curve of 0.719 and 0.756 for 115 male and 119 female patients, respectively.
These results suggest that the proposed ““Chest Patch” RF sensors and machine learning models present a
promising approach for non-invasive monitoring of patients with respiratory diseases.

INDEX TERMS Biomedical measurements, biomedical monitoring, mobile measurements, RF sensors,
artificial intelligence, machine learning.

I. INTRODUCTION
Chronic heart failure, pulmonary hypertension, acute res-
piratory disorder syndrome (ARDS), coronavirus disease
The associate editor coordinating the review of this manuscript and (COVID), kidney failure, and their acute exacerbation are
approving it for publication was Ajit Khosla "~ . among the leading causes of hospitalization, health care costs,
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and deaths in the United States and around the globe. For
example, more than one million patients are hospitalized
annually due to heart failure, which accounts for a total
medicare expenditure exceeding $50 billion in 2013 [1].
Recently, the world was shocked with the wide spread of the
COVID-19 pandemic which claimed about 3 million lives
worldwide in a year; the death toll is still on rise as of the
writing of this article. The cornerstone for managing these
diseases is assessing patients’ volume fluid status in lungs.
Approximately 80% of the lung is made up of water, with
gas-exchanging air spaces protected by various barriers and
drains. In multiple disease states, through injury or pressure
or both, these protective mechanisms fail, resulting in the
abnormal accumulation of extravascular lung water. Hence,
close monitoring of lung water status, respiratory rates and
heart rates is key to proactively preventing the worsening
of patient heart failure and treating acute exacerbation. For
instance, the assessment of a patient with left ventricular
systolic dysfunction and progressive dyspnea includes an
evaluation of volume status and extravascular lung water —
often assessed by measuring weight, jugular venous pressure,
and presence of an S3 on cardiac exam, or peripheral edema.
Similarly, patients with symptomatic hypotension are often
assessed for their volume status, particularly if dehydration is
a consideration and/or when complicating factors (e.g., renal
insufficiency, peripheral neuropathy, and concomitant comor-
bid illnesses) confound the diagnostic exam. In summary,
early detection of excess lung water is critical to provide
timely fluid assessment and improve treatment for patients
with chronic respiratory diseases.

However, existing modalities of monitoring lung water
are either costly (e.g., chest X-ray and computerized tomog-
raphy (CT) scan) and/or invasive (e.g., cardiac catheteriza-
tion), making them unsuitable for continuous monitoring and
early detection of excessive lung water. The widespread of
COVID-19 made the development of non-invasive, accurate,
and affordable methods for continuous assessment of lung
water of utmost urgency and importance.

In this paper, we describe a novel approach for quantita-
tively assessing lung water content, in addition to measuring
its changes when monitoring patients. The procedure is based
on using a pair of chest patch radio frequency (RF) sensors
and measuring the scattering parameters (S-parameters)! of
a 915-MHz signal transmitted into the body. We aim to
develop a machine learning model that assesses the lung
water content (normal, moderate edema, edema) based on
S-parameters and patient attributes. To build such a model,
we use a large National Institutes of Health (NIH) data set
containing CT scan images [2] of lungs in a diverse patient
population. We then develop an automatic workflow to con-
vert these images to three-dimensional (3D) lung objects in

1S—parameter is the measure of the magnitude and phase of the received
signal by the non-radiating sensor, as a result of the scattered RF signal inside
the patient body.
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High-Frequency Simulation Software (HFSS), and obtain the
S-parameters of the lungs at different water levels.

Based on the data obtained from HFSS, we propose accu-
rate and interpretable machine learning models for person-
alized assessment of lung water status. We first compare
different classifiers and choose the decision tree classifier for
its superior accuracy and interpretability. We then identify
important features, namely S-parameters, genders, ages, and
thickness of fat layers, for lung water assessment. Finally,
we adopt a cluster-then-predict approach, where we cluster
the patients into subgroups based on their genders, ages and
fat thickness and train decision trees for each subgroup. This
approach further improves the interpretability and accuracy
of the decision trees for each subgroup. The final decision
trees for each subgroup determine the lung water status using
the magnitudes and the phases of the S-parameters only.
On average, our personalized models achieve higher than
70% accuracy of lung water status assessment over a diverse
group of 115 male and 119 female patients.

Section II provides a description of the chest patch
RF sensor approach used in this computational study.
A detailed description of the computational procedure of
building a database of a diverse population from the NIH
database is included in Section III. In Section IV, we pro-
pose a personalized machine learning model and present our
results. Concluding remarks and comments on future work
are included in Section V.

A two-page conference version of this work has been
presented in [3]. The current work significantly expands
our prior work [3] by describing the automatic workflow of
building the database in detail (Section III) and including the
development of the machine learning models (Section IV).

Il. CHEST PATCH RF SENSORS FOR ASSESSING LUNG
WATER CONTENT
The continuous non-invasive monitoring capability of the
proposed chest patch RF sensors is achieved by using highly
penetrating radio frequency and electromagnetic waves.
At microwave frequencies, the dielectric properties of lung
tissues are closely related to the water content in the lungs,
as discovered and validated by our prior works through simu-
lations [4], phantoms [5], and animal experiments [6]. Our
prior efforts of clinical trials have demonstrated that this
simple and noninvasive approach can accurately detect the
change in lung water content [7]. Fig. 1 illustrates an example
implementation of the chest patch RF sensor system used
in this study. The RF system consists of an adhesive chest
patch containing two electrocardiogram (EKG) lead sized
RF sensors and measurement hardware and data analysis
software components. The patch is placed in contact with
the patient’s chest, S-parameters are measured at 915 MHz,
and multiple vital signs (e.g., heart rate and respiratory rate)
are derived from a single measurement using digital signal
processing algorithms.

The RF system was recently tested in clinical trials
with heart failure and hemodialysis patients, which showed
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FIGURE 1. lllustration of the chest patch RF system and chest patches.
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FIGURE 2. The proposed framework of artificial intelligence (Al) based
lung water assessment.

excellent correlations with other available clinical monitor-
ing methods [7]. Specifically, the heart and respiration rates
measured by the RF system have correlation factors higher
than 0.9 for all the patients. Comparisons with fluid removed
during hemodialysis treatment showed correlation factors
of 0.82 to 1, while comparisons with pulmonary capillary
wedge pressure measurements for heart failure patients had
correlation factors of 0.52 to 0.97.

In this work, we propose an artificial intelligent (Al) based
lung water prediction to significantly expand the capability
of the chest patch RF system (see Fig. 2 for illustration of the
proposed framework). First, we aim to assess the lung water
status (i.e., normal, moderate edema, and edema), in addition
to the change of lung water. Second, we seek to build accu-
rate personalized Al models for diverse patient populations.
One key challenge to develop a personalized Al model is
to build a database of a diverse patient population, because
individuals are different both in the baseline for water content
in normal lungs and in the changes of dielectric properties
under different severities of edema. The high cost of collect-
ing data from clinical trials makes the challenge even more
difficult. To address this challenge, we use a large NIH data
set of CT scan images and develop an automatic workflow
to obtain high-fidelity data from 3D HFSS. This generates
a data set that includes patients with varying ages, genders,
and sizes, and the S-parameters of their lung tissues under
various amounts of lung water. Compared to data collection
from clinical trials, this approach is low-cost, less time-
consuming, and risk-free. The following section provides
detailed description of the procedure of building the database.

lIl. BUILDING THE DATABASE OF A DIVERSE PATIENT
POPULATION

To address the challenges of the lack of data and
the high cost of collecting data from clinical trials,
we develop an automatic workflow to build the database
from a large-scale NIH dataset, DeepLesion [2]. DeepLesion
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FIGURE 3. Axial cross-section at the height of the RF sensor in MATLAB.
Dark gray structures are bones of the thoracic cage while those in yellow
are lung tissues. The sensors are attached at the top-right of the body.
We use the chest circumference and the fat thickness, which can be
measured conveniently, as features for the machine learning models
developed next.

contains 32,120 axial CT scan slices of 4,427 unique patients.
We first select high-quality CT scans of the lungs. Then we
use MATLAB for image processing. Finally, we use HFSS [§]
to build 3D models of the lungs and obtain the S-parameters
at lung water content of 20% (normal lung), 40% (moderate
edema), and 60% (edema). Below we describe in detail our
automatic workflow to build the database.

A. SELECTION OF CT SCANS

Since DeepLesion contains CT scans of different body parts
(e.g., lungs, kidneys, pelvis), we first identify all CT scans
of the lungs based on the metadata comma-separated values
(CSV) file provided by DeepLesion. Among the CT scans
of the lungs, our biomedical expert select the ones of good
quality. For example, we discard the CT scans that show only
the tip of the lungs and those taken during expiration of the
respiratory cycle.

B. IMAGE PROCESSING IN MATLAB

We import the CT scans into MATLAB as 512 x 512 images.
We use the image processing functions in MATLAB to detect
the edges of the chest, bone structures, and lungs. The poly-
gons composed of these edges are written into a script to
be used by HFSS. We also develop a MATLAB script to
determine the exact locations of the two RF sensors. The two
sensors are placed 8 cm apart on the cross-section outline
with a clear view of the lungs. This avoids the blockage of
RF signals by the bone structures such as the thoracic cage.
Finally, we have a MATLAB script to calculate the thoracic
circumference, the area of the fat layer, and the thickness of
the fat layer, which will be used as part of the patient metadata
in the database. See Fig. 3 for an illustration of the annotated
MATLAB image after this step.

C. SIMULATION IN HFSS
HFSS reads the script, extract the polygons, and use them
to build a cylindrical model of the lung. We use the pixel
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TABLE 1. Dielectric properties used for the lung polygons, based on
fractional volumes of blood, air, and lung tissue [9].

Relative Electrical
Lung Water Content | piiivity | Conductivity (S/m)
20% 20.604 0417
40% 30.679 0.590
60% 40,510 0755

o 100 200 (mm)

FIGURE 4. lllustration of the cylindrical lung model built from the axial
CT scan in HFSS. The figure shows the axial cross-section of the lung
model at the height of sensor attachment. Yellow polygons represent
lungs, dark gray polygons represent bones, and gray polygons represent
an averaged mixture of epithelial, muscle, and fat tissues.

to mm conversion provided by DeepLesion to ensure the
correct sizes of our lung model. The horizontal locations
of the RF sensors were determined by MATLAB, and the
vertical location is the middle height of the cylinder. HFSS
simulates a 915-MHz RF signal sent by one RF sensor, and its
internal electromagnetic solver determines the S-parameters
of the received signal at the other RF sensor. We perform the
simulation at lung water content of 20% (normal lung), 40%
(moderate edema), and 60% (edema). The dielectric proper-
ties of the bones and tissues are known and fixed, and those of
the lung are determined according to the literature [9] (shown
in Table 1). Magnitudes and phases of the S-parameters are
taken for the lung water content of each patient. See Fig. 4
for illustration of the 3D lung model built in HFSS and
Fig. 5 for S-parameters at different lung water levels for two
representative patients.

D. DATABASE ENTRY

For each CT scan, we obtain three data samples from one
unique patient. Each data sample contains the magnitude and
the phase of the S-parameter at one of the three lung water
levels. We also record the patient metadata of gender and age
(available from DeepLesion), and thoracic circumference,
area of the fat layer, and thickness of the fat layer (obtained
by MATLAB). The lung water percentage is the label of each
data sample.

Currently, we have data samples of 115 male patients and
119 female patients with ages from 20 to 86, which will be
used in our Al-based lung water assessment described next.
The sample size is similar to most clinical trials related to
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FIGURE 5. Sample results of HFSS simulation for a 33-year-old male and
a 67-year-old female. We obtain magnitudes and phases of S-parameters
at different lung water levels.

pulmonary edema [ 10]. Therefore, our study serves as an indi-
cator of how our Al model would perform in an actual clinical
trial. We are also expanding our database as an ongoing work.

IV. AI-BASED LUNG WATER ASSESSMENT

We aim to assess the lung water status based on the
patient attributes (i.e., gender, age, chest circumference, fat
thickness) and S-parameters (i.e., magnitudes and phases).
We pose the problem as a classification problem with three
classes, namely normal (i.e., 20% lung water content), mod-
erate edema (i.e., 40% lung water content), and edema (i.e.,
60% lung water content).

We evaluate the Al models using three criteria:

o Accuracy: This is defined as the percentage of the sam-
ples that are correctly classified;

o Receiver operating characteristic (ROC) curve: This is
the curve of true positive rates versus false positive
rate, which provides a complete characterization of
the performance of the classifier [11]. Since the ROC
curve is defined for binary classification problem and
since we have three classes of normal, moderate edema,
and edema in our problem, we adopt a ‘“‘one-vs-rest”
approach when plotting the ROC curve [12]. Specifi-
cally, we will group normal and moderate edema into
one class and investigate how well the classifier can dis-
tinguish between normal/moderate edema and edema;
we will also group moderate edema and edema into one
class and investigate how well the classifier can distin-
guish between normal and moderate edema/edema.

o Area under the ROC curve (AUC) score: This is the area
under the ROC curve, which is a scalar summarizing the
ROC curve [13].

For all the performance criteria, we perform stratified 10-
fold cross validation [14], where we divide the data set into
groups and use one group as the validation set and the other
groups as the training set. All performance scores are the
average scores over the 10 folds.

A. Al MODEL SELECTION

There are various models available to perform the clas-
sification task. Our first step is to select the model that
is most suitable for our data based on accuracy and
interpretability. We consider the following commonly-used
classification models.
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FIGURE 6. lllustration of data samples and decision regions of different machine learning models. In all the subplots, the x-axis and y-axis
are the magnitude and the phase of the S-parameters, and the green circles, yellow squares, and red triangles are the data samples
representing normal lung water (20%), moderate edema (40%), and edema (60%), respectively. Leftmost: the data samples; Right: decision
regions of nearest neighbors, decision trees, random forests, and neural networks, respectively, where green, yellow, and red pixels indicate
that the model classifies the corresponding samples as normal lung water, moderate edema, and edema. The accuracy is shown in the lower

right corner of each subplot.

o Support vector machines (SVM) [15]: SVM maps the
input vectors non-linearly to a high-dimension feature
space, and then uses linear decision surfaces in the
feature space to separate the data samples. We evaluate
linear SVM (which removes the non-linear mapping)
and radial basis function (RBF) SVM (which uses the
radian basis function as the non-linear mapping).

o Decision trees [16]: A decision tree classifier uses ““if-
then” type decision rules on the features to predict the
class of a data sample. A decision tree can be seen as a
piece-wise constant approximation.

e Random forests [17]: A random forest classifier is the
average of multiple decision tree classifiers.

o Neural networks [18]: A neural network is a network
of neurons (i.e., simple processing units specified by an
activation function). A neural network can implement
highly non-linear classification rules by adjusting the
connections between the neurons.

o Nearest neighbors [19]: A nearest neighbor classifier
groups the training samples “closest in distance” to the
new point, and predict the class from these samples.
A nearest neighbor classifier can also be highly non-
linear.

Fig. 6 illustrates the data samples for all the male patients,
and decision regions and accuracy of the Al models above.

From the plot of the data samples, we can see that the

data cannot be separated by straight lines. Therefore, lin-
ear models, such as linear SVM, are not accurate. Based
on this observation, we focus on nonlinear models, namely
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RBF SVM, decision trees, random forests, neural networks,
and nearest neighbors. Among all the non-linear models,
nearest neighbors have the highest accuracy. However, the
decision regions of the nearest neighbors are too complex to
explain. We observe that decision trees have same or higher
accuracy than RBF SVM and neural networks. Compared to
random forests, decision trees have slightly lower accuracy,
but much simpler decision regions. Overall, we found that
decision trees have the best accuracy and interpretability
trade-off.

Another advantage of decision trees is that the decision
rules have the if-then structure that resembles natural lan-
guage and the way humans think (see Fig. 7 for an illustration
of the decision tree). For example, the decision tree in Fig. 6
stipulates the following decision rule: If the phase is between
—167.5 and —133.5 and the magnitude is above —64.7 dB,
the lung is normal; if the phase is between —167.5 and
—133.5 and the magnitude is below —64.7 dB, the lung
has moderate edema; if the phase is between —177.5 and
—172.5, the lung has moderate edema; otherwise, the lung has
edema. We can see that decision trees provide human-friendly
explanations, which is especially desirable in clinical settings.

B. FEATURE IMPORTANCE AND FEATURE SELECTION
Now that we have decided to use decision trees as our model,
we proceed to perform feature selection. Our goal is to select
the most important features, instead of using all the features,
for the model. Feature selection will improve the model
generalizability and interpretability [20].
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gini= 046
samples =10

value = [1,2,7]
class = sdema

FIGURE 7. lllustration of the decision rules stipulated by the decision tree
classifier in Fig. 6: If the phase is between —167.5 and —133.5 and the
magnitude is above —64.7 dB, the lung is normal; if the phase is between
—167.5 and —133.5 and the magnitude is below —64.7 dB, the lung has
moderate edema; if the phase is between —177.5 and —172.5, the lung
has moderate edema; otherwise, the lung has edema.

Permutation Importances (male) Permutation Importances (female)

wl o e HTHe
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(a) male patients (b) female patients

FIGURE 8. lllustration of the permutation importance of all the features
for decision trees. For each feature, the box plot shows the median of the
importance (the orange line), the first and the third quartiles (the box),
1.5 times the interquartile range (IQR) beyond the third quantiles (the
whiskers extending from the box), and the outliers (the circles).

There are different methods to quantify feature impor-
tance. We use the permutation importance, a metric com-
monly used in practice, to measure the importance of each
feature [20], [21]. Permutation importance measures the
impact of a feature on the classification accuracy. Specifi-
cally, to evaluate a feature, we create data sets with random
permutations of the feature to evaluate while keeping the
other features the same, and see how much the classification
accuracy drops. When permuted, a more important feature
will result in a larger drop in the accuracy.

Fig. 8 shows the permutation importance of several deci-
sion trees with different tree depths. We can see that
the phase is by far the important feature. The magnitude and
the fat thickness are the next two important features, with the
relative importance of these two varying across models. The
circumference and the age are the least important.

C. THE CLUSTER-THEN-PREDICT APPROACH
Based on the important features identified, we adopt the
cluster-then-predict approach to build the final Al mod-
els [22], [23]. Specifically, we first cluster the patients into
subgroups, and then train a decision tree classifier for each
subgroup of patients. The advantages of the cluster-then-
predict approach are higher average accuracy due to the
similarity of patients within one subgroup and better inter-
pretability due to simpler classifiers for each subgroup.

We first determine the features that serve as the basis
to cluster the patients. It is important to use features that
are constant (i.e., age, circumference, and fat thickness) for
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FIGURE 9. lllustration of decision regions of an undesirable classifier for
females patients with age between 35 and 45. It is undesirable because
the red region (i.e., edema) is on the right to the yellow region (i.e.,
moderate edema).

clustering. If we were to use time-varying features (e.g.,
magnitude and phase) for clustering, the subgroups would
change quickly over time. Based on the feature importance
shown in Fig. 8, we drop the circumference as a feature due
to its low importance. We first try to cluster the patients based
on the age, and then based on age and fat thickness.

1) CLUSTERING BASED ON AGE

We adopt a heuristic approach to determine the age brack-
ets for the subgroups. Starting from the youngest patient,
we gradually increase the size of the first age group until the
accuracy drops a lot. Once the first age group is determined,
we repeat the above process for the next age groups, until we
cluster all the patients. For male patients, this approach results
in seven age brackets, namely [20, 30], [31, 40], [41, 49],
[50, 55], [56, 60], [61, 69], and [70, 99], and an average AUC
score of 75.2%. For female patients, this approach results in
some age brackets for which the model always predicts higher
water content under higher magnitudes. Such results violate
the physics, because the signal should attenuate more when
there is more lung water. Please see Fig. 9 for an illustration.
Note that we did not exhaust all the possible clustering, which
is practically impossible. But the phenomenon of predicting
higher water content under higher magnitudes seems per-
sistent in all the trials. As a result, we conclude that it is
challenging to obtain interpretable models when clustering
female patients based on the age only.

2) CLUSTERING BASED ON AGE AND FAT THICKNESS

Since the fat thickness has been identified as an important
feature, we cluster the patients based on both the age and
the fat thickness. In particular, we divide the patients of the
same gender into four subgroups by setting a threshold of the
age and a threshold of the fat thickness. The median ages of
male and female patients are 52 and 50, respectively. In our
attempt to find the optimal thresholds of the age and the fat
thickness, we choose the threshold of the age from {50, 55}
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FIGURE 10. Decision regions of each subgroup of male patients. In all the
subplots, the x-axis and y-axis are the magnitude and the phase of the
S-parameters, and the green circles, yellow squares, and red triangles are
the data samples representing normal water content (20%), moderate
edema (40%), and edema (60%), respectively. The green, yellow, and red
pixels indicate that the model classifies the corresponding samples as
normal water content, moderate edema, and edema.
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FIGURE 11. Decision regions of each subgroup of female patients.

and the threshold of fat thickness from {6, 6.5, ..., 11.5, 12}.
The optimal threshold is determined based on the average
AUC score over the four subgroups.

We find that the optimal threshold of the age is 50 for
both male and female patients, and that the optimal thresholds
of the fat thickness are 7.5mm and 11.5mm for male and
female patients, respectively. Clustering based on age and fat
thickness has two advantages over clustering based on age
only. First, for male patients, we only need four subgroups,
as opposed to seven in clustering based on age, to achieve
similar average AUC score of 71.9%. For female patients,
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TABLE 2. Summary of model performance in terms of the AUC score.

cluster | # of patients | subgroup AUC | average AUC

1 28 78.6%
2 14 78.6%

Male 3 17 68.6% 71.9%
4 44 66.7%
1 31 81.7%
2 23 60.9%

Female 3 34 84.3% 75.6%
4 13 64.1%
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FIGURE 12. ROC curves of male and female patients. In all the subplots,
the x-axis is the false positive rate and the y-axis is the true positive rate.
The thick blue curves are the mean ROC curves, and thin curves are six
ROC curves from the sixfold cross validations. The shaded regions
indicate the standard deviation.

the predicted lung water content always decreases with the
magnitude, which conforms to the physics. We summarize
the results in Table 2, and illustrate the decision regions of the
classifiers for male and female patients in Fig. 10 and Fig. 11,
respectively.

Compared to clustering based on the age only, clustering
based on the age and the fat thickness is better, because it
leads to fewer subgroups (i.e., four subgroups as oppose to
seven) with negligible sacrifice in the AUC score. For each
subgroup, the decision trees determine the lung water status
based on the magnitude and the phase of the S-parameters,
resulting in simple and interpretable decision rules.

Finally, we show the ROC curves of male and female
patients in Fig. 12.

D. MODEL INTERPRETATION

It is important to interpret the machine learning model [20].
For our study, we check if the model conforms with the
following expert knowledge:

o Our prior works suggest that the phase is the most impor-
tant feature [24].
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o According to electromagnetics, the magnitude of the
signal decreases when there is more water in the lung.

« We apply the two chest patches, acting as the transmitter
and the receiver, on the chest, as opposed to one on
the chest and one on the back. Therefore, the chest
circumference has limited impact on the signal strength.

o In clustering based on age and fat thickness, the thresh-
old of the fat thickness is lower for male patients
(7.5mm) compared to female (11.5mm). This makes
sense because males have lower body fat percentages on
average.

Our results are consistent with the expert knowledge men-
tioned above. The importance of the phase and the limited
impact of the circumference are observed in our study on
feature importance (Fig. 10 and Fig. 11). The monotonic rela-
tionship between the magnitude and the lung water content is
observed from the decision regions (Fig. 10 and Fig. 11).

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel approach for lung water
assessment by the chest patch RF sensors and measurement
system. This provides a significant extension in the capa-
bilities of our previous chest patch RF sensors system as
it provides quantitative baseline assessment of lung water
status (i.e., normal lung water content, moderate edema,
and edema) for a diverse patient population, in addition
to monitoring the change of lung water content. We use
a large NIH database containing CT scan images of the
lungs of a diverse population. Then an automatic workflow
is proposed to convert these images to 3D lung objects in
HFSS and obtain the S-parameters of the lungs at different
water levels. This approach results in a database of a diverse
patient population without expensive and time-consuming
clinical trials. Using this database, we develop a personalized
machine learning model to assess lung water status based on
the patient attributes and S-parameter measurements. Our Al
model adopts decision trees as the classifier for its superior
accuracy and interpretability. Then we propose a ‘“‘cluster-
then-predict” approach, namely clustering the patients into
subgroups and training a decision tree for each subgroup. This
leads to even simpler and more interpretable decision rules
with high accuracy. When the patients are clustered based
on their ages only, the resulting decision trees for the male
patients perform well, but those for the female patients are
hard to interpret. Therefore, the patients of each gender are
clustered based on both their ages and fat thickness. The final
decision trees for each cluster determine lung water status
using S-parameters only, which are easy to interpret. Overall,
our models achieve areas under the receiver operating char-
acteristic curve (AUC) of 0.719 and 0.756 over 115 male and
119 female patients of different ages (20 to 86) and body
fat levels. These results demonstrated the potential of the
proposed Al-based chest patch RF system in non-invasive
monitoring of lung water content.

For future work, we intend to conduct a true clinical trial on
a diverse population of patients in collaboration with medical
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centers from across the U.S.. The presented computational
study and the obtained promising results will significantly
help in guiding these clinical studies. In particular, our results
help focus the clinical studies on parameters identified as
critically important in assessing the baseline value of lung
water content in patients.
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