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ABSTRACT This paper introduces the design methodology of a noise-robust fuzzy classifier based on
type-2 fuzzy clustering and enhanced learning methods. The design procedure for the noise-robust fuzzy
classifier (NrFC) can be divided into two parts. First, interval type-2 fuzzy c-means clustering is applied to
the hidden layer to minimize the effect of noise or outliers when training the model. Second, an enhanced
learning method is employed to train the connection weights between the hidden and output layers. The
proposed NrFC uses a cross-entropy error function as its cost function. The Softmax function represents a
categorical distribution located at the output layer nodes. In addition, the connection weights of the output
layer are adjusted through nonlinear least squares-based learning, and L2 norm-regularization is considered
to avoid the degradation of the generalization ability caused by overfitting. The learning mechanism is
realized by adding the L2 penalty term to the cross-entropy error function. It is used to cope with over-
fitting and multicollinearity problems, which generally appear in conventional fuzzy neural networks. The
design methodology of the NrFC is discussed and analyzed using several publicly available benchmark
datasets. The performance of the proposed networks is quantified through comprehensive experiments and
comparative analysis.

INDEX TERMS Interval type-2 fuzzy C-means, L2-norm regularization, multicollinearity, nonlinear least
square, noise-robust fuzzy classifier.

I. INTRODUCTION
Fuzzy neural networks (FNNs) have emerged as one of
the most prominent research areas in the synergy between
fuzzy logic and neural networks. Significant advances have
been made over the past two decades [1], [2]. There are
many successful methods for the synthesis of FNNs. The
essential advantages of neural networks include their adap-
tive nature and substantial learning abilities. To establish
a strong synergy between these two areas, the FNN com-
bines fuzzy ‘‘if-then’’ rules with neural networks devel-
oped using the standard back-propagation (BP) learning
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algorithm [3], [4], [5]. As a result, FNNs have recently been
applied to various research tasks as the core technique for pre-
diction, control, or classification [6], [7], [8], [9]. Recently,
type-1/2 fuzzy set theory has been applied to various con-
trol system fields such as fuzzy networked singularly per-
turbed systems, fuzzy passive filters, and T-S fuzzy Markov
jump chaotic systems [40], [41], [42]. To use FNNs for
real-world problems, Oh and Pedrycz proposed a variety of
fuzzy rule-based neural networks combined with clustering,
optimization, and dimensionality reduction [10], [11], [12],
[13], [14], [15], [16].

Type-2 fuzzy sets generalize the standard type-1 fuzzy sets
to handle more uncertainties. They have been widely used
in several applications that cannot be solved entirely using

8108
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-2160-8608
https://orcid.org/0000-0002-3636-1524


Z. Jiang et al.: NrFC Designed With the Aid of Type-2 Fuzzy Clustering and Enhanced Learning

only type-1 fuzzy sets [17], [18]. However, type-2 fuzzy sets
require more computational complexity than type-1 fuzzy
sets because type-2 fuzzy sets contain secondary (type-2)
membership grades and each primary (type-1) membership
grade. In addition, the type-2 TSK fuzzy logic system (FLS)
only uses BP-based learning to update the consequent param-
eters (coefficients). Nonetheless, the advantages of type-2
fuzzy sets, which deal more effectively with the uncertainty
associated with given problems, may countervail these draw-
backs [19], [20], [21].

Through the sum of squared error (SSE) function, which is
a cost function, the connection weights of NNs are typically
trained through BP or LSE-based learning. This learning
mechanism was applied simultaneously to both the regres-
sion and classification problems. However, in classification
problems, the SSE function is not suitable for obtaining the
best classification accuracy because the SSE function only
considers the error between model outputs and target outputs
for all classes [22], [23], [24], [25], [26], [27]. For this reason,
the proposed NrFC is combined with the learning method
of multinomial logistic regression, which is a representa-
tive probabilistic model, to cope with multiclass problems.
In addition, the L2-norm regularization of ridge regression is
applied. Ridge regression is amodified technique used to alle-
viate multicollinearity among predictor (input) variables by
adding a small bias factor to these variables. In addition, ridge
regression can serve as a shrinkage estimator if there is no
multicollinearity, whereas the shrinkage estimator can offer
opportunities to improve the generalization abilities [28].

A fuzzy rule can be divided into a premise (antecedent)
part and conclusion (consequent) part. In conventional type-
2 fuzzy systems, the premise and conclusion parts consist of
type-2 fuzzy sets, and then type reduction is performed to esti-
mate the coefficients in the consequent part. The parameters,
such as the center and width of the membership functions
in the premise part and the coefficients in the conclusion
part, are trained by back-propagation-based learning. This
learning mechanism provides convenience for learning the
model. However, the computational complexity increases sig-
nificantly, and it is more likely to fall into local minima
owing to many parameters and constraints. For these rea-
sons, we propose NrFC to reduce computational complexity
and preserve the function of type-2 fuzzy sets to deal with
uncertainty due to noise or outliers. In the proposed net-
works, the premise part is expressed by type-2 fuzzy sets,
and the conclusion part consists of type-1 fuzzy sets. The
originality of this study can be discussed more specifically as
follows: First, the output of the premise part is obtained from
IT2FCM clustering. Processing, such as training the centers
and computing the lower and upper membership degrees,
is performed by considering type-2 fuzzy sets. Finally, the
final degree of belonging is obtained after type reduction.
Second, because type reduction is completed in the premise
part, the conclusion part consists of linear functions that
are commonly used in fuzzy systems. In the case of type-2

fuzzy systems, the conclusion part consists of interval linear
functions described by the upper and lower values. This
requires more parameters than the type-1 fuzzy sets. How-
ever, by applying type-2 fuzzy sets only to the premier part,
the conclusion part consists of non-interval linear functions.
Therefore, we can use a non-iterative learning method, such
as the LSE method, instead of BP. Third, unlike conventional
FNNs and fuzzy rule-based systems, the cost function of the
proposed networks uses a cross-entropy error (CEE) function.
This function is more suitable than the mean squares error
(MSE) function for classification problems. However, this
function is non-closed; therefore, we cannot apply LSE-based
learning.We apply the re-weighted least squares errormethod
based on Newton’s method to solve the problem. In addi-
tion, the L2-norm regularization method is considered to
alleviate the degradation of the generalization ability caused
by multicollinearity. As a result, the proposed classifier is
more concise than the existing type-2 fuzzy systems. The
computational complexity owing to the number of parameters
and the learning process is significantly reduced. Despite
the reduction of model complexity, the proposed classifier
shows robustness to noise compared with the other classifiers
previously reported in the literature.

The proposed robust fuzzy classifier is constructed using
interval type-2 FCM clustering [29], [30] and nonlinear least-
squares estimation (NLSE) with L2-norm regularization [31].
Compared to FNNs and interval type-2 TSK fuzzy models,
the key points of the proposed classifier are summarized as
follows:

1) Use of type-2 fuzzy clustering in the hidden layer:
IT2FCM was used in the hidden layer to minimize the effect
of uncertainty, and the hidden layer of fuzzy rule-based neu-
ral networks was composed of clustering algorithms such
as K-means or FCM clustering. The clustering algorithm
replaces the definitions and parameter settings of the mem-
bership function. However, clustering techniques are vulner-
able when distinguishing between noisy patterns and outliers.
Therefore, applying IT2FCM to the hidden layer maintains
the advantage of the clustering algorithm and secures robust-
ness against uncertain information, such as noise or outliers.

2) Training of parameters through an enhanced learning
mechanism: FNNs perform model training using SSE func-
tion. In classification problems, the SSE function does not
guarantee the training of the model to improve classification
accuracy because it reduces the mean squared error between
the model output and the target output. To overcome this
drawback, the proposed NrFC applies the CEE function com-
monly used in logistic regression instead of the SSE function.
Because the CEE function is known as a non-closed-form
expression, the LSE-based learning typically used in con-
ventional FNNs or FIS cannot be applied to estimate the
connection weights. Therefore, we use Newton’s method-
based NLSE method instead of LSE.

3) Improvement of generalization abilities through
L2-norm regularization: Overfitting occurs because of
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FIGURE 1. Overall architecture and core algorithmic details of the proposed NrFC.

various factors during model training, which reduces the
generalization ability of the classifier. Multicollinearity is a
representative factor that causes overfitting. When learning
the connection weights, multicollinearity or similar forms
cause problems with considerable deviations between the
coefficients. Consequently, this leads to a decrease in the
generalization ability of the model. Although there is no
exact multicollinearity among the input variables, a suitable
selection of the regularization parameter in the L2-norm
regularization decreases the deviation between the connec-
tions (coefficients). This method is known as the shrinkage
estimator. As an effect of this, L2-norm regularization pro-
vides a method for model selection through an analysis of
the bias-variance tradeoff to avoid overfitting by excessive
training and prevent the degradation of generalization ability.
L2-norm regularization is easily applicable by adding the
L2 penalty term to the cost function used in the existing
model [28], [31].

Compared with conventional FNNs, the difference of
the proposed NrFC is highlighted in three parts. First,
IT2FCM clustering is used in a hidden layer to mini-
mize the effect of uncertainty and handle noise or out-
liers more efficiently. Second, we use the CEE function
as a cost function for NrFC to train connection weights
that are more suitable for improving classification accuracy.
Third, L2-norm regularization is applied to the cost func-
tion to mitigate the overfitting problem caused by multi-
collinearity during weight learning. As a result, we real-
ize the noise-robust fuzzy classifier through three design
strategies.

The remaining of this paper is organized as follows.
Section II elaborates on the designmethodology and architec-
ture of the noise-robust fuzzy classifier. Section III describes
the learning method of the NrFC with the aid of the L2-norm
regularization-based NLSE. In Section IV, a comprehensive
set of experiments is presented. Finally, concluding remarks
are presented in Section V.

II. ARCHITECTURE OF NOISE-ROBUST FUZZY CLASSIFIER
The architecture of the proposed NrFC is illustrated in figure
1. The basic structure is the same as that of conventional
FNNs or RBFNNs. However, the hidden layer of the proposed
networks is replaced with interval type-2 FCM, which means
that clustering is used to handle the uncertainties in the input
space efficiently. A collection of fuzzy rules represents the
architecture of the proposed NrFC in the following form:

Rji : If x is ui with vi then gij(x). (1)

Here, i represents the ith fuzzy rule, and j denotes the
class index. ui and vi represent the degree of belonging and
the prototype (center) of the cluster, respectively. Although
IT2FCM is employed in the hidden layer, the output of the
hidden layer is expressed by the values of type-1 fuzzy sets
owing to the type reduction through the KM algorithm. The
connection weight gij(x) of the ‘then’ clause is expressed as
a linear function including a constant term in the following
form:

gij(x) = aji0 +

n∑
k=1

ajikxk , (2)

where k means k th input variable.
The coefficients of the linear functionwere estimated using

the NLSE method. Because the CEE function is not provided
in closed form, the conventional LSE-based learning method
is not applicable here. Hence, we use an iterative learning
method called Newton’s method-based NLSE as an alterna-
tive to LSE [31]. The design of the output layer consists of two
steps. The first column of nodes in the output layer represents
the output (score) of merging the local models corresponding
to each class, and the output value is the real number.

zjp =

c∑
i=1

uip(x)gij(x) (3)
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where p is the data index, and the decision corresponding to
an output with the maximum value among the outputs is the
final output of the proposed NrFC.

The second step calculates the probability according to
each class through a softmax function.

p(tjp|xp) = yjp =
ezjp
cs∑
l=1

ezjp
(4)

Here, tjp = {t|t ∈ {0, 1}cs, ∥t∥1 = 1}represents the corre-
sponding vector of the desired output, and yjp denotes the
conditional probability of the node corresponding to each
class. The class with the highest probability is chosen as the
final output of the classifier.

A. INTERVAL TYPE-2 FUZZY C-MEANS CLUSTERING
The proposed NrFC model involves two learning mecha-
nisms. The first is IT2FCMclustering, which is used to form a
hidden layer. We used IT2FCM clustering because it is more
convenient for determining the parameters of the activation
(membership) function by IT2FCM than for selecting param-
eters by the user. In particular, selecting the activation center
corresponding to each node is very important from the per-
spective of the performance of the classifier or model. It takes
a lot of time to select a proper parameter by trial and error
without any navigator because there are no specific criteria
for choosing the center point of the activation function. From
this perspective, fuzzy clustering is an effective technique
for saving computing loads and obtaining reasonable values
(centers) based on a minimized objective function.

FCM algorithm is a soft clustering technique in which a
dataset is grouped into c clusters [32]. The largest difference
compared with the other clustering algorithms indicates how
close the data are to the cluster as a degree of belonging.
FCM clustering is applied to the hidden layer of the FNNs to
split the input space into c fuzzy sets (groups). By applying
type-2 fuzzy sets to general FCM clustering, we can obtain
the lower- and upper-interval membership degrees using two
different fuzzifiers. The objective function of IT2FCM is the
same as that of standard FCM clustering, and is expressed as
follows: [29], [30].

J (U , v) =

c∑
i=1

N∑
p=1

umip
∥∥xp − vi

∥∥2 (5)

Here, |||| denotes the Euclidean distance, n is the number of
patterns (data), and m is a fuzzifier that changes to m1 and
m2 (m1 < m2) to form the interval membership degrees.
Different fuzzifiers determine the width of the space between
the two membership functions. This is commonly referred to
as the footprint of uncertainty (FOU), as shown in the shaded
area in figure 2.

The minimization of J (U , v) is realized iteratively by
adjusting both the prototypes and the entries of the partition
matrix. The well-known formulas used in an iterative manner

FIGURE 2. Comparison of membership function by fuzzifiers.

are as follows:

uip(x) = min(
1

c∑
j=1

(
dip
djp

)2/(mL−1)
,

1
c∑
j=1

(
dip
djp

)2/(mR−1)
) (6)

ūip(x) = max(
1

c∑
j=1

(
dip
djp

)2/(mL−1)
,

1
c∑
j=1

(
dip
djp

)2/(mR−1)
) (7)

Unlike conventional FCM, the prototypes of IT2FCM cannot
be computed directly because partition values are not Type-
1 sets but interval type-2 fuzzy sets. To do this, a centroid
type-reducer is employed to obtain accurate prototypes, and
then a centroid defuzzifier is used to obtain crisp centers from
the type-reduced type-1 fuzzy sets. After type reduction using
the (KM) algorithm, the final prototypes of the clusters are
described as follows:

vi =
vLi + vRi

2
. (8)

The membership values uRip(x) and uLip(x) differ according
to each input variable for a pattern (data). Thus, the hard
partitioning method proposed by Hwang and Rhee computes
precise values for the left and right degrees of membership
for pattern xp.

uip(x) =
uLip(x) + uRip(x)

2
(9)
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The left and right membership values are computed as

uLip(x) =

n∑
k=1

ûLip(x)

/
n

where,

ûLip(x) =

{
ūip(x), if xpk uses ūip(x)for vLi
uip(x), Otherwise.

(10)

and

uRip(x) =

n∑
k=1

ûRip(x)

/
n

where,

ûRip(x) =

{
ūip(x), if xpk uses ūip(x)for vRi
uip(x), Otherwise

(11)

In the proposed classifier, the output of the hidden layer is
uip(x) in (9). The output is not an interval because the type
reduction is completed in IT2FCM.

B. KARNICK AND MENDEL FOR TYPE DEDUCTION
To obtain type-1 prototypes from the IT2FCM clustering, the
two endpoints must be calculated from the interval values of
the partition matrix. This is carried out through Karnick and
Mendel (KM) iterative procedure [33]. The process of type
reduction can be summarized as follows:

[Step 1] Arrange input patterns in ascending order.

x1k ≤ · · · ≤ xpk ≤ · · · ≤ xNk (12)

[Step 2] Initialize uRip(t) and then compute vRi (t).

uRip(t) =
uip + ūip

2
(13)

vRik (t) =

n∑
p=1

u(m1 or m2)
ip xpk

n∑
p=1

u(m1 or m2)
ip

(14)

[Step 3] Find switching point s ∈[1, N − 1] such that

xsk ≤ vRik < x(s+1)k (15)

[Step 4] Update uRip(t + 1) and then compute vRik (t + 1).

uRip(t+1)=

{
uip k ≤ s

ūip k > s
, uRip=(ui1, . . . , uis, ūi(s+1), . . . , ūiN )

(16)

vRik (t + 1) =

n∑
p=1

u(m1 or m2)
ip xpk

n∑
p=1

u(m1 or m2)
ip

(17)

[Step 5] If vRik (t + 1) is equal to vRik (t), the procedure is
terminated. Otherwise, proceed to step 3.

In the case of calculating vLik , the procedure is the same as
above, but (19) should be used instead of (17) in step 4.

uLip(t+1)=

{
ūip k ≤ s
uip k > s

, uLip=(ūi1, . . . , ūis, ui(s+1), . . . , uiN )

(18)

III. ENHANCED LEARNING TECHNIQUES THROUGH
NEWTON’S METHOD-BASED NONLINEAR LEAST SQUARE
ERROR METHOD
This study employs NLSE learning based on Newton’s
method to adjust the connection weights. NLSE is a learn-
ing method that estimates an approximate value through an
iterative learning process using the Gauss-Newton method.
However, this method can only be in closed-form expressions
(solutions) such as the SSE. Because the proposed network
uses a generalized cross-entropy error (GCEE) function as a
cost function, Newton’s method-based NLSE is considered
instead of the previous method. Newton’s method is typically
a learning mechanism, finding an approximate value that
satisfies the relationship f (x) =0 by running an iterative
learning procedure by finding extrema using the first and
second derivatives of function f (x) [31]. The cost function
for parameter training of the proposed network is defined as
the GCEE function described in the following form:

GCEE = −
1
N

N∑
p=1

cs∑
j=1

tjp ln yjp (19)

Here, tjp represents the desired output and yjp denotes the
output (probability) of the proposed network.

In addition, L2-norm regularization is employed to avoid
degradation of the generalization ability caused by possible
overfitting. To achieve this, the cost function of the pro-
posed networks adds a penalty term, as in the ridge regres-
sion model. This method helps to reduce variations among
coefficients and prevents degradation of the generalization
ability [28], [31]. Multicollinearity yields a high variance
model that becomes increasingly unrealistic as correlation
increases. The high variance model is very sensitive to a
small change in each input variable because it consists of
weights with large deviations from each other. Thus, the
result of producing high-variance models is directly related to
the potential performance instability. L2-norm regularization
addresses the numerical instability of atrix inversion and sub-
sequently produces low-variance models. This method adds a
positive constant to the diagonals of XTX to make the matrix
nonsingular. The analytic solution to the problem becomes:

A =

(
XTX + λI

)−1
XTY . (20)

Here λ is a regularization parameter that assumes a positive
value. In some cases, a ridge trace is used to search for the
optimal regularization parameter. In the proposed classifier,
the GCEE function applied with L2-norm regularization is
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TABLE 1. List of the parameters of the proposed NrFC.

depicted in the following form:

GCEE = −
1
N

N∑
p=1

cs∑
j=1

tjp ln yjp +

cs∑
j=1

c×n∑
l=1

a2jl, (21)

and through Newton’s method, the above cost function spe-
cializes as follows:

Aj (t + 1) = Aj(t) −
∇GCCEL2 (Aj(t))
∇2GCCEL2 (Aj(t))

. (22)

The matrix equation for the estimating weights
(coefficients) A is represented through the first- and second-
order partial derivatives of the cost function as follows:

Aj(t + 1) = Aj(t) − (XTQjX + λI )−1(XT (Yj − Tj)

+ λAj(t)) (23)

Consequently, this equation can be rearranged into a for-
mula grouped by

(
XTQjX + λI

)−1
, and which is similar to

the expression encountered in ridge regression:

Aj(t + 1) = (XTQjX + λI )−1XTQjN (t) (24)

where N (t) = XAj(t) − Q−1
j (Yj − Tj), and t is the iteration

number. At this point, Tjchanges according to the class index
as follows:

tp =

{
1 if yp = j
0 Otherwise

(25)

where ypdenotes the actual classes represented as integers,
and the target classes are transformed to 0 or 1 for NLSE-
based learning. To estimate the connections of the proposed
networks, the initial values of the weights were selected
randomly, as in the BP-based learning scheme. The learning
process is repeated until a predefined number of iterations
has been exceeded, or the difference between (t + 1) and (t)
is below a predefined threshold.

TABLE 2. Information of benchmark machine learning datasets.

TABLE 3. Results of comparative analysis of T1LSE, T2LSE, and NrFC for
Iris dataset.

IV. EXPERIMENTAL STUDIES
We considered two types of fuzzy classifiers as compara-
tive models. The first classifier, T1LSE, consists of standard
FCM clustering in the hidden layer and LSE-based learning
to train connection weights. The second classifier, T2LSE,
comprises IT2FCM clustering and LSE-based learning. The
first classifier was used to show the differences between type-
1 and type-2 fuzzy sets. The second one was to compare the
differences between the LSE and NLSE learning methods.

TABLE 1 lists the parameter settings of the classifiers used
in the experiments. The experimental conditions were the
same for all the classifiers. The classification accuracy was
expressed as the mean and its standard deviation through 5-
fold cross-validation, which is a popular performance evalu-
ation method.

We used several machine learning datasets to compare the
classification accuracy of the Type-1 fuzzy set-based FNNs
and the proposed NrFC. These datasets were obtained from
the University of California Irvine (UCI) Machine Learning
Repository (http://archive.ics.uci.edu/ml/datasets.html).

TABLE 2 presents a summary of the datasets. White Gaus-
sian noise was added to the dataset to evaluate the noise
robustness of each classifier. The noise ratio is set at 5 dB,
10 dB, and 15 dB, where 5 dB indicates that 95% of the data
are additionally affected by white Gaussian noise [25].

A. IRIS DATA SET
This is the most well-known database in pattern recog-
nition literature. Fisher’s paper is classic in the field
and is frequently referenced. The dataset contained three
classes of 50 instances, where each class referred to a
type of iris plant. One class is linearly separable from the

VOLUME 11, 2023 8113



Z. Jiang et al.: NrFC Designed With the Aid of Type-2 Fuzzy Clustering and Enhanced Learning

TABLE 4. Results of comparative analysis of T1LSE, T2LSE, and NrFC
according to the effect of white Gaussian noise for Iris dataset.

other two classes, and the latter is not linearly separable.
(https://archive.ics.uci.edu/ml/datasets/iris).

TABLE 3 shows the classification accuracy (CA) of
T1LSE, T2LSE, and the proposed NrFC. The CA is reported
as the mean and its standard deviation, and the bold faces
indicate the best classification accuracy based on the testing
dataset of each classifier. Among the three classifiers, T2LSE
achieved the highest classification accuracy.

TABLE 4 lists the classification accuracies of the clas-
sifiers according to the various noise levels. After adding
noise to the dataset, the classification rate of the proposed

FIGURE 3. Comparison analysis of the classification accuracy of
classifiers according to the change of noise intensity for the Iris dataset.

TABLE 5. Results of comparative analysis of T1LSE, T2LSE, and NrFC for
BTSC dataset.

NrFC is preferable to that of other classifiers, such as T1LSE
and T2LSE. Moreover, the performance was improved by
applying the L2-norm regularization.
Figure 3 shows the pattern of classification accuracy

according to the change in noise intensity.When using the L2-
norm regularization, the classification accuracy of the testing
dataset was better than that without regularization. Moreover,
the proposed NrFC exhibited noise robustness compared with
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TABLE 6. Results of comparative analysis of T1LSE, T2LSE, and NrFC
according to the effect of white Gaussian noise for BTSC dataset.

the two classifiers. In particular, there was almost no degra-
dation in classification accuracy from 0 dB to 10 dB.

B. BTSC DATA SET
This data was obtained from the donor database of the
Blood Transfusion Service Center in Hsin-Chu City, Taiwan.
(https://archive.ics.uci.edu/ml/datasets/Blood+
Transfusion+Service+Center) [34]. TABLE 5 shows the
performance comparison of the proposed classifier and the
other two classifiers. The performance of NrFCwith L2-norm
regularization is better than that of the different classifiers.

TABLE 7. Results of comparative analysis of T1LSE, T2LSE, and NrFC for
the Balance dataset.

TABLE 8. Results of comparative analysis of T1LSE, T2LSE, and NrFC
according to the effect of white Gaussian noise for Balance dataset.

TABLE 6 lists the classification accuracies of the classi-
fiers for various noise levels. In the case of 5 dB noise, the
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TABLE 9. Comparison results of classification accuracy between proposed classifier and other classifiers in WEKA tool.

TABLE 10. Comparison results of classification accuracy between proposed classifier and other classifiers in the literature.

classification accuracy of the type-2 fuzzy set-based classi-
fiers, such as the proposed NrFC and T2LSE, is better than
that of T1LSE.

Figure 4 shows the pattern of classification accuracy
according to noise change in intensity. The proposed NrFC
maintains classification accuracy despite noise effects. How-
ever, the other classifiers showed unstable performance
changes owing to noise.

C. BALANCE DATA SET
This dataset was generated to model the psychological
results. (https://archive.ics.uci.edu/ml/
datasets/balance+scale). TABLE 7 shows a performance
comparison of the proposed networks and the other two clas-
sifiers. Compared to T1LSE and T2LSE, the classification
accuracy of the proposed NrFC was improved remarkably.

TABLE 8 lists the classification accuracies of the clas-
sifiers for various noise levels. The performance of the
classifiers applying IT2FCM was superior to that of the
T1LSE classifier. Among the type-2 fuzzy set-based classi-
fiers, NLSE-based learning improves the performance of the
classifier.

TABLE 9 summarizes the comparison of the classification
accuracies obtained by the proposed classifier and other clas-
sifiers. Multinomial logistic regression (MLR), support vec-
tor machine (SVM), K-Near Neighbor (KNN), and C4.5 were
used with the help of the WEKA toolkit initially devel-
oped at the University of Waikato in New Zealand. WEKA
(http://www.cs.waikato.ac.nz/ml/weka/) has become popular
among academic and industrial researchers and is widely
used for educational purposes [31]. Consequently, we can
conclude that the classification rate of the proposed NrFC is
superior to those of the four comparative classifiers.

FIGURE 4. Comparison of the classification accuracy of classifiers
according to the change of noise intensity for BTSC dataset.

TABLE 10 shows the comparative results between the pro-
posed classifier and other classifiers previously reported in
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the literature. GBML [35] is a hybrid algorithm of two fuzzy
genetics-based machine learning approaches, FkNN [36]
considers the weight (distance) for each nearest neighbor by
employing the geometrical relation among the nearest neigh-
bors. GFS [37] is a fuzzy rule-based classifier learned by a
novel evolutionary AdaBoost algorithm. ANFIS [38] is an
adaptive network-based fuzzy inference system. The model
is divided into two types, ANFISC and ANFISL, according
to the order of polynomials in the conclusion part. DTKS [39]
is a deep TSK fuzzy classifier based on shared linguistic
fuzzy rules. The proposed classifier is equal to or superior
to other classifiers in the Iris, BTSC, and Balance datasets.
In particular, the classification accuracy of the classifier was
approximately 10% higher on the Balance dataset.

V. CONCLUSION
In this study, a noise-robust fuzzy classifier was pro-
posed to cope with uncertainty through type-2 fuzzy sets.
In the hidden layer, IT2FCM clustering was employed to
minimize the effects of noise or outliers. The connection
weight is learned using Newton’s NLSE-based learning
method. In addition, L2-norm regularization alleviates mul-
ticollinearity when training the connection weights. Through
the proposed design methodologies, the proposed NrFC
significantly ensures noise robustness and improves general-
ization abilities through L2-norm regularization by providing
a method for model selection through an analysis of the
bias-variance tradeoff to alleviate overfitting problems. Con-
sequently, the proposed network outperformed conventional
FNNs through the synergy of type-2 fuzzy sets and enhanced
learning mechanisms through experiments using several pub-
licly available datasets.

One of the problems with the fuzzy classifier is that there
is no dimensionality reduction function. Researchers have
applied feature extraction approaches to fuzzy models using
machine learning algorithms. However, these methods are
performed by considering only the data without the model
structure. Therefore, the feature data obtained from the pre-
processing could not be suitable for the model. Future stud-
ies might focus on developing a dimensionality reduction
method for the proposed networks to be applied to high-
dimensional big data problems. To do this, the preprocessing
part is included in the model, and then the feature data is
extracted through model learning. As a result, we would be
able to obtain the appropriate feature data for the model
structure.
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