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ABSTRACT Point-cloud processing for extracting geometric features is difficult due to the highly non-linear
rotation variance and measurement noise corrupting the data. To address these challenges, we propose a new
architecture, called Dense 3D Geometric Features Extraction And Pose Estimation Using Self-Attention
(D3GATTEN), which allows us to extract strong 3D features. Later on these can be used for point-cloud
registration, object reconstruction, pose estimation, and tracking. The key contribution of our work is a
new architecture that makes use of the self-attention module to extract powerful features. Thoughtful tests
were performed on the 3DMatch dataset for point-cloud registration and on TUM RGB-D dataset for pose
estimation achieving 98% Feature Matching Recall (FMR). Our results outperformed the existing state-of-
the-art in terms of robustness specification for point-cloud alignment and pose estimation. Our code and test
data can be accessed at link: https://github.com/tamaslevente/trai/tree/master/d3gatten.

INDEX TERMS 3D point-clouds registration, self-attention, geometric features extraction, pose estimation.

I. INTRODUCTION
Point-cloud alignment is an important task in computer vision
as this task forms the basis for many problems. It is a funda-
mental task for applications such as 3D reconstruction [1],
simultaneous localization and mapping (SLAM) [2], track-
ing [3], flow estimation [4], AR/VR tracking [5], pose esti-
mation for data fusion [6]. Point-cloud registration consists
of computing the rigid transformation of two overlapping
point-clouds in order to align them in the 3D space. However,
given the properties of the point-cloud to be unordered, irreg-
ular, and often noisy, extracting pointwise correspondences
is not a trivial task. In recent years, many methods have
contributed to solving these problems, from hand-crafted
methods [7], [8], [9], [10] to more recent deep learning-based
approaches [11], [12], [13], [14], [15], [16], [17], [18].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

FIGURE 1. D3GATTEN isolates the essential points that can be used to
produce a more precise point-cloud registration. The extracted keypoints
are shown by red dots on Figure 1a, 1b, and Figure 1c depicts the
registration of the two input point-clouds.

Deep learning-based methods that deal with point-cloud
registration can be divided into several subcategories. The
first class [19], [20], [21], [22] follows the principle of itera-
tive closest-point (ICP) [23] base methods, where pose trans-
formation and correspondence evaluations are performed.
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The second category is correspondence-based methods [13],
[15], [16], [17], [24], [25], where a neural network extracts
the correspondences between two point-clouds, based on a
random sampling technique such as RANSAC [26] for filter-
ing and initial alignment. Most of these methods are based on
the detection of keypoints [15], [16], [24], [27], [28]. These
approaches may be divided into two categories based on how
they extract correspondence [29]. The first class [15], [16],
is based on extracting as many repeatable points as possible
while the second class [24], [27], focuses on extracting all
possible matches without detecting keypoints. Another cate-
gory [24], [30], [31] first extracts the global feature vector for
each point-cloud and then returns the transformation using
the global feature vector. A different class [11], [13], [14],
[15] is the attention-based methods [32], which are used to
encode contextual information to register point-clouds.

We follow this path and introduce D3GATTEN: Dense
3D Geometric Features Extraction And Pose Estimation
Using Self-Attention for superior feature extraction using
the self-attention module [32]. Our architecture uses D3Feat:
Joint Learning of Dense Detection and Description of
3D Local Features [16], which adds a salient point detector
to a fully convolutional feature descriptor. In addition to this,
we implemented a self-attention module for feature extrac-
tion. Our algorithm is significantly more noise resistant after
the addition of this module. This is a crucial consideration
in order to apply this algorithm in real world. The results
obtained for point-cloud registration can be seen in Figure 1c.

In summary, the key contributions of our work are as
follows.

1) Based on D3Feat [16] we extend with a separate
self-attentionmechanism for selecting themost reliable
keypoints for the registration of point-clouds;

2) the thorough analysis of different variants for the pro-
posed extension with self-attention module based on
the various backbones, module location in the pipeline,
and profiling with respect to robustness against noise
and runtime;

3) analysis and description of existing methods based on
both hand-crafted and deep-learning methods.

Furthermore, to demonstrate that our algorithm performs
well, we conducted several tests to evaluate its performance
especially for robustness against noise. The public dataset
used for testing was 3DMatch [33]. As a limitation of the
proposed method, we observed the lack of outlier rejection
ability which is the inherited characteristic from the base [16].
Nevertheless, according to our investigation, our method
achieves results comparable to the state-of-the-art in terms of
Feature Matching Recall (FMR) which is close to 98% with
faster runtimes at the same time.

II. RELATED WORK
A. CLASSICAL METHODS
First, we briefly describe the hand-crafted keypoint feature-
based methods for point-cloud registration. The early
point-cloud local descriptors used hand-made features to

describe local geometry. For a better understanding of these
methods, we present them briefly.

1) USING SPIN IMAGES FOR EFFICIENT OBJECT
RECOGNITION IN CLUTTERED 3D SCENES [7]
Andrew E. Johnson first proposed the spin image as a surface
representation approach in [34], and it is used for surface
matching and object detection in 3D images. In an object-
oriented coordinate system rather than a viewer-oriented one,
spin images encode the global attributes of any surface. Spin
images: a representation for 3D surface matching (SPIN) [34]
takes advantage of a projection of adjacent points on the
tangential plane. The Spin Image descriptor is then calculated
by adding the points in the support area to each bin of the 2D
array, as shown in Figure 2a.

2) UNIQUE SIGNATURES OF HISTOGRAMS FOR SURFACE
AND TEXTURE DESCRIPTION (SHOT) [10]
The surface normal histograms at distinct spatial regions are
encoded by the descriptor. To begin with, a local reference
frame (LRF) is built for the keypoint and its nearby points
in the support area are aligned with it. As illustrated in
Figure 2b, the support zone is then separated into various
volumes along the radial, azimuth, and elevation axes. A local
histogram is constructed for each volume by collecting point
counts in bins based on the angles between the normals at
nearby points inside the volume and the normal at the key-
point. Finally, by concatenating all of the local histograms,
the SHOT [10] descriptor is created.

3) UNIQUE SHAPE CONTEXT FOR 3D DATA DESCRIPTION
(USC) [8]
This method is a 3DSC [35] enhancement that eliminates the
need to compute multiple descriptors at a single keypoint. For
each keypoint, first, an LRF is created. The local surface is
then aligned with the LRF to guarantee rigid transformation
invariance. The keypoint’s support area is then separated into
numerous bins, as illustrated in Figure 2c. Finally, a USC [8]
descriptor is constructed by adding the total number of points
for each bin.

4) FAST POINT FEATURE HISTOGRAM (FPFH) [9]
As illustrated in Figure 2d, the first step is to construct a
Simplified Point Feature Histogram (SPFH) for each point
by computing the associations between the point and its
neighbors. FPFH is calculated as the weighted sum of the

FIGURE 2. Geometric feature-based methods [36].
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SPFH of the feature point and the SPFH of the points in the
support area.

B. LEARNING-BASED METHODS
The introduction of deep learning approaches in image pro-
cessing has also greatly benefited this field. The learned
3D feature descriptors have recently taken over and now
outperform the hand-crafted alternatives. Gojcic et al. [37]
developed an end-to-end framework for multiview point
cloud registration by directly learning to register every view
of a scene in a uniform manner across all views. Teaser [38]
resolves the rotating sub-problem via graded non-convexity.
This technique makes effective use of Douglas-Rachford
Splitting to confirm global optimality. The considerable com-
putational cost in SDP relaxation is resolved by this tech-
nique. Using a set of criteria, Serafin and Grisetti [39]
improved the convergence of the minimization function by
pruning problematic correspondences using normal and tan-
gent information, while also generating an extended evalua-
tion of each point correspondence.

Many new methods have also been introduced as this
area has become very challenging. In the following, we ana-
lyze the newest and most effective methods for point-cloud
registration.

1) LEARNING COMPACT GEOMETRIC FEATURES [40]
A description has been established that can be applied
immediately to a set of unordered points. This design has
the advantage that no surface parameterization, volumet-
ric representation, or additional depth image synthesis is
required. This feature facilitates nearest-neighbor searches in
Euclidean space, allowing densemappings between point sets
in near-linear time. Finally, this design relies on multilayer
perceptrons (MLPs) to extract manually created features and
transfer them to a compact feature space.

2) LEARNING THE MATCHING OF LOCAL 3D GEOMETRY IN
RANGE SCANS [33]
is built on a fully convolutional siamese network architecture
that learns rotation invariant 3D local feature descriptors. The
3DMatch extracts a feature for each interest point in a 3D
point-cloud to integrate the local structure near the interest
point. The 3D point-cloud must be converted into 3D volu-
metric data in 3DMatch [33], and the local representation is
extracted by feeding the 3D volumetric data into the neural
network.

3) GLOBAL CONTEXT AWARE LOCAL FEATURES FOR
ROBUST 3D POINT MATCHING [17] AND UNSUPERVISED
LEARNING OF ROTATION-INVARIANT 3D LOCAL
DESCRIPTORS [41]
PPFNet [17] uses the PointNet [42] architecture to learn
3D patch descriptors by combining the characteristics of
the pair of points. PPFNet, on the other hand, is not truly
rotation-invariant. To solve this problem, PPF-FoldNet [41]
uses mainly point pair features (PPF) as input, which is
inherently rotation invariant, and integrates a FoldingNet [43]

architecture to enable unsupervised training of rotation invari-
ant descriptors.

4) FULLY CONVOLUTIONAL GEOMETRIC FEATURES
(FCGF) [24]
This approach, as the name suggests, is full convolution.
FCGF [24] generates high-resolution features rapidly and
does not require low-level preprocessing or 3D patching as
input. To expand the receptive field and extract geometric
information, a fully convolutional 3D network with metric
learning is used. It recovers the transformation using robust
pose estimators after extracting correspondences between
two point-clouds.

5) D3Feat: JOINT LEARNING OF DENSE DETECTION AND
DESCRIPTION OF 3D LOCAL FEATURES [16]
The D3Feat [16] design is mainly based on the KPConv [44]
architecture, with the extraction of features from a
point-cloud taking over. D3Feat introduced a keypoint selec-
tion method that overcomes intrinsic density changes of 3D
point clouds, as well as a self-supervised detector loss driven
by on-the-fly feature matching findings during training. The
incorporation of a descriptor with a salient point detector is
D3Feat’s contribution to this fully convolutional design.

6) DeepVCP: AN END-TO-END DEEP NEURAL NETWORK
FOR 3D POINT CLOUD REGISTRATION [45]
Extracts local features using PointNet++ [46], then filters
them using a weighted layer that maintains just the most
relevant ones. The characteristics descriptors are computed
using a miniPointNet structure and then passed into a corre-
sponding point generation layer, which creates the relevant
key points in the target point cloud. In order to regress the
final result of the transformation, two loss functions are cou-
pled, hoping to encode both the local similarities and global
geometric limitations.

C. ATTENTION BASED METHODS
1) NEIGHBORHOOD-AWARE GEOMETRIC ENCODING
NETWORK FOR POINT-CLOUD REGISTRATION [11]
To encode the information of the point-clouds, NgeNet [11]
uses siamese shared layers with a new geometric-encoding
interaction module applied to the superpoints, as well as
multi-scale parallel decoding layers to extract multi-level
point-wise characteristics for each point-cloud. On indistin-
guishable surfaces, a learning-free consistency voting system
is designed to choose the feature with the appropriate neigh-
borhood for each point and eliminate erroneous features.

2) CoFiNet: RELIABLE COARSE-TO-FINE
CORRESPONDENCES FOR ROBUST POINT-CLOUD
REGISTRATION [13]
CoFiNet primarily uses a KPConv-based [44] encoder-
decoder architecture. For context aggregation, the authors
incorporated two attention-based networks into this design.
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In the first phase, the dense points are down-sampled to
evenly distributed nodes, and the features are enhanced
before being utilized to generate the similarity matrix.
The confidence matrix is then used to offer coarse node
correspondences.

3) GEOMETRIC TRANSFORMER FOR FAST AND ROBUST
POINT-CLOUD REGISTRATION [14]
Learns features at several resolution levels by down-
sampling the input point-clouds. Using the Geometric
Transformer, which iteratively encodes intra-point-cloud
geometric structures and inter-point-cloud geometric con-
sistency, the architecture recovers high-quality superpoint
correspondences between the source and target point-cloud.
Finally, a local-to-global registration approach is used to
compute the transformation among the point-cloud.

4) PREDATOR: REGISTRATION OF 3D POINT-CLOUDS WITH
LOW OVERLAP [15]
The network is built using the KPConv [44] architecture
and can be split into three main steps. In the first step, the
two input point-clouds are converted into smaller sets of
super points and encoded with the associated latent features
with common weights. Then, using an overlapping attention
module to extract co-contextual information. In the last phase,
the network anticipates dense overlap scores and indicates the
confidence of degree whether the points are in the overlap
regions.

III. PRELIMINARIES
A. PROBLEM STATEMENT
Given the point-cloud source S =

{
si ∈ R3

}
i=1,2,··· ,Y and

the point-cloud target T =
{
tj ∈ R3

}
j=1,2,··· ,Z , where Y and

Z are the cardinality in the point-cloud source and target.
The main idea of point-cloud registration is to find a rigid
transformation T ∈ SE(3) that best aligns the source and
target point-cloud. The transformation can be recovered by
solving:

argmin
T

1
|κ|

∑
(i,j)∈κ

∥∥T (si) − tj
∥∥
2 (1)

where κ is the set of correspondences and | · | denotes the
cardinality of the set.

B. SELF-ATTENTION MECHANISM
Attention was first presented as an extension of recurrent neu-
ral networks (RNNs) [47]. The transformer mechanism intro-
duced in [32] is a significant advance in attention research,
as it reveals that the attention mechanism can obtain state-of-
the-art results. The self-attention mechanism was originally
developed for natural language processing but was immedi-
ately adopted for other tasks, such as processing images [48]
and videos [49].

Given 3 matrices Q (queries), K (keys) and V (values),
which are projections of the input of the layer, the output of

the attention mechanism is the weighted sum of the values
multiplied by the compatibility score between queries and
keys. Scores indicate how much attention should be paid
to other locations or words in the input sequence. Once we
determined our keys (K ), queries (Q), and values (V ), we can
compute attention as follows:

Attention(Q,K ,V ) = Softmax
(
Q · KT
√
dk

)
V (2)

First, the dot product of the query and the key are computed.
If we execute this on a large number of queries and keys at
the same time, we can express the dot products as matrix
multiplication, Q · KT , where Q is a vector of queries, and
K is a vector of keys. Then it is divided by the square root
of the dimensions of the key vector

√
dk , to prevent the dot

products from being too large as the vector length grows. The
softmax function rescales the values between 0 and 1 and
regularizes them. Finally, the result (weights) is multiplied
by the value (all words) to lower the relevance of irrelevant
terms and focus only on the most significant ones.

IV. PROPOSED METHOD
A. NETWORK ARCHITECTURE
Figure 3 depicts the architecture of our method. The segmen-
tation part of KPConv [44] has been adapted. The network
consists of 5 convolutional layers. Two convolutional blocks
make up each layer, with the exception of the first layer’s
first block being strung together. Our convolutional blocks are
constructed similarly to bottleneck ResNet blocks [50] with
batch normalization and leaky ReLu activation. The layers
of the encoding and decoding parts are connected by skip
connections. Extracting the most accurate and powerful fea-
tures is done using the suggested self-attention module. In the
sections below, we present our architecture and the proposed
self-attention module. To better understand our approach,
we start with a diagram, which describes the architecture
of the proposed self-attention-based model and can be seen
in Figure 4.

FIGURE 3. D3GAtten’s network architecture. Each block is a ResNet [50]
block that uses KPConv to replace image convolution. Except for the last
layer, all layers are followed by batch normalization and ReLU.

B. KEYPOINT DETECTION PIPELINE
Inspired by D2-Net, a recent technique for 2D image match-
ing [51], we develop a single neural network that serves two
functions: a dense feature descriptor and a feature detector.
However, because of the inconsistent structure and variable
sparsity of point clouds, applying the D2-Net concept to the
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3D world is not straightforward. Following that, we outline
the basic procedures for performing feature description and
detection on 3D point clouds with irregular shapes before
outlining how the sparsity variation in the 3D domain is
handled.

1) DENSE FEATURE EXTRACTION
To perform dense feature extraction, we use KPConv [44]
as our backbone network. We will first go over the KPConv
formulas briefly.

Given a set of points P ∈ RN×3 and a set of features
F ∈ RN×D, let xi and fi denote the i-th point in P and
its corresponding feature in F . The definition of the generic
convolution by kernel g at point x is as follows:

(F ∗ g) =

∑
xi∈Nx

g (xi − x) fi, (3)

where Nx denotes the radius neighborhood of point x and
xi denotes a supporting point inside this radius neighborhood.
The kernel function is defined as follows:

g (xi − x) =

K∑
k=1

h
(
xi − x, x̂k

)
Wk , (4)

where h represents the correlation function between the ker-
nel point xk and the supporting point xi, K is the number
of kernel points, and Wk is the weight matrix of the kernel
point x̂k . To guarantee that convolution is sparsity invariant,
a density normalization factor is added to Eq. 3 that adds up
the number of supporting points close to x:

(F ∗ g) =
1

|Nx |

∑
xi∈Nx

g (xi − x) fi (5)

Our network produces a dense feature map as a
two-dimensional matrix F as its output.

2) DENSE KEYPOINT DETECTION
In D2-Net [51] the local maximums within and across the
deep feature maps channels are defined as keypoints, using
the same maps that were used for descriptors. To address
the non-uniform sample setup of point clouds, this procedure
might be replaced with a radius neighborhood to expand their
approach to 3D. Local regions with few points (for example,
regions near to the limits of interior scenes or far from the
Lidar center of outdoor scenes) would have higher scores if
we used a softmax function to estimate the local maximum
in the spatial dimension. To address this issue, a density-
invariant saliency score to assess a point’s saliency in relation
to its local neighbourhood is provided.

Using the dense feature map F ∈ RN×c as input, the
following 3D responses are possible Dk (k = 1, . . . , c):

Dk = F:k , Dk ∈ RN (6)

where F:k is used to indicate the k-th column of
the two-dimensional matrix F . Therefore, to discover a

keypoint xi, we need:

xi ⇐⇒ k = argmax
t
Dti with i = argmax

j∈Nxi
Dkj (7)

where Nxi is the radius neighborhood of xi.
The local-max score in D2-Net [51] is defined as:

αki =
exp

(
Dki
)

∑
xj∈Nxi

exp
(
Dkj
) (8)

This formulation is not sparsity-invariant. Because the rat-
ings are adjusted by sum, sparse locations naturally receive
higher scores than dense ones. As a result, the following
density-invariant saliency score is created:

αki = ln

1 + exp

Dki −
1∣∣Nxi ∣∣

∑
xj∈Nxi

Dkj

 (9)

According to this method, a point’s saliency score is deter-
mined by subtracting its characteristic from the mean charac-
teristic of its local neighborhood.

To pick up the most preeminent channel for each point,
a channel max score formula was designed:

βki =
Dki

maxt
(
Dti
) (10)

The final keypoint detection score is calculated by combining
the two scores:

si = max
k

(
αki β

k
i

)
(11)

We choose the points with the highest scores as keypoints
after obtaining the keypoint scoremap of an input point cloud.

C. PROPOSED SELF-ATTENTION
The fastai implementation of the self-attention layer
described in the SAGAN [52] paper is modified and sim-
plified in our approach. We first briefly outline the current
approach and then describe our method.

According to the SAGAN [52] paper, to calculate attention,
the image features of the previously hidden layer F ∈ RC×N

are first translated into two feature spaces, f and g, where
f (F) = Wf F and g(F) = WgF with C being the number of
channels, and N denotes the number of feature locations of
features from the previously hidden layer. For self-attention,
βj,i is computed as:

βj,i =
exp

(
sij
)∑N

i=1 exp
(
sij
) (12)

where: sij = f (Fi)T g
(
Fj
)
and βj,i specifies how much

attention the model pays to the ith location while synthesizing
the jth region.
The attention layer’s output is:

O = (O1,O2, . . . ,Oj, . . . ,ON ) ∈ RC×N (13)
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where:

Oj = v

(
N∑
i=1

βj,ih (Fi)

)
, h (Fi) = WhFi, v (Fi) = WvFi

(14)

In the preceding formulation Wf ,Wg,Wh and Wv are the
learned weight matrices, which are realized by 1 ∗ 1 con-
volutions. In addition, the output of the attention layer is
multiplied by a scale parameter and added back to the input
feature map.

As a result, the final output is provided by: yi = γOi + Fi,
where γ is a learnable scalar that is initially set to 0.

FIGURE 4. Our self-attention module from Figure 3. Matrix multiplication
is denoted by the symbol ⊗.

1) OUR SUGGESTED SELF-ATTENTION MODULE
The original layer takes the image features x of shape (C , N )
where, N = H · W , and transforms them into f (x) = Wf · x
and g(x) = Wg · x where, Wf and Wg have shape (C,C ′),
and C ′ is chosen to be C/8. These matrix multiplications can
be expressed as 1 × 1 convolution layers. Then, we compute
S = f (x)T · g(x). Therefore, S = (Wf · x)T · Wg · x =

xT ∗ W T
f · Wg · x. Our first proposed simplification is to

combineW T
f ·Wg into a single (C×C) matrixW . Therefore,

S = xT · W · x = S(x, x) (bilinear form) is of shape
(N × N ) and will represent the influence of each pixel on
the other pixels. As a result, instead of learning weights Wf
and Wg for two convolution layers, we just learn weights W
for one convolution layer. Advantages are simplicity, removal
of one design choice C ′

= C/8, and a matrix W that offers
more possibilities than W T

f · Wg. Computing the softmax
of the matrix S is the following step in the original layer
design. We decided to skip this step entirely and operate
with unrestrictedweights rather than adjusted probability-like
weights. The final step in the original version is to calculate
h(x) = Wh · x where Wh is of shape C × C , which is also
implemented as a convolution layer 1 × 1. We propose to
remove this final convolution layer and have the output be
yi = γ · x · S + x. If desired, this last convolution can be
re-added as a separate layer, implying a new position for the
skip connection.

2) SUGGESTED SELF-ATTENTION MODULE EXPERIMENTS
Comparing the enhanced Self-Attention layer to the original
self-attention layer, it appears to offer a significant improve-
ment in terms of complexity. The original self-attention layer

used softmax on a matrix N × N , which is O(N 2), because
softmax is performed N times and softmax is O(N ) accord-
ing to [53]. In terms of a runtime comparison, we put our
self-attention model up against ResNet, VGG and AlexNet
models. To make an accurate comparison, we evaluated all
models with the same configuration(nr. of epochs = 50,
dataset=Imagewoof, image size = 128 and nr. of runs = 20).
In the last column of Table 1 we reported the wall clock time.
As shown in Table 1, our suggested self-attention module

reduces runtime while producing results that are similar to
those of the original self-attention.

TABLE 1. Comparison of the original and our self-attention modules.
We can see the result of the original architecture on the first line, the
original self-attention module on the second line, and the modified
self-attention layer on the last line.

D. IMPLEMENTATION DETAILS
In terms of architectural implementation, our network is built
in PyTorch [54]. D3Feat [16] served as a starting point for
our implementation. We train with momentum SGD, with
a fixed learning rate of 0.01, a momentum of 0.98, and a
weight decay of 1e − 6. For each point-cloud fragment,
we enhance the data by addingGaussian noise with a standard
deviation of 0.015. Except for the last layer, all layers are fol-
lowed by batch normalization andReLU. The encoder section
has a fixed number of channels (64, 128, 256, 512, 1024).
Between the corresponding layers of the encoder and decoder
parts, residual connections are used. To obtain the final
32-dimensional features, the output features are computed
using a convolution 1 × 1.

V. EXPERIMENTAL VALIDATION
A. PAIRWISE REGISTRATION EVALUATION
To validate our proposed method, we used the 3DMatch [33]
indoor benchmark to test our model for registration and TUM
RGB-D benchmark [55] for pose estimation. Additionally,
we compared our method to the most recent point-cloud reg-
istration methods. We utilize the same approaches to prepare
the training and testing data as in the 3DMatch dataset [21].
There are 62 scenarios, 46 of which are used for training, 8 for
validation, and 8 for testing. In 3DMatch, point-cloud pairs
have in average 30% overlap.

1) EVALUATION METRICS
We employ three metrics to evaluate the performance
under registration for the 3DMatch benchmark: registration
recall (RR), feature match recall (FMR), and inlier ratio (IR).
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Registration Recall (RR). The proportion of scan pairings
for which the appropriate transformation parameters are iden-
tified with RANSAC [26]. It computes the root mean square
error among �∗ under the predicted transformation T̂:

RMSE =

√√√√ 1
�∗

∑
(x∗,y∗)∈�∗

∥∥∥T̂i,jx∗ − y∗

∥∥∥2 (15)

and calculates the fraction of alignments withRMSE < 0.2m.
Where: �∗ is a collection of ground truth pairings in frag-
ments {i, j} and x∗ and y∗ are the 3D coordinates of the
ground truth pair.
Feature Match Recall (FMR): Defined as the fraction of

pairs with τ2 = 5% ‘‘inlier’’ matches with a τ1 = 10 cm
residual under the ground truth transformation 1 as follows:

1
M

M∑
s=1

1

 1
|�s|

∑
(i,j)∈�s

1
(∥∥T∗xi − yj

∥∥ < τ1
) > τ2


(16)

where: M is the total pair of point-clouds, �s is the corre-
spondence between a pair of point-clouds (source and target),
xi and yi are the 3D coordinates from the point-cloud source
and target, T ∗ is the estimation of the ground truth.
Inlier Ratio (IR). The proportion of accurate correspon-

dences among the putative matches, in addition to the previ-
ous metrics (1) and (2). To estimate the transformation matrix
for the metric (2), we use a RANSAC with 50,000 maximum
iterations, as described in [21].

2) COMPARISONS WITH THE STATE OF THE ARTS
In Table 2 we compare our method’s Feature Match-
ing Recall (FMR) to the state of the art: SPIN [34],
SHOT [8], FPFH [9], USC [8], CGF [40], 3DMatch [33],
PPFNet [17], PPF-FoldNet [41], DirectReg [56], Capsu-
leNet [57], FCGF [24], D3Feat [16], PREDATOR [15],
GeoTransformer [14], CoFiNet [13] and NgeNet [11]. The
authors’ existing codes were used to obtain the results of the
other methods rather than re-implementing them. FMR is pre-
sented for two types of data: original point-cloud fragments
(left columns) and randomly rotated (0−2π ) fragments (right
columns). The results suggest that our method outperforms
most other methods on this dataset, with a top performance
of 98.3 percent. Furthermore, we demonstrate the resilience
of our method in FMR by adjusting the error threshold
(τ1 = 10cm and τ2 = 5%, the dashed line in Figure 5).
We recommend using these values between (τ1 = 7, 5 −

12, 5cm and τ2 = 2, 5−7, 5%)Under a stricter inlier ratio cri-
teria, such as τ2 = 20%, D3GAtten significantly outperforms
other approaches. In terms of inlier distance error D3GAtten
performs slightly worse than CoFiNet [13], this is most likely
because to the lower voxel size (2.5cm) utilized in CoFiNet,
whereas D3GAtten uses 3cm voxel downsampling.

The sensitivity of the characteristic to the inlier distance
threshold τ1 and the inlier ratio threshold τ2 is demonstrated

TABLE 2. Feature-matching recall and its standard deviation for the
original and rotated data.

FIGURE 5. Feature matching recall in relation to inlier ratio threshold τ2
and inlier distance threshold τ1.

in Figure 5. Overall, our techniques outperform other meth-
ods in terms of Feature Match Recall across diverse scenes,
as well as a wide variety of distance and inlier recall thresh-
olds. For run-time, our method is in the same range as the
competitors.

3) EVALUATION UNDER DIFFERENT NUMBERS OF
KEYPOINTS
We also provide the results when lowering the sampled point
number from 5000 to 2500, 1000, 500, or even 250 to fur-
ther highlight the advantages of using a self-attention mod-
ule when the keypoints are selected. As shown in Table 3,
our strategy is one of the most effective when employing
5000 points for Feature Matching Recall. When keypoints
were lowered, our method produced results that were com-
parable to those achieved by other methods, but not the best.
Because our keypoint selection is based on a self-attention
module, this was to be expected. Self-attention modules
require an even number of points as input to provide effective
results. Outliers from a coarse scale are not explicitly rejected
by design. False coarse correspondences can be developed
into false point correspondences, which may lead to a lower
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inlier ratio on a finer scale. Despite these flaws, our module
has been able to produce competitive results in terms of the
inlier ratio.

4) ROTATION AND TRANSLATION INVARIANCE
Rotation and translation invariance is one of the most sig-
nificant aspects of excellent geometric features. Experiments
show that via low-cost data augmentation, a fully convo-
lutional network can empirically obtain significant rotation
invariance. We train the model without rotation augmentation
and evaluate it on the 3DMatch dataset to show the impact of
basic data augmentation on rotation robustness.

TABLE 3. Evaluation table with different numbers of keypoints for FMR,
RR and IR.

TABLE 4. Recall of feature matches in 3DMatch rotated with and without
rotation augmentation for D3GATTEN.

To test the rotation invariance of our algorithm, we rotate
all fragments of the 3DMatch dataset in the same way as [41].
All of the fragments in the 3DMatch test set are rotated along
all three axes with a random angle taken from a uniform
distribution across [0 - 2π ]. The results are shown in Table 4.
We evaluated the model at several keypoints; our model

without rotation augmentation is unable to learn rotations
from the data, which is why we get such bad results. The last
column represents the result obtained after applying the trans-
formation. As one can see, our algorithm registered the two
point-clouds without difficulties, being in the top 5 methods
with the best FMR for a large number of keypoints.

5) REGISTRATION RESULTS
In order to demonstrate the results obtained in Table 2, we cre-
ated a visualization to see how our algorithm behaves. As can
be seen in Figure 6, on the first two columns we have the
point-clouds as input (source and target) on the 3rd column,
we have the two inputs superimposed without applying the
transformation calculated with our method, and on the last
column, we can see the registration results.

FIGURE 6. Example results on 3DMatch dataset. The point-clouds that
will be registered are represented by the first two columns (a) and (b).
The standard deviation of the two point-clouds is represented in the third
column (c), and the result produced after the transformation is
represented in the last column (d).

6) VOTE-RELATED INFLUENCE
A sample of how consistent voting works is shown
in Figure 7. Consistent voting gives each point the most dis-
criminative characteristic possibility, which causes massively
mismatched relationships to be pruned and the proper ones to
be reserved.

FIGURE 7. Correspondences built using feature matching and reliable
voting. 150 correspondences are chosen at random for ease of display.
The obtained proper correspondences are highlighted in green here. The
erroneous correspondences are shown with red.

7) EXPERIMENTS WITH NOISY DATASET
This section focuses on noise robustness testing methodolo-
gies. We compared our technique with the most competitive
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current methods, including NgeNet [11], CoFiNet [13], and
PREDATOR [15]. Often, images obtained from the camera
are corrupted by noise. Taking into account this fact, we set
out to simulate the real-world environment, so we introduced
two types of noise: occlusion noise and Gaussian noise.
We also addressed the problemwhere training is done on data
without noise and evaluated on data with noise, respectively,
trained on data with noise and evaluated on data with noise.

a: TRAINING FOR THE NOISY DATASET
The following situations were considered: 1) we trained the
model on noiseless training data and tested it on noisy data.
The goal of this test is to see how a pre-trained model per-
forms on a real dataset that is corrupted by noise (sim2real).
2) We trained the model using noise-corrupted training data
and evaluated it using the identical data set as in the first
scenario. This would be equivalent to (real2real) approach.
For each type of noise used, two types of testing were carried
out. The settings that specify the radius of the circle for
occlusion noise were 30cm and 50cm. For Gaussian noise,
the standard deviation parameter was set at 0.5 in the initial
phase and then increased to 0.8. The findings are provided in
the following subsections.

b: OCCLUSION NOISE
The occlusion test addresses one of the most common prob-
lems in the object identification process, the object occlusion
problem. This effectively indicates that the template is only
partially visible, i.e. an obscured observation is accessible for
recognition. In our experimental setting, we tried changing
the occlusion by eliminating a radial zone of an item in a
random place. The number of points deleted is expressed as
a tuning parameter as a percentage of the template’s point-
cloud size. The results obtained after applying the algorithm
are visible in Figure 8a and Figure 8b.

FIGURE 8. Occlusion noise results with own method. For these
experiments, we adjusted the occlusion radius level to 50cm. The
point-clouds that will be registered are represented by the first two
images (a) and (b). The result produced after the transformation is
represented in the last image (c).

c: GAUSSIAN NOISE
The most typical issue with real-time data is sensor noise,
which refers to measurement errors caused by physical sen-
sor limits. The non-systematic element of the noise is often
modelled using a Gaussian probability distribution. This
assumption was likewise applied in our situation, and we

evaluated a system with variable additional Gaussian noise
covariance along the XYZ coordinates added separately. The
results obtained after applying Gaussian noise, can be seen
in Figure 9a and Figure 9b.

FIGURE 9. Gaussian noise computed the data with its own method. For
these experiments, we adjusted the standard deviation to 0.08. The
point-clouds that will be registered are represented by the first two
images (a) and (b). The result produced after the transformation is
represented in the last image (c).

d: OVERALL RESULTS ON NOISY DATASET
Table 5 illustrates the outcomes after training on noise-free
data and evaluating on noisy data, whereas Table 6 shows the
results after trainingwith noisy data. Figure 10 and 11 provide
a graphic illustration of the results.

TABLE 5. Results of noiseless training and noisy evaluation. Notation
‘‘Ours w\o. sa’’ means ‘‘our algorithm without self-attention module’’
and ‘‘Ours w. sa’’ means ‘‘our algorithm with self-attention module’’.

After analyzing the results, we can conclude that our algo-
rithm is robust to noise and outperforms the other approaches
in both situations. To demonstrate that adding the attention
module improves performance, we tested our algorithm both
with and without the newly developed self-attention module.
The results show that the developed self-attention module
improves performance significantly. Followed by us, is the
NgeNet [11] algorithm, which performs well in both sce-
narios. Additionally, we can say that the ‘sim2real’ data
processing approach works, but ‘real2real’ method is more
relevant in the real life scenarios.

B. POSE ESTIMATION EVALUATION
We utilize the TUM RGB-D [55] benchmark dataset to
test the expanded system using our suggested technique.
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TABLE 6. Results of noisy training and noisy evaluation.

FIGURE 10. Feature matching recall in relation to inlier ratio threshold τ2
and inlier distance threshold - occlusion noise radius = 0.5(m). Results of
noiseless training and noisy evaluation.

FIGURE 11. Feature matching recall in relation to inlier ratio
threshold τ2 and inlier distance threshold - Gaussian noise = 0.8. Results
of noiseless training and noisy evaluation.

The data set contains a number of sequences that include
RGB and depth frames captured by an RGB-D sensor, as well
as the ground-truth sensor trajectory. We employ fr1 data
sequences recorded in a typical desk in an office environment.
The sequences include challenges such as lighting changes,
repeated structures, and translational motions along the pri-
mary axes.

1) EVALUATION METRICS
To evaluate performance, we use the benchmark’s abso-
lute trajectory error (ATE) and relative probability error
(RPE) metrics. The ATE is a global consistency metric that

calculates the absolute distances between the related poses of
the trajectories to calculate the translational drift between the
predicted trajectory and the ground truth. The RPE estimates
the trajectory’s local accuracy over a certain time interval.

2) EVALUATION FOR TUM RGB-D BENCHMARK
We performed two types of tests. In the first, we used the
TUM RGB-D dataset without any noise addition, and in the
second, we added Gaussian noise with a standard deviation
of 0.05. Table 8 shows the results of the test from the per-
spective of RPE and ATE for noiseless data, while Table 9
shows the results for noisy data generated in a similar way
as for previous noise test cases. Figures 12 provide a visual
representation of the acquired results for our method.

3) RESULTS
In terms of results analysis, the first test scenario used noise-
less data. In this case, NgeNet [11] outperforms other meth-
ods followed by PREDATOR [15]. Our method is ranked
third, while the CofiNet [13] algorithm is ranked last. The
situation is slightly different when Gaussian noise is added
to the TUM RBG-D dataset. With this scenario, we want to
simulate a’sim2real’ environment. In this case, our method
outperforms the other existing algorithms and shows that
D3GATTEN is a robust method against noise for pose esti-
mation. We achieved the best results in the translation error
estimation, while for the rotation error our method proved to
provide the best mean estimation.

FIGURE 12. Relative pose error for D3GATTEN.

C. RUNTIME
In Table 7, we compare the runtime of our method on
3DMatch dataset with PREDATOR [15], CoFiNet [13],
NgeNet [11], and D3Feat [16] to demonstrate its efficiency.
Voxel size 2.5 cm and batch size 1 were set for each
of the three approaches. The test run is on 4 x Nvidia
A100 with Intel(R) Xeon(R) Gold 6226R @ 2.90GHZ x 16,
750GB RAM. The data load time was also taken into account

7956 VOLUME 11, 2023



B. Kelenyi, L. Tamas: D3GATTEN: Dense 3D Geometric Features Extraction and Pose Estimation Using Self-Attention

TABLE 7. Average run-time (ms) and VRAM (Kb) and per fragment pair in
the 1623 number of 3DMatch test pairings.

TABLE 8. Results for the TUM RGB-D benchmark in terms of RPE and ATE
for noiseless data. Notation: TE (translation error) and RE (rotation error).

TABLE 9. Results for the TUM RGB-D benchmark in terms of RPE and ATE
for noisy data. Notation: TE (translation error) and RE (rotation error).

while calculating the run-time. The best runtime is provided
by PREDATOR, according to our analysis. With the help
of this table, we want to show that the addition of the
self-attention module did not result in a significantly longer
runtime.

VI. CONCLUSION
In this work, we propose a novel self-attention-based key-
point feature extraction method for point clouds. With the
adaptation of an efficient self-attention module to the D3Feat
methods, we achieved a run-time-efficient and keypoint fea-
ture extraction method. The performance of the proposed
method was tested on public datasets both for registration
and pose estimation tasks. For the registration, the best per-
formances were measured against the existing methods on
a larger number of keypoints using FMR metrics and sets a

new state of the art for the 3DMatch benchmark with 98.3%
feature matching recall. For the pose estimation, the method
obtained the best result in terms of translation errors.

With a run-time close to the best from the state-of-the-art,
we aim in the future to validate the method in the SLAM
context on embedded devices.
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