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ABSTRACT With depth cameras and LiDAR improving and generating more data, their applications in
3D point clouds are growing rapidly. However, the vast amount of generated data increases the computational
load and results in a shortage of storage space. Therefore, a preprocessing step to reduce the number of points
is required before using the 3D point cloud. This study proposes region of interest (ROI) determination
methods that sequentially construct circular and rectangular ROIs along the target trajectory of the robot to
extract only crucial data for the target task. These two ROI determination methods have two benefits. First,
they maintain the resolution of the raw data; second, they create two ROIs that match perfectly regardless of
the complexity of the trajectory. To verify the high performance of these two ROI determination methods,
we conducted simulations and experiments using various data; artificial frames, keyframes, and sequential
frames. As a result, when the distance between the center points was small, 25% of the diameter or height
of the circular and rectangular ROIs, the classification evaluation results were closer to 1 and the processing
speed was faster than the raw data acquisition rate. However, we confirm that there is a trade-off relationship
between the classification results and the processing time according to the distance parameter. In addition,
through the qualitative comparison with the previous study, the long cuboid ROI determination method,
we identified the limitations of the previous study and the advantages of the two proposed ROI determination
methods.

INDEX TERMS 3D point cloud, preprocessing for data reduction, circular and rectangular ROIs, trajectory.

I. INTRODUCTION
A point cloud comprises a set of points based on a spe-
cific coordinate system. In the three-dimensional (3D) point
cloud [1], each point has Euclidean coordinates for the three
axes X, Y, and Z. Therefore, it is possible to represent the
surfaces of various objects in 3D space.

3D point cloud data can be generated using various sensors.
First, they can be acquired through LiDAR (Light Detection
And Ranging), which measures the distance to surrounding
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objects based on the time reflected by a light source. One
study [2] obtained omnidirectional 3D point cloud data in
an intersection environment, and another study [3] obtained
data corresponding to 90◦ forward in a virtual environment.
In addition, 3D point cloud data can be acquired simultane-
ously with RGB images using depth cameras. Depth cameras
are largely divided into three types based on the method of
measuring depth information: the stereotype estimates the
depth by forming a parallax with two images; the time-of-
flight (ToF) type measures the depth through transmission
and reception of optical signals, and the structural light type
calculates the depth by projecting structural light. Existing
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studies have acquired 3D point cloud data using stereo [4],
ToF [5], and structural-light-type [6] depth cameras. Further-
more, more sophisticated 3D point cloud data can be obtained
by fusing heterogeneous sensors. A previous study used fused
data from a 2D LiDAR and a depth camera [7].

The use of 3D point clouds has grown recently, as sen-
sor accuracy and resolution have increased and their costs
have decreased. Many studies in robotics and autonomous
driving are using them for various tasks. Some studies use
only 3D point cloud data for object detection in indoor [8]
and road environments [9], [10]. There are some studies
that use data from LiDAR and image information to effec-
tively sample road environments [11] and detect objects in
autonomous driving conditions [12]. In another study, drones
utilized point cloud data from their surroundings to gen-
erate obstacle avoidance paths for autonomous flight [13].
Study [14] implemented simultaneous localization and map-
ping (SLAM) technology using global point cloud maps in
dynamic environments.

However, the vast amount of data increases computational
load and causes storage issues when using 3D point clouds in
various applications. Since thousands to tens of thousands of
points are measured per frame fromLiDAR or depth cameras,
real-time operations become difficult when all the measured
data are used on a large scale. Therefore, to efficiently utilize
the 3D point cloud without these issues, extracting only the
points required for the target task is necessary to reduce
the load. In most cases, preprocessing for data reduction is
essential before using a 3D point cloud.

There are two main methods to reduce 3D point cloud
data. The first method is down-sampling to reduce the overall
number of points by representing 3D points in the voxel
space at regular intervals [15]. The second method involves
determining a region of interest (ROI) within the 3D point
cloud space and extracting only the points within the ROI.
These two methods are being actively studied using various
methodologies, such as the method to determine the amount
of data to be extracted and the criteria to be used in determin-
ing the importance of the data.

Examining the previous studies on these methods, in the
case of the down-sampling method, there is a study [16]
that reduces the number of points and calculation cost by
performing down-sampling through voxels when recogniz-
ing people with various postures. In addition, a previous
study [17] modified this method to express and utilize 3D
point clouds in various ways based on voxels. However, if
the points are expressed in voxels, two problems arise. First,
the resolution of the resulting data is lower than that of the
original data, and the sophisticated features of the original
data are compromised [18]. Second, unimportant points out-
side the target trajectory remain because this method reduces
the overall number of points rather than extracting a portion
of the original data. In the ROI determination method, if the
3D point cloud is measured from several LiDAR mounted
on the vehicle to recognize the neighborhood of the moving
vehicle, the ROI is determined to 200 m from the center of

the sensors to extract only the points around the vehicle [19].
Similarly, in an autonomous driving study [20] using a 3D
point cloud, the number of points was reduced by determining
the long cuboid centered on the vehicle as the ROI. However,
determining only the area around the robot or vehicle as the
ROI can result in a loss of data around the target trajectory,
which can slow the response of the task. A complicated
curved trajectory can lead to issues involving data that are
unimportant to the target task.

This study proposes ROI determination methods for
3D point clouds to determine circular and rectangular ROIs
based on the target trajectory of a robot or vehicle. The meth-
ods used in this study set the center points of the ROIs along
the trajectory and extract the points within the total ROI by
sequentially determining circular and rectangular ROIs based
on the center points. There are two benefits of using these
methods. First, extracting only the important data near the tar-
get trajectory is possible while maintaining a high resolution
of the original data. Second, even if a robot or vehicle has a
complex trajectory, the ROI can be determined that precisely
matches that trajectory, which can quicken the target task’s
response.

The remainder of this paper is organized as follows. Chap-
ter 2 explains the method for transforming the 3D point
cloud into a global frame and reducing it by determining
the circular and rectangular ROIs. In Chapter 3, we generate
the artificial data and use it to identify the influence of the
distance parameter between the center points. Also, we build
the factory map and the simple trajectory in the Gazebo
simulator, and verify the classification evaluation results and
processing time of the proposed ROI determination methods
with the keyframes obtained using a mobile robot equipped
with LiDAR. In Chapter 4, we conduct the experiments by
generating the complex trajectory in a real-world environ-
ment and adding GPS and IMU to the existing robot. We first
validate the results on the keyframes, such as simulations, and
further analyze the processing time of the two ROIs using the
sequential frames. Finally, we confirm the advantages of the
proposed methods by performing a qualitative comparison
with the previous study, the long cuboid ROI determination
method.

II. METHODOLOGY
The method to transform the points into a global frame,
which is the reference coordinate system of the trajectory,
is discussed first. Next, the methods that determine two ROIs,
circular and rectangular, along the trajectory to reduce the
3D point cloud are explained.

A. TRANSFORMATION OF 3D POINT CLOUD
To determine whether the 3D points belong to the trajectory-
based ROI, it is necessary to match the reference frame of
the 3D point cloud to that of the waypoints in the trajectory.
However, points measured from sensors have coordinates
based on sensor frames, and waypoints typically have coordi-
nates based on global frames in the workspace. Therefore, the

VOLUME 11, 2023 8505



J. H. Park et al.: Trajectory-Based 3D Point Cloud ROI Determination Methods for Autonomous Mobile Robot

3D point cloudmust be represented on a global frame through
coordinate transformation.

FIGURE 1. Example of transforming 3D point cloud to the global frame.

Fig. 1 shows an example of a 3D point cloud coordinate
transformation, which consists of the global frame G, robot
frame R, sensor frame S, 3D point cloud based on the sensor
frame Sp = {

Spi|i = 1 to n}, and waypoints based on the
global frame Gw = {

Gwk |k = 1 to r}. To transform the
3D point cloud Sp into a global frame, the transformation
matrices G

RT and R
ST should be used. The R

ST matrix can
be obtained through the calibration between the robot and
the sensor, and the G

RT matrix can be obtained through the
localization of the robot. Thus, the 3D point cloud based on
global frame Gp can be derived from the products of the two
matrices.

Finally, the positional relation between the 3D point cloud
based on the global frame Gp and waypoints based on the
same frame Gwwas identified to extract only the points within
the circular and rectangular ROIs.

B. CIRCULAR ROI
The first ROI determination method proposed in this study
determines a series of circular ROIs. As shown in Fig. 2,
a circular ROI with a radius r is determined by selecting the
center points of the ROI c = {cj|j = 1 to m} amongwaypoints
Gw in the trajectory. Then, as shown in (1), we calculate the
distance dXGYG in the XGYG plane between the points based
on the global frame Gpi and the center point of the ROI cj,
and identify whether the point Gpi exists within the circular
ROI by comparing the distance dXGYG with the radius of the
ROI r . If necessary, constraints can be added to the ZG axis.

dXGYG =

∥∥∥Gpi − cj
∥∥∥
XGYG

Gpi =

{
in, dXGYG ≤ r
out, dXGYG > r

(1)

FIGURE 2. The circular ROI.

We performed the corresponding task sequentially for all
points and center points of the ROI using double loops,
as shown in Algorithm 1, and finally completed trajectory-
based 3D point cloud reduction for the entire circular ROI,
as shown in Fig. 3. If the point belongs to a specific cir-
cular ROI, the identification of the remaining circular ROI
is omitted through the break, and processing is performed
quickly. At this time, we can set the range of the circular
ROI by adjusting the radius r , and we can adjust the amount
of overlap of each circular ROI by adjusting the distance
between the center points of that ROI.

FIGURE 3. Example of the circular ROI based on the trajectory.

Algorithm 1 The Pseudo-Code for the Circular ROI
Input: 3D point cloud based on the sensor frame sp,

Homogeneous transformation matrices GRT and RST ,
Set of ROI center points c,
Radius of circular ROI r

Output: Set of the points within the ROI ROI
1: n = size of Sp
2: m = size of c
3: ROI = ∅

4: Gp =
G
RT

R
ST

Sp
5: for i → 1 to n do
6: for j → 1 to m do
7: dXGYG =

∥∥Gpi − cj
∥∥
XGYG

8: if dXGYG ≤ r then
9: ROI .push(Gpi)
10: break
11: end if
12: end for
13: end for
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C. RECTANGULAR ROI
The second ROI determination method proposed in this study
determines a series of rectangular ROIs. As shown on the
left side of Fig. 4, a rectangular ROI AjBjCjDj with height
a, width b, and tangent angle θ =

{
θj|j = 1 to m

}
is deter-

mined by selecting the center points of ROI c among the
waypoints Gw in the trajectory. Using (2), we calculate the
vector ⇀u =

⇀cjm with tangent angle θj and vector ⇀v =
⇀

mCj
perpendicular to vector ⇀u. Subsequently, using our calcu-
lated figures, we obtain vertices Aj, Bj and Cj, and vectors

⇀

AjBj,
⇀

AjGpi,
⇀

BjCj and
⇀

BjGpi. At this point, vector ⇀v may

correspond to the opposite vector
⇀

mDj; however, in that
case, vertices Bj,Cj and Aj,Dj change and eventually pro-
duce the same result. Finally, as shown on the right side
of Fig. 4, we extract only the points within the rectangular
ROI through the inner products of the vectors. As with the
circular ROI, constraints on the ZG axis can be added if
required.

⇀
u =

a
2

(
cos θj, sin θj

)
=

(
ux , uy

)
⇀
v =

b

2
∥∥∥⇀
u
∥∥∥

(
uy, −ux

)
Aj =

(
cj,x , cj,y

)
−

⇀
u −

⇀
v

Bj =
(
cj,x , cj,y

)
−

⇀
u +

⇀
v

Cj =
(
cj,x , cj,y

)
+

⇀
u +

⇀
v

Gpi =


in, 0 ≤

–-–⇀
AjBj ·

–-–⇀
AjGpi ≤

∥∥∥–-–⇀AjBj∥∥∥2
and 0 ≤

–-–⇀
BjCj ·

–-–⇀
BjGpi ≤

∥∥∥–-–⇀BjCj∥∥∥2
out, otherwise

(2)

FIGURE 4. The rectangular ROI.

Similar to the circular ROI, we repeated the corresponding
task through the double loops of Algorithm 2 and completed
the reduction for the rectangular ROI, as shown in Fig. 5.
We also performed quick processing using a break. For the
rectangular ROI, we can set the range of the ROI by adjusting
the height a and the width b; the amount of overlap of each
rectangular ROI can be adjusted by changing the distance
between the center points.

FIGURE 5. Example of the rectangular ROI based on the trajectory.

Algorithm 2 The Pseudo-Code for the Rectangular ROI

Input: 3D point cloud based on the sensor frame Sp,
Homogeneous transformation matrices GRT and RST ,
Set of ROI center points c,
Set of tangent angles θ ,
Height and width of rectangular ROI a and b

Output: Set of the points within the ROI ROI
1: n = size of Sp
2: m = size of c
3: ROI = ∅

4: Gp =
G
RT

R
ST

Sp
5: for j → 1 to m do
6: ⇀u =

a
2

(
cos θj, sin θj

)
= (ux , uy)

7: ⇀v =
b

2
∥∥∥⇀u

∥∥∥
(
uy, −ux

)
8: Aj =

(
cj,x , cj,y

)
−

⇀u −
⇀v

9: Bj =
(
cj,x , cj,y

)
−

⇀u +
⇀v

10: Cj =
(
cj,x , cj,y

)
+

⇀u +
⇀v

11: end for
12: for i → 1 to n do
13: for j → 1 to m do

14: if 0 ≤
–-–⇀
AjBj ·

–-–⇀
AjGpi ≤

∥∥∥–-–⇀AjBj∥∥∥2
and 0 ≤

–-–⇀
BjCj ·

–-–⇀
BjGpi ≤

∥∥∥–-–⇀BjCj∥∥∥2 then
15: ROI .push(Gpi)
16: break
17: end if
18: end for
19: end for

III. SIMULATION
We applied the circular and rectangular ROI determina-
tion methods proposed in this paper through simulations.
First, we generated artificial point cloud data, straight and
curved trajectories, to focus on the influence of the distance
parameter between the center points. We applied the two ROI
determination methods. Second, we constructed the factory
map in the Gazebo simulator and validated the results on
several keyframes.

A. SIMULATION OF THE ARTIFICIAL FRAMES
There are parameters of the diameter, height, and width
in the circular and rectangular ROIs. However, since these
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TABLE 1. The artificial point cloud data in the simulation.

TABLE 2. The circular ROI classification results using the simulation’s artificial frame data.

parameters can be set in various ways as needed by the user,
we fixed them at specific values and conducted the validation
by focusing on the distance between the center points. At this
time, we set the distance at various ratios of the diameter or
height for each circular and rectangular ROIs, considering
both sparse and dense ROI cases; 150%, 125%, 100%, 75%,
50%, 25%, and 10%. Therefore, we set the diameter and
width to the same value to extract the same region through
the two ROI determination methods and the height to half
the width, which is an arbitrary value; a diameter of 6 m for
the circular ROI, the height of 3 m, and width of 6 m for the
rectangular ROI.

To verify the influence of the distance parameter between
center points more accurately, we generated and utilized
dense artificial point cloud datawith uniform intervals instead
of data from specific environments with multiple densities.
Since circular and rectangular ROIs show different charac-
teristics in straight and curved trajectories, we set up the

straight and curved trajectories and point cloud data as shown
in Table 1. At this time, since there is no constraint on the
Z-axis in this validation, for simplicity, we created the point
cloud only for the XY plane by making the value of the
Z-axis zero; straight data with 10 m width and 80 m length,
curved data with 10 m width and 50 m radius. We also set
the robot’s pose to have (0, 0) position and 0 rad of heading
angle.

We conducted a simulation in an Ubuntu 18.04 environ-
ment using the Intel i7-10750H CPU, and extracted points
with the proposed ROI determination methods by receiving
the point cloud data previously generated at 20 Hz using ROS
(Robot Operating System) melodic. Also, we used classifica-
tion evaluation metrics as criteria for performance verifica-
tion. We first determined the ground truth ROI represented
by the solid red lines in Tables 2 and 4, and labeled the point
cloud data true or false to assess the accuracy of the two ROIs,
proposed in this paper, determined along the trajectory while
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TABLE 3. The circular ROI classification evaluation metrics and processing time using the simulation’s artificial frame data.

TABLE 4. The rectangular ROI classification results using the simulation’s artificial frame data.

maintaining the previously set constant width. As a result, for
all cases of circular and rectangular ROIs, we classified all
points into four categories: true positive (TP), false positive
(FP), false negative (FN), and true negative (TN). The classi-
fication results of the points are presented in Tables 2 and 4.
We attached only four cases; 150%(Sparse case), 100%(Fit
case), 50%(Dense case), 10%(Very dense case). The number
of points extracted through these ROIs and the ratio of the
total number are listed as well. Using (3), we calculated
the precision, recall, and accuracy values, which are clas-
sification evaluation metrics [24]. In addition, to analyze
the processing time, we derived the minimum, maximum,
and average values using 100 repeated measurements. The
number of ROIs, classification results of the points, classifi-
cation evaluation metrics, and processing time are listed in

Tables 3 and 5. The number of ROIs and average processing
time are presented as graphs in Figs. 6 and 7.

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(3)

First, looking at the circular ROI results, there is lit-
tle difference between the straight and curved trajectories.
As shown in Table 2, since the circular ROIs always exist
inside the ground truth ROI in both trajectories, the number of
FP points is 0, and the precision has a value of 1 for all cases in
Table 3. In addition, as the distance between the center points
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TABLE 5. The rectangular ROI classification evaluation metrics and processing time using the simulation’s artificial frame data.

TABLE 6. The information of the keyframes used in the simulation.

decreases and the circular ROIs fill more area of ground
truth ROI in Table 2, the number of FN points decreases,
and recall and accuracy increase in Table 3. In the case of
the average processing time, there is no significant difference
between the two trajectories, as shown in Table 3, since the
number of points in two artificial data is similar to about
20,000. However, in Fig. 6, as the distance decreases and the
number of ROIs required increases, the average processing
time increases. When an excessively large number of ROIs
is used like the distance value of 10%, the average time is
maximized.

In the case of the rectangular ROI, unlike the results of
the circular ROI, there are differences for the two trajecto-
ries. In the straight trajectory, the rectangular ROI exactly
matches the ground truth ROI like the circular ROI as shown
in Table 4, so the number of FP points becomes 0, and the
precision has a value of 1 for all cases in Table 5. However,
when the distance is less than 100% in Table 4, unlike the
circular ROI, the rectangular ROI becomes the same as the
ground truth ROI. So all three classification evaluation met-
rics have values of 1 in Table 5. Conversely, in the curved
trajectory, the vertices of the rectangular ROI are outside the
ground truth ROI in Table 4, so FP points always exist and the
values of the precision are not exactly 1 in Table 5. In addition,
the inside of the ground truth ROI in Table 4, especially the
outer part of the curve, is not completely filled, so the recall

FIGURE 6. The circular ROI processing time using the simulation’s
artificial frame data.

and accuracy are not exactly 1 in Table 5. But, as the distance
becomes shorter and the interval between the ROIs become
tighter, these values increase. In the average processing time
in Table 5, the values at the two trajectories are similar to each
other like circular ROI, but as the distance decreases and the
number of ROI increases, as shown in Fig. 7, the average time
is larger.

Through validation using the artificial data, we confirm
that the distance parameter has two significant influences
on the ROI results. First, when the ROI is sparsely placed
by setting the distance larger than the diameter or height
for the circular and rectangular ROIs, respectively, the ROI
always fails to fill the ground truth ROI, resulting in low
performance. In Tables 3 and 5, based on the distance of
100%, it can be seen that the classification evaluation results
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FIGURE 7. The rectangular ROI processing time using the simulation’s
artificial frame data.

at the higher rate of distance are significantly lower than the
lower rate of distance. Second, the distance parameter causes
a trade-off relationship between the classification evaluation
results and the average processing time. To avoid the problem
mentioned in the first influence, if the ROI is placed very
dense by unconditionally lowering the distance as shown in
10% of Tables 2 and 4, the average processing time will be
very long, as shown in Figs. 6 and 7. Therefore, considering
the number of points, other parameters of the ROI, and the
performance of the PC, the user should set the appropriate
distance value to ensure acceptable time while satisfying the
required classification evaluation results. In the simulations
and experiments introduced in this paper, we will use the four
distance values, 100%, 75%, 50%, and 25%, excluding sparse
cases where the distance is greater than 100%.

B. SIMULATION ON THE KEYFRAMES
For the simulation, we constructed a 100 m × 100 m factory
map in the Gazebo simulator, as shown in Fig. 8. A simple
trajectory was set, using straight lines and a curved section,
such as the solid yellow line in Fig. 8.We used the differential
drive type Scout 2.0 mobile robot (Fig. 9), and Velodyne’s
VLP-16 LiDAR (Fig. 10).We used the ROSmelodic to obtain
the poses of the robot from the Gazebo simulator at 100 Hz
and control the robot at a constant velocity of 0.5 m/s along
the given trajectory. In addition, we obtained 3D point cloud
data on the factory map using LiDAR at 20 Hz. The simula-
tion was performed in the Ubuntu 18.04 environment using
an Intel i7-10750H CPU, the same as previous artificial data
validation.

To validate the performance of the two ROIs, we set up
three keyframes with two straight lines and one curve as the
target trajectory (Fig. 8 and Table 6). The raw 3D point cloud
data projected onto the XY plane and the number of points
in each keyframe are listed in Table 7. In addition, we set the
parameters of the two ROIs as follows: a diameter of 28 m

FIGURE 8. The factory map of the Gazebo simulator [21].

FIGURE 9. AGILE-X’s Scout 2.0 mobile robot [22].

FIGURE 10. Velodyne’s VLP-16 LiDAR [23].

for the circular ROI, a height of 12 m, and a width of 28 m
for the rectangular ROI. The center points have a minimum
set length of 42 m for both ROIs. In addition, when setting
the center points of the two ROIs, as mentioned earlier, the
distances between them were set differently in four cases:
25%, 50%, 75%, and 100% of the diameter of the circular
ROI and the height of the rectangular ROI. Therefore, as listed
in Tables 8–11, we applied circular and rectangular ROIs to
extract the points in the cases of three keyframes and the four
distances between center points.

We used the classification evaluation metrics, the criteria
used in the previous validation. Also, as in the previous
method, we determined the ground truth ROI, like the solid
red lines in Tables 8 and 10, and proceeded with labeling for
the three keyframes. At this time, to compare only the middle
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TABLE 7. The factory point cloud data of the keyframes in the simulation.

TABLE 8. The circular ROI classification results using the simulation’s keyframe data.

parts of the two ROIs, we matched the beginning and end
parts of the ground truth ROI with the circular and rectangular
ROIs, respectively. Therefore, we categorized the points into

four categories for all cases, and the results and the number
of points extracted through the two ROIs are summarized in
Tables 8 and 10, respectively. Finally, we calculated the evalu-
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TABLE 9. The circular ROI classification evaluation metrics and processing time using the simulation’s keyframe data.

TABLE 10. The rectangular ROI classification results using the simulation’s keyframe data.

ation results through (3) using the four categories. In addition,
for the processing time, we used 100 repeated measurements

as before, and derived minimum, maximum, and average pro-
cessing time. The number of the ROIs, classification results of
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TABLE 11. The rectangular ROI classification evaluation metrics and processing time using the simulation’s keyframe data.

FIGURE 11. The circular ROI classification evaluation using the
simulation’s keyframe data.

the points, classification evaluation metrics, and processing
time, listed in Tables 9 and 11, are summarized and presented
as graphs in Figs. 11–14.

The simulation results show that circular and rectangular
ROIs have different characteristics depending on whether the
target trajectory is straight (Keyframes 1 and 3) or curved
(Keyframe 2) like the previous validation, and the distance
between the center points of the ROI. The circular ROI is
containedwithin the ground truth ROI for all cases, regardless
of the target trajectory (Table 8), and therefore does not fill
it up. In addition, the closer the distance between the center
points, the more space within the ground truth ROI is filled.
Therefore, Table 9 shows that there are zero FP points. The
number of FN points reduces as the center points come closer.
Therefore, as listed in Table 9, the precision has a value of one

FIGURE 12. The circular ROI processing time using the simulation’s
keyframe data.

for all cases. The recall and accuracy increase as the distance
between the center points decreases. Fig. 11 shows graph-
ically the precision, recall, and accuracy values detailed in
Table 9. It is evident that precision always has a value of one,
and the recall and accuracy increase as the distance decreases.
Because all keyframes had almost the same number of points,
there was no significant difference in the average processing
time. However, the number of ROIs required increases with
the closeness of the center points in a keyframe. Therefore,
the average processing time is longer in a keyframe. Table 9
summarizes the minimum, maximum, and average times of
the 100 measurements as numerical values. Fig. 12 shows the
maximum and average values. Fig. 12 shows that the average
processing time is larger when the center points are closer
in most keyframes. Furthermore, for all cases, the longest
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FIGURE 13. The rectangular ROI classification evaluation metrics using
the simulation’s keyframe data.

FIGURE 14. The rectangular ROI processing time using the simulation’s
keyframe data.

maximum processing time in a single keyframe, in the worst
case, was approximately 24 ms.

The rectangular ROI has different characteristics depend-
ing on the shape of the target trajectory, unlike the circular
ROI. As shown in Table 10, the ROI was almost identical
to the ground truth ROI, regardless of the distance between
the center points in the straight trajectory, as in Keyframes
1 and 3. However, in curved trajectories, such as Keyframe 2,
the further the center points are from each other, the fewer
spaces it fills the ground truth ROI, and there is a protrud-
ing space as well. In Table 11, the FP points exist only
in Keyframe 2, which is a curved trajectory; the number
of FN points decreases as the center points come closer.
As shown in Table 11, the precision has a value of one
only in Keyframes 1 and 3; the recall and accuracy have
relatively low values when the center points are further away.

In addition, in Fig. 13, which shows these values graphically,
Keyframe 2 has lower values than the rest of the keyframes,
but almost the same values as the distance decreases. For
the average time, there is no significant difference between
keyframes, similar to a circular ROI. However, the processing
time normally increases with an increase in the number of
ROIs caused by the decreased distance between the center
points. In Table 11, the minimum, maximum, and average
processing times are summarized for the rectangular ROI.
In addition, Fig. 14 shows the maximum and average times.
Regarding the average time, most of them took longer when
the center points were close together. The longest maximum
time in one keyframe was approximately 27 ms when the
shortest distance was used.

As the distance between center points shrinks, the circular
and rectangular ROIs are more consistent with the ground
truth ROI. All classification evaluation metrics have values
of 0.99 or higher at the shortest distance. Therefore, we can
conclude that these circular and rectangular ROIs exhibit
satisfactory performance in terms of the target. Addition-
ally, the circular ROI had 42 FPS, and the rectangular ROI
had 37 FPS when the longest maximum time was considered.
The proposed methods exhibited faster processing rates than
the raw 3D point cloud acquisition rate.

IV. EXPERIMENT
We performed the two experiments in a real-world setting to
verify the simulation results of the circular and rectangular
ROIs. First, we generated the more complex trajectory in a
real-world environment, and we validated the results of the
two proposed ROI determination methods on the keyframe
data acquired in real-world environments in the same way as
in the simulation. Second, to validate dynamic situations in
which the robot moves along the given trajectory as well as
the static keyframes, we obtained the sequential frame data
using the trajectory generated in the previous experiment,
and evaluated the processing time of the two ROIs. We also
increased the number of points within one point cloud data
by accumulating the sequential frame data, and identified
the processing times of the two ROI determination methods
as the number of points increased. Finally, we conducted a
qualitative comparison of these ROI determination methods
with the method of the prior study.

A. EXPERIMENT ON THE KEYFRAMES
In the experiment, we set up a more complex trajectory than
the simulation (see the solid yellow line in Fig. 15) in an
outdoor environment. The same model of mobile robot and
LiDAR used in the simulation was used here. Additionally,
we used ZED-F9P GPS and VECTORNAV’s VN-100 IMU
(Figs. 16 to 17) to obtain the pose information of the robot.
We built an Ubuntu 18.04 environment on the NUC processor
using an Intel i5-10210U CPU mounted on the mobile robot.
The overall control and sensing were performed using the
ROS melodic. We controlled the mobile robot at a constant
velocity of 1 m/s along the given trajectory and collected the
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FIGURE 15. The map of the experiment.

FIGURE 16. ublox’s ZED-F9P GPS [25].

TABLE 12. The information of the keyframes used in the experiment.

pose information at 8 Hz and 62 Hz from the GPS and IMU,
respectively. In addition, we obtained the 3D point cloud data
at 10 Hz via VLP-16 LiDAR. We obtained raw latitude and
longitude data from the GPS and converted them into XY
plane coordinates as Table 12.

As shown in Fig. 15 and Table 12, similar to the simulation,
we generated two keyframes on the given trajectory and listed
the raw 3D point cloud data projected onto the XY plane and
the number of those in Table 13. Additionally, we set the
parameters of the two ROIs as follows: a diameter of 12 m
for the circular ROI, a height of 6 m, and a width of 12 m
for the rectangular ROI, and we set a minimum center point
distance of 36 m for both ROIs. We set the distances between
the center points to the four cases set in the simulation: 25%,
50%, 75%, and 100% of the diameter for the circular ROI and
the height of the rectangular ROI. We applied these ROIs to
all keyframes and distances to extract the points, as shown in
Tables 14–17.

FIGURE 17. VECTORNAV’s VN-100 IMU [26].

In addition, we conducted a performance evaluation of
both ROIs in the same manner as in the simulation. Similar
to the solid red lines in Tables 14 and 16, we determine
the ground truth ROIs to measure whether the two pro-
posed ROIs have an exact width along the target trajectory.
Using this, we classified all points into four categories: TP,
FP, FN, and TN. For each of the circular and rectangu-
lar ROIs, the classification results for all cases are listed
in Tables 14 and 16. The number of points extracted and the
ratio of the total number are summarized. Using (3), we calcu-
lated the classification evaluation metrics of precision, recall,
and accuracy, as we did for the simulation. We detailed
the results of the classification evaluation metrics in
Tables 15 and 17, and plotted the results in Figs. 18 and 20.
Similarly, we measured the processing time in the same man-
ner as in the simulation: minimum, maximum, and average
time of 100measurements. Tables 15 and 17 summarize these
time values as numerical values. Figs. 19 and 21 show the
maximum and average values, respectively.

Although, unlike in the simulation, the keyframes in the
experiment did not have a clear straight or curved target
trajectory, their results were almost identical. The results
of the circular ROI matched the simulation because it was
independent of the shape of the target trajectory. As shown
in Table 14, the ROI is contained within the ground truth
ROI, and it fills up as the distance between the center points
decreases. Table 15 shows that the number of FP points is zero
and that the number of FN points decreases when the distance
becomes smaller. Therefore, the precision has a value of one
for all cases, and the recall and accuracy increase as the
distance decreases. Fig. 18 shows the constant precision with
one and the recall and accuracy that increase with a decrease
in distance. The average processing time in one keyframe was
similar between the keyframes, and as the number of required
ROIs increased, a higher value was required. As shown in
Fig. 19, the average time tends to increase as the distance
decreases. In addition, the longest maximum time in a single
keyframe was approximately 8 ms at a distance of 50 %.

Furthermore, the rectangular ROI has almost identical
ground truth ROI as the straight trajectory but differs in
the curved trajectory. Therefore, our findings are affected
because the ROI shows different results for relatively curved
Keyframes 1 and 2. Table 17 shows that more FN points
are found in Keyframe 2, which has greater curves, and
their numbers decrease as the center points come closer.
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TABLE 13. The real point cloud data of the keyframes in the experiment.

TABLE 14. The circular ROI classification results using the experiment’s keyframe data.

In addition, the precision between the keyframes is similar,
but the recall and accuracy are lower in Keyframe 2 when the
distance is greater. Fig. 20 shows the differences between the
two keyframes. Both keyframes have similar values close to
one in precision, but Keyframe 2 has lower values in recall
and accuracy when the distances are greater. In the case of
the average processing time in one keyframe, there is no
difference between the keyframes as in the circular ROI, but
less distance makes the value greater. As shown in Fig. 21,
for both keyframes, the average time required increased as
the distance decreased. In addition, the longest maximum
processing time in one keyframe was approximately 11 ms
in the case of the shortest distance.

The values of the classification evaluation metrics are 0.99
or higher when the distance between the center points is
the shortest. Both ROIs show quicker than the data; the
circular and the rectangular ROIs exhibit speeds of 125 FPS
and 91 FPS, respectively, for the longest maximum time.
Therefore, we can conclude that the proposed methods pro-
vide high performance.

B. EXPERIMENT ON THE SEQUENTIAL FRAMES
We obtained 1327 sequential 3D point cloud frames by mov-
ing the robot along the trajectory with the same settings as
the experiment on the keyframes, and utilized them to derive
two results. At this time, we fixed the distance between the

VOLUME 11, 2023 8517



J. H. Park et al.: Trajectory-Based 3D Point Cloud ROI Determination Methods for Autonomous Mobile Robot

TABLE 15. The circular ROI classification evaluation metrics and processing time using the experiment’s keyframe data.

TABLE 16. The rectangular ROI classification results using the experiment’s keyframe data.

TABLE 17. The rectangular ROI classification evaluation metrics and processing time using the experiment’s keyframe data.
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TABLE 18. The circular and rectangular ROIs processing time using the experiment’s sequential frame data.

TABLE 19. The circular and rectangular ROIs results using the experiment’s accumulated frame data.

TABLE 20. The qualitative comparison with the existing study using the experiment’s keyframe data.

center points at the smallest 25% ratio that derived the best
classification evaluation results in the previous experiment.
First, we compared the 3D point cloud data cycle with the
processing time of the two proposed ROI determinationmeth-
ods for the sequential frames. For the total of 1327 frames,
we measured the data cycle and processing time of the two

ROIs, and showed the results in Fig. 22 and summarized the
calculatedminimum,maximum and average time in Table 18.
Looking at the average time results in Table 18, the point
cloud data were obtained for the 10 Hz we set, and the
processing time of the two ROIs was similar to that of the
previous experiment on the keyframes. In addition, as shown
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FIGURE 18. The circular ROI classification evaluation using the
experiment’s keyframe data.

FIGURE 19. The circular ROI processing time using the experiment’s
keyframe data.

in Fig. 22, which is the results of the entire sequential frames,
both ROIs have almost uniform processing time and much
smaller values than the data cycle. This verifies that the
processing speed of the two ROIs is faster than the data
acquisition rate (on average, approximately 18 and 13 times,
respectively), not only in the static keyframes but also in the
sequential frames where the robot moves dynamically.

Second, we confirmed the processing time of the proposed
ROI determination methods for point cloud data with vary-
ing numbers of points in one frame by accumulating the
previously acquired sequential data. The number of points
within the point cloud is determined by relying on sensors.
However, we adopted the cumulative method to check the
tendency of the processing time of the two ROIs for the
different number of points. We conducted the experiment by
setting the cumulative number of frames to a total of seven;
1, 5, 10, 25, 50, 75, and 100. At this time, as explained
in II-A, we transformed the accumulated data into the global
coordinate based on robot pose information when reaching

FIGURE 20. The rectangular ROI classification evaluation metrics using
the experiment’s keyframe data.

FIGURE 21. The rectangular ROI processing time using the experiment’s
keyframe data.

the cumulative target number, and extracted points along the
trajectory by applying two ROIs. As a result, the number
of frames accumulated, the average number of points, and
the minimum/maximum/average processing time for each
case of the two ROIs are summarized in Table 19. Here,
the data with the cumulative number of 1 corresponds to
the previous sequential frames, and the experiment was con-
ducted by accumulating this data. Also, Fig. 23 graphs the
minimum/maximum/average time of the two ROIs according
to the number of each cumulative frame and the average
number of points. In the graph, the circle and triangle rep-
resent the average time, and the vertical bar represents the
minimum/maximum time. Looking at the results, it was con-
firmed that as the number of points increased by increasing
the cumulative amount of the sequential frame, the processing
time of the two ROIs increased almost linearly. Therefore,
these results allow us to infer the tendency that the processing
time is required in proportion to the number of points in one
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FIGURE 22. The circular and rectangular ROIs processing time and point
cloud data interval using the experiment’s sequential frame data.

FIGURE 23. The circular and rectangular ROIs processing time and
average number of points using the experiment’s accumulated frame
data.

point cloud data. In addition, through this tendency, we can
find the maximum number of points that can be processed
within the data acquisition cycle.

C. QUALITATIVE COMPARISON WITH PREVIOUS STUDY
Wecompared themethods of this studywith themethod of the
existing study, long cuboid ROI determination method [20],
using the same keyframe set in the previous experiment.
Because the results of each method varied greatly depending
on the parameter setting, the quantitative comparison was dif-
ficult; therefore, we only conducted qualitative comparisons.

In the case of the long cuboid ROI determination method,
an ROI with values of 10 m in height, a width of 12 m, and a
length of 100mwas determined around the robot. For the ROI
determination methods proposed in this study, maintaining
the experiment setting, the ROI was determined to the end of
the trajectory, and the distance between the center points was

fixed to the smallest value. We summarized the results of all
methods in Table 20.

The comparison results show that the long cuboid ROI
determination method can reduce the number of points by
extracting only the points around the robot; however, there is a
limit to the response speeds of the target task because the ROI
does not precisely match the trajectory. By contrast, because
the circular and rectangular ROIs are determined based on
the target trajectory, only points close to that trajectory can
be efficiently extracted while maintaining the resolution of
the raw data.

V. CONCLUSION
This paper proposes 3D point cloud reduction methods that
extract only important data close to the target trajectory.
These methods sequentially determine the circular and rect-
angular ROIs along the trajectory and only take the points
within these two ROIs. We conducted the verification of the
two proposed ROI determination methods through the three
types of data. Through the artificial frames, we confirm that
the distance parameter between the center points causes the
trade-off relationship between the classification evaluation
results and the processing time of the two ROIs, so that the
user should set the distance parameter with proper consider-
ation of the relationship between the two results. In addition,
through the keyframes and sequential frames, we confirm that
when the distance parameter is 25% of the diameter or height
in circular and rectangular ROIs, both in static and dynamic
situations, the classification evaluation results are close to 1,
and the processing time is much shorter than the data cycle.
There are two main contributions to these methods. First,
we can efficiently extract only the important points near the
trajectory while maintaining a high resolution of the raw data.
Second, regardless of the complexity of the trajectory, we can
determine the exact matching ROI.

The proposed methods can be used in various scenarios.
First, in an autonomous driving environment, the vehicle can
only obtain important 3D point cloud data near the trajectory
to the destination rather than data on distant vehicles and
pedestrians in the opposite lane. In addition, a mobile robot
in a factory, such as the simulation in this study, can move
quickly while avoiding workers and other robots by utilizing
only data on the target trajectory. Finally, outdoor delivery
robots that have been developed recently can complete the
target task by focusing on the data near the target trajec-
tory, although they operate in a vast and complex dynamic
environment.

However, the methods proposed in this study have lim-
itations. Since these methods determine the ROI along the
robot’s target trajectory, it is essential and is planned first.
In the future, we will conduct additional studies on adjusting
the width efficiently according to the robot’s velocity rather
than the fixed width for the corresponding ROI determination
methods. In addition, we plan to verify our results through
experiments using various sensors and robots.

VOLUME 11, 2023 8521



J. H. Park et al.: Trajectory-Based 3D Point Cloud ROI Determination Methods for Autonomous Mobile Robot

REFERENCES
[1] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in

Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2011, pp. 1–4.
[2] Q. Zhu, L. Chen, Q. Li, M. Li, A. Nüchter, and J. Wang, ‘‘3D LiDAR point

cloud based intersection recognition for autonomous driving,’’ in Proc.
IEEE Intell. Veh. Symp. (IV), Jun. 2012, pp. 456–461.

[3] X. Yue, B. Wu, S. A. Seshia, K. Keutzer, and A. L. Sangiovanni-
Vincentelli, ‘‘A LiDAR point cloud generator: From a virtual world
to autonomous driving,’’ in Proc. ACM Int. Conf. Multimedia Retr.,
Yokohama, Japan, Jun. 2018, pp. 458–464.

[4] M. Yuda, Z. Xiangjun, S. Weiming, and L. Shaofeng, ‘‘Target accurate
positioning based on the point cloud created by stereo vision,’’ in Proc.
23rd Int. Conf. Mechatronics Mach. Vis. Pract. (M2VIP), Nanjing, China,
Nov. 2016, pp. 1–5.

[5] T. Hoegg, D. Lefloch, and A. Kolb, ‘‘Time-of-flight camera based 3D point
cloud reconstruction of a car,’’Comput. Ind., vol. 64, no. 9, pp. 1099–1114,
Dec. 2013.

[6] R. Y. Takimoto, M. D. S. G. Tsuzuki, R. Vogelaar, T. D. C. Martins,
A. K. Sato, Y. Iwao, T. Gotoh, and S. Kagei, ‘‘3D reconstruction and
multiple point cloud registration using a low precision RGB-D sensor,’’
Mechatronics, vol. 35, pp. 11–22, May 2016.

[7] L.Mu, P. Yao, Y. Zheng, K. Chen, F.Wang, andN.Qi, ‘‘Research on SLAM
algorithm of mobile robot based on the fusion of 2D LiDAR and depth
camera,’’ IEEE Access, vol. 8, pp. 157628–157642, 2020.

[8] K. Lai and D. Fox, ‘‘Object recognition in 3D point clouds using web data
and domain adaptation,’’ Int. J. Robot. Res., vol. 29, no. 8, pp. 1019–1037,
2010.

[9] E. Che, J. Jung, and M. J. Olsen, ‘‘Object recognition, segmentation, and
classification of mobile laser scanning point clouds: A state of the art
review,’’ Sensers, vol. 19, no. 4, pp. 810-1–810-42, Feb. 2019.

[10] Y. Wu, S. Zhang, H. Ogai, H. Inujima, and S. Tateno, ‘‘Realtime single-
shot refinement neural network with adaptive receptive field for 3D object
detection from LiDAR point cloud,’’ IEEE Sensors J., vol. 21, no. 21,
pp. 24505–24519, Nov. 2021.

[11] X. T. Nguyen, K. T. Nguyen, H. J. Lee, and H. Kim, ‘‘ROI-based LiDAR
sampling algorithm in on-road environment for autonomous driving,’’
IEEE Access, vol. 7, pp. 90246–90253, 2019.

[12] X. Zhao, P. Sun, Z. Xu, H. Min, and H. Yu, ‘‘Fusion of 3D LiDAR and
camera data for object detection in autonomous vehicle applications,’’
IEEE Sensors J., vol. 20, no. 9, pp. 4901–4913, May 2020.

[13] F. Gao and S. Shen, ‘‘Online quadrotor trajectory generation and
autonomous navigation on point clouds,’’ in Proc. IEEE Int. Symp.
Saf., Secur., Rescue Robot. (SSRR), Lausanne, Switzerland, Oct. 2016,
pp. 139–146.

[14] Y. Fan, Q. Zhang, S. Liu, Y. Tang, X. Jing, J. Yao, and H. Han, ‘‘Semantic
SLAM with more accurate point cloud map in dynamic environments,’’
IEEE Access, vol. 8, pp. 112237–112252, 2020.

[15] C. Moreno and M. Li, ‘‘A comparative study of filtering methods for point
clouds in real-time video streaming,’’ in Proc. World Congr. Eng. Comput.
Sci., San Francisco, CA, USA, 2016, pp. 388–393.

[16] A. Hacinecipoglu, E. I. Konukseven, and A. B. Koku, ‘‘Pose invariant
people detection in point clouds for mobile robots,’’ Int. J. Mech. Eng.
Robot. Res., vol. 9, no. 5, pp. 709–715, May 2020.

[17] Y. Xu, X. Tong, and U. Stilla, ‘‘Voxel-based representation of 3D point
clouds: Methods, applications, and its potential use in the construction
industry,’’ Autom. Construct., vol. 126, Jun. 2021, Art. no. 103675.

[18] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li, ‘‘Deep
learning for LiDAR point clouds in autonomous driving: A review,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3412–3432, Aug. 2021.

[19] K. Jo, M. Lee, andM. Sunwoo, ‘‘Track fusion and behavioral reasoning for
moving vehicles based on curvilinear coordinates of roadway geometries,’’
IEEE Trans. Intell. Transp. Syst., vol. 19, no. 9, pp. 3068–3075, Sep. 2018.

[20] S. Mou, Y. Chang, W. Wang, and D. Zhao, ‘‘An optimal LiDAR configu-
ration approach for self-driving cars,’’ 2018, arXiv:1805.07843.

[21] Ahtsan. Aws-Robomaker-Small-Warehouse-World. Accessed:
Dec. 7, 2022. [Online]. Available: https://github.com/aws-robotics/aws-
robomaker-small-warehouse-world

[22] AgileX Robotics Co. Scout 2.0 E-Book. Accessed: Dec. 7, 2022.
[Online]. Available: https://cdn.shopify.com/s/files/1/0551/0630/6141/
files/SCOUT_2.0_E-BOOK.pdf?v=1637235031

[23] Velodyne LiDAR. VLP-16 User Manual. Accessed: Aug. 2, 2022.
[Online]. Available: https://velodynelidar.com/wp-content/uploads/
2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf

[24] M. Hossin and M. N. Sulaiman, ‘‘A review on evaluation metrics for data
classification evaluations,’’ Int. J. Data Mining Knowl. Manage. Process,
vol. 5, no. 2, pp. 1–11, 2015.

[25] U-Blox. ZED-F9P Integration Manual. Accessed: Dec. 7, 2022.
[Online]. Available: https://www.u-blox.com/en/ubx-viewer/view/
ZED-F9P_IntegrationManual_UBX-18010802?url=https%3A%2F%2
Fwww.u-blox.com%2Fsites%2Fdefault%2Ffiles%2FZED-
F9P_IntegrationManual_UBX-18010802.pdf

[26] VectorNav Technologies. VN100 Manual. Accessed: Dec. 7, 2022.
[Online]. Available: https://www.eol.ucar.edu/system/files/VN100manual.
pdf

JONG HOON PARK received the B.S. degree in
mechanical and information engineering from the
University of Seoul, Seoul, South Korea, in 2021,
where he is currently pursuing the M.S. degree
in mechanical and information engineering. His
research interests include motion planning and
control of mobile manipulator.

YE EUN LIM is currently pursuing the degree in
mechanical and information engineering with the
University of Seoul. Her research interests include
autonomous mobility, robot vision, and reinforce-
ment learning.

JUNG HYUN CHOI is currently pursuing the
degree in mechanical and information engineering
with the University of Seoul. His research inter-
ests include autonomous mobility, control, and
quadruped robot.

MYUN JOONG HWANG (Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
mechanical engineering from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, Republic of Korea, in 2001, 2003, and
2007, respectively. He has been an Associate
Professor with the Department of Mechanical
and Information Engineering, University of Seoul,
South Korea, since 2021. He was a Research
Associate at theMechanical Engineering Research

Institute, KAIST, in 2007. From 2008 to 2009, he was a Research Associate
with the Department of Electrical Engineering and Computer Science, Case
Western Reserve University, Cleveland, OH, USA. Hewas a Senior Research
Engineer at the Manufacturing Technology Center, Samsung Electronics
Company Ltd., Suwon, South Korea, from 2010 to 2013. He was an Assistant
Professor at the School of Mechanical and Automotive Engineering, Halla
University, Wonju, South Korea, from 2013 to 2015, and an Assistant
Professor/an Associate Professor with the Department of Mechanical Engi-
neering, KoreaNational University of Transportation, Chungju, SouthKorea,
from 2015 to 2021. His research interests include robot motion planning and
control, manipulation, autonomous driving, and robot vision.

8522 VOLUME 11, 2023


