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ABSTRACT What makes living systems flexible so that they can react quickly and adapt easily to
changing environments? This question has not only engaged biologists for decades but is also of great
interest to computer scientists and engineers who seek inspiration from nature to increase the flexibility of
task-performing systems such as machine learning systems, robots, or manufacturing systems. In this paper,
we give a broad overview of design features of living systems that are known to promote flexibility. We call
these design features the ‘‘elements of flexibility’’. Moreover, to facilitate interdisciplinary, bio-inspired
research that brings the elements of flexibility to man-made task-performing systems, we introduce a general
formalism for system flexibility optimization. The formalism is intended to (i) provide a common language
to communicate ideas about system flexibility among researchers with different backgrounds, (ii) help to
understand and compare existing research on system flexibility, e.g., in transfer learning or manufacturing
flexibility, and (iii) provide a basis for a general theory of system flexibility optimization.

INDEX TERMS Adaptability, computer-integrated manufacturing, degeneracy, evolvability, few-shot learn-
ing, hierarchy, modularity, manufacturing flexibility, neutral spaces, transfer learning.

I. INTRODUCTION
A. A GENERAL FORMALISM FOR SYSTEM FLEXIBILITY
OPTIMIZATION
What makes systems flexible enough to handle a variety
of tasks and easily adapt from one task to another? This
question has engaged researchers for decades in various
areas of computer science and engineering such as machine
learning [1], evolutionary computation [2], robotics [3], and
computer-integrated manufacturing (CIM) [4]. Due to the
very different types of tasks that are usually studied in these
areas (e.g., classification tasks in machine learning and pro-
duction tasks in CIM), research on system flexibility has
taken place largely independently of each other. However,
there is a substantial conceptual overlap and in recent years,
the advancing digitization and ever more powerful computers
also lead to increasingly overlapping practical flexibility mat-
ters. A good example are cyber-physical production systems.
Here flexible machine learning systems are needed that can
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learn process models based on few observations in order to
increase the self-adaption capabilities of the cyber-physical
production system to changing product requirements [5].
Hence, there is an increasing demand for interdisciplinary
research on system flexibility at the intersection of computer
science and engineering.

To facilitate such interdisciplinary research, we propose in
Section III a general formalism to formulate and study flex-
ibility problems for systems that are supposed to self-adapt
to a variety of changing tasks. Based on the general, abstract
notion of task-performing system, we discuss how flexibil-
ity problems can be cast as optimization problems where
adaption and reconfiguration cost are to be minimized over
a space of system designs. The formalism is inspired by
established formalisms from reinforcement learning [6] and
information-based complexity [7], [8]. Beside being a useful
working tool that provides a common language to commu-
nicate ideas among researchers with different backgrounds,
we hope that the formalism also helps to understand and
compare existing research on systemflexibility from different
areas in computer science and engineering. In Section V,
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we provide a complete example how the formalism can be
applied.

B. THE ELEMENTS OF FLEXIBILITY
The formalism that we propose in Section III provides a
basis for a general theory of system flexibility. A central
question that such a theory must try to answer is if there
are generic design features of task-performing systems that
facilitate flexibility and if so, what these design features are.
We do not treat this question rigorously in this paper, but
collect evidence for a number of universal design features by
considering living systems.

Living systems are formidable natural examples of flexi-
ble, self-adapting task-performing systems. In living systems,
production, transportation and information-processing tasks
are performed on every level of biological organization—
from a single cell up to networks of organisms [9], [10].
Moreover, learning occurs in various forms on every level
of biological organization [11], [12]. One can find myriads
of fascinating examples of self-adaption cascades that result
in flexibility within the lifespan of organisms [13] or across
generations through evolution [14].

An extensive survey of biological literature revealed six
design features that have been reported to promote flexibility
in all kinds of biological systems on all levels of biological
organization:

1) Hierarchy,
2) Modularity,
3) Weak regulatory linkage,
4) Exploration,
5) Degeneracy and neutrality,
6) Weak links.

We call these six features the elements of flexibility and
discuss them in detail in Section IV. Remarkably, they play
an essential role in both physical and computational tasks
performed by biological systems. Some of the elements, like
modularity, are well-established in the design of technical
systems. Others, like weak links, have hardly been consid-
ered explicitly. To our knowledge, this work is the first to
explicitly discuss all the elements of flexibility from a general
viewpoint of system flexibility.

The elements of flexibility are not merely interesting from
a theoretical point of view, but we expect that an in-depth
and holistic considerations of the elements can contribute to
an improved flexibility of concrete task-performing systems,
e.g., deep learning system or cyber-physical production sys-
tems. In this regard, Section IV can serve as a starting point
and source of inspiration for bio-inspired research on system
flexibility. In Section VI, we sketch some general research
directions based on the elements of flexibility.

Outline
This paper is intended for a multidisciplinary audience and
organized as follows. In Section II, we give a brief intro-
duction to existing flexibility research in CIM, machine

TABLE 1. General high-level categories of tasks.

learning, and biology. Then, in Section III, we introduce
general concepts and a formalism for system flexibility opti-
mization. Section IV is devoted to the elements of flexibility.
In SectionV, the interested reader finds a rigorous application
of the formalism to study the flexibility of logic circuits,
which are popular model systems in theoretical computer
science and computational biology. The presented example
is also a simple demonstration of how hierarchy and modu-
larity can promote flexibility. Finally, in Section VI, we give
an outlook on bio-inspired research directions based on the
elements of flexibility.

II. EXISTING RESEARCH ON SYSTEM FLEXIBILITY
In this paper, we are generally interested in the flexibility of
systems that perform tasks. Most abstractly, we can distin-
guish between material (physical) and immaterial (computa-
tional) tasks. In material tasks, the goal is to manipulate and
transform physical objects in the environment. In immaterial
tasks, the goal is to manipulate and transform data, which can
be considered as virtual objects in the environment. Table 1
provides a more fine-grained categorization of typical types
of tasks. A general, high-level definition of system flexibility
for task-performing systems can be given as follows.
Definition 1: The flexibility of a task-performing system

refers to its ability
1) to easily adapt from being good at one task to being

good at a related task, and
2) to cope with a diversity of different tasks.
We formalize this definition and the involved concepts in

Section III. Systemflexibility in accordancewithDefinition 1
has been studied for specific classes of task-performing sys-
tems in various areas of computer science and engineering.
We take a closer look at CIM and machine learning in
Section II-A and Section II-B since there are well-established
subfields addressing system flexibility. Further areas where
system flexibility has been studied include evolutionary
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FIGURE 1. Development of production paradigms. Adapted from [19].

computation [2], robotics [3], supply chain management [16],
and organization management [17]. To provide the necessary
background for Section IV, we give a brief introduction to
system flexibility considerations in biology in Section II-C.
We also briefly discuss how flexibility considerations in these
areas can be connected.

A. FLEXIBILITY IN COMPUTER-INTEGRATED
MANUFACTURING
Flexibility is one of the outstanding characteristics of human
beings. Consequently, in pre-industrial times, craft produc-
tion mainly based on human labor was flexible. Mechaniza-
tion and the advent of mass production brought efficiency
to manufacturing, at the expense of flexibility, see Figure 1.
The extreme form of opting for efficiency is the assembly
line, a manufacturing system that consists of a predefined
sequence of machines and that is designed to perform a small
number of very similar processes. As Herbert Simon, one of
the pioneers in manufacturing flexibility and artificial intel-
ligence, noted, ‘‘mechanization has more often proceeded
by eliminating the need for human flexibility—replacing
rough terrain with a smooth environment—than by imitating
it’’ [18].

Not all manufacturing work is amendable to the prin-
ciples of mass production. Particularly in a business-to-
business context, flexible, small to mid batch-size production
has always remained necessary. The associated processes
cannot be performed by an assembly line but require job
shops, which are manufacturing systems that use functionally
grouped general purpose equipment through which different
work pieces can be flexibly routed. Job shops offer high flex-
ibility at the expense of lower efficiency and costly machin-
ery. Despite all the progress in automation technology, their
operation typically requires highly skilled craft employees
to the present day. It thus remains a challenge to increase
manufacturing flexibility through innovation in automation
technology [19].

There are a number of established flexibility notions in
CIM which address aspects of high- to low-level manufac-
turing tasks [4], [20], [21]. On a higher level, referring to

variations in amount and design of products, we have the
following notions:
H1. Volume flexibility refers to the different amounts of a

part that can be produced profitably.
H2. Production flexibility refers to the diversity of part

types a manufacturing system can produce without
adding major capital equipment to the system.

H3. Product flexibility refers to the ease, in terms of time
and cost, of adding new parts to the part mix.

H4. Market flexibility refers to the ease with which adap-
tions to changing market environments can be realized.

On a lower level, referring to basic operations of manufactur-
ing systems and their recombinability, we have:
L1. Machine flexibility refers to the diversity of operations a

machine can perform and the ease with which the setup
of a machine can be changed to produce a desired set
of part types.

L2. Material handling flexibility refers to the diversity of
loading and unloading and transport situations a mate-
rial handling system can cope with.

L3. Process flexibility refers to the number of different
processes a system can perform without major setup
changes between process changeovers.

L4. Expansion flexibility refers to the ease with which oper-
ations can be added to the manufacturing system.

There are two further notions that do not directly address
variations in tasks but robustness and fault-tolerance of the
manufacturing system. However, robustness and flexibility
are related, see Section III-E. In particular, there is a con-
nection between the element of flexibility ‘‘degeneracy’’, see
Section IV-E, and the following two flexibility notions:
D1. Operation flexibility refers to the number of different

ways in which a part can be produced.
D2. Routing flexibility refers to the number of routes

through the system that lead to the same production
outcome.

For an in-depth discussion of the above flexibility notions
and their operationalization, we refer to [4] and [22]. Note
that some of the flexibility notions are interrelated and that the
systematization of the flexibility notions is still an ongoing
research topic [22], [23]. The unifying framework introduced
in Section III can serve as a theoretical basis for such a
systematization.
The aspects of manufacturing systems and manufactur-

ing tasks that have been subject to flexibility considera-
tions have always been highly influenced by progress in IT
technology, see Table 2 for an overview. Flexible manufac-
turing systems (FMS) focused on maximal flexibility with
regard to tool operations and are nowadays standard in job
shops [21]. Reconfigurable manufacturing systems (RMS)
focused on reusable, modularized hard- and software com-
ponents [24]. RMS mark a milestone in the development
of structurally flexible manufacturing systems. However,
the concept was ahead of its time since computational and
information-processing capacities were missing to handle the
high reconfigurability in an automated way.
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Cyber-physical production systems (CPPS) [5] promise to
overcome these limitations. CPPS have computing, sensing
and information processing capabilities in every physical
component and are connected to cloud services by default.
In consequence, there is access to an unprecedented amount
of computation power and data about system states and
environmental conditions in CPPS. There are high expecta-
tions that this allows to implement advanced self-adaption
mechanisms in many components of CPPS which will in
turn provide the flexibility necessary for a ‘‘batch size one
production’’. In such a production regime, highly customized
products can be produced with the efficiency of mass produc-
tion [5], [25]. Machine learning is a key enabler for advanced
self-adaption, amongst others, because it allows to deal with
uncertainties, search more efficiently in large configuration
spaces, and make automated decisions based on complex
environmental cues [26], [27].

Realizing the potential of CPPS is a long term goal that
comes with many research challenges, see [5] and the refer-
ences therein. Concerning self-adaption and machine learn-
ing, challenges include learning efficiency and the handling
of sudden or unknown changes in non-static, open-world
environments [27]. Moreover, many self-adaption mecha-
nisms have to work in coordinated, cooperative ways within
and across several system layers [28]. Thereby it can easily
happen that a change triggered by one adaption mechanism
triggers a whole cascade of further adaptions and may even
require an alteration in a subsequent adaption mechanism and
its learned model [29]. For all these reasons, the learning
systems used within adaption mechanisms should themselves
be flexible, easily adapting learned models to changed cir-
cumstances using only little extra data. Self-adaption and
CPPS are thus notmerely application areas formachine learn-
ing but drivers for research in meta-learning and learning
to learn which address the flexibility of learning systems,
see Section II-B. Moreover, flexibility considerations are
becoming more complex, taking very deep aspects of the
production processes into account such as material properties
and not only the operational phase but also development and
ramp-up. Hence, software systems such as CAD, CAE, and
CAM are increasingly included in automation and flexibility
considerations [30].

B. FLEXIBILITY IN MACHINE LEARNING
The flexibility of human learning is one of themost prominent
examples of system flexibility. Humans are able to learn myr-
iads of different tasks, e.g., language understanding, object
recognition, motor skills and concept formation. Usually,
we learn these tasks not apart from each other but by being
exposed to a continual stream of diverse tasks. In doing so,
an outstanding characteristic of human learning is that we can
generalize correctly from extremely few examples—often
just a single example suffices to learn a new task [31], [32].

In artificial intelligence, it is a long-standing goal to build
learning systems that achieve the same learning flexibility

TABLE 2. IT drivers of manufacturing flexibility. The table lists IT
technologies that are or were becoming sufficiently mature or broadly
available in the corresponding time period and are or were included in
manufacturing system concepts for flexibilization.

as human beings. While classical machine learning focuses
on learning systems that improve their performance at one
given taskwith training experience, learning to learn ormeta-
learning [1], [33] aims for flexible learning systems that
improve their performance at each task both with training
experience and with the number of tasks.

At the heart of every learning system is a statistical model.
In classical machine learning, the model is chosen by the sys-
tem designer to reflect general structural knowledge about the
given underlying task. Then, a learning algorithm is used to fit
the model’s free parameters to accurately capture the patterns
in the training data. With learning to learn, the knowledge
still imposed by the system designer becomes increasingly
abstract and unspecific. It is the learning system itself that
must be able to capture and represent causal relationships
and high-level structures and the patterns to be recognized
are relations between the different learning tasks. Learning to
learn can thus be understood as a shift of focus, from classical
pattern recognition to representation learning and automated
model building [31]. The source of learning efficiency gains
in the face of new tasks are then proper ways of transferring
parts of the learned representations and model parameters
between related learning tasks, which is called transfer learn-
ing [34], [35]. Note that this is closely related to few-shot
learning [36] which studies how proper representations of
prior knowledge help machine learning models to generalize
well to new, related tasks using only few samples.

Flexibility of learning systems is highly relevant for man-
ufacturing flexibility for several reasons.The recent success
stories in machine learning are based on tremendous amounts
of training data or relatively cheap simulations [37]. In man-
ufacturing contexts, labelled data is often scarce and expen-
sive to create. Simulations have to take into account more
physical effects and are thus more expensive. Hence, to fully
leverage the learning potential in CPPS, the machine learning
systems used within CPPS have to be flexible, easily adapt-
ing to new tasks using only few examples. Moreover, meta-
learning techniques provide the basis for automated machine
learning (AutoML) tools [38]. These tools automate steps in
the machine learning pipeline such that application domain
experts can more easily experiment with machine learning
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and thereby increase the development speed of machine
learning for production.

C. FLEXIBILITY IN LIVING SYSTEMS
Organisms consist of cells as basic construction units and
each cell has a copy of the genome. The genome is the
totality of all heritable information about how to construct
and operate the organism and all of its components and
processes. The concretely given heritable information of an
individual organism is called its genotype. The sum of all
observable characteristics and traits of the organism is called
the phenotype.

The ultimate purpose of an organism is to reproduce to
guarantee the survival of its lineage. For this, the organism
has to survive long enough in an environment for which it
has to perform tasks like identifying food, moving around,
seeking shelter etc. Within an organism, we find myriads
of subsystems that perform tasks, e.g., metabolic pathways
that process nutrients, or sensory organs like eyes and ears
that process signals from the environment. If the environment
changes, many goals will be the same but the way in which
an organism can achieve the goals may differ. The changes
in the environment may also be drastic such that new tasks
appear for which novel traits are necessary.

One can understand all this as organisms being constantly
in a process of finding and applying solutions to tasks
posed by environments [39]. In contrast to classical problem-
solving, the solution object (the organism) is already there,
the result of solving a sequence of previously posed tasks.
If there is a new task, nature cannot start from scratch but
the solution object can only be adapted or adapt itself. Con-
sequently, it is advantageous for organisms to be flexible in
the sense of Definition 1. Adaption can basically take place
in two forms: within the lifespan of an organism,which is
collectively referred to as phenotypic plasticity [13], or across
generations through natural evolution, which is called evolu-
tionary adaption.

Evolutionary adaption of organisms to changing envi-
ronmental conditions happens through a population-based
mutation-variation-selection cycle. Mutations introduce ran-
dom changes to genomes which leads to phenotypic varia-
tion among the organisms in the population which results in
varying fitness to the environment. Individual organisms with
a higher fitness have a better chance to survive and repro-
duce such that they eventually will dominate the population.
Nature ‘‘selects’’ the fittest. Though mutations are random,
the effects on the phenotype are not. Biologists have made the
striking observation that the diversity in the genetic material
of different organisms is substantially smaller than the diver-
sity in their anatomy, morphology, and physiology. More-
over, the complexity of observable phenotypic adaptions is
too large for a one-to-one relationship between genetic and
phenotypic change. In consequence, the organism must play
the role of a transformation engine that links genetic change
in a complex, non-linear way to phenotypic change, see

FIGURE 2. The organism plays an active role in the evolutionary process
by rendering random genetic change into potentially useful phenotypic
variation.

Figure 2. The organisms capacity to render small, random
genetic changes into potentially useful and novel phenotypic
traits is called its evolvability [40]. Higher evolvability means
higher flexibility in the sense of Definition 1. The theory
of facilitated variation [41] is devoted to explaining what
properties of organismal design and biological processes
increase evolvability. This theory has been one of our starting
points to elaborate the elements of flexibility as presented in
Section IV.
In contrast to evolutionary adaption, phenotypic plasticity

refers to adjustments of an organism to environmental con-
ditions within its lifespan, which do not the result from her-
itable changes to the genome. Hence the name ’’phenotypic
plasticity‘‘ as the same genotype can result in different pheno-
types. Phenotypic plasticity can be observed with regard to all
aspects of an organism: its form and structure (morphology);
the way chemical and physical functions are carried out in
organs, cells, and biomolecules (physiology); its behavior,
i.e., internally computed and coordinated responses to various
stimuli or inputs. Phenotypic plasticity can refer to devel-
opmental effects, which lead to long-lasting adjustments to
environmental conditions, but also includes acclimatization,
i.e., temporary, reversible adjustment that happens in short
periods of time (hours to weeks). Learning in the classical
sense is phenotypic plasticity that changes behavior.

Remarkably, there is a strong overlap between the char-
acteristics of biological systems that are considered to be
a source of phenotypic plasticity [13], [42] and the char-
acteristics that are considered to increase evolvability. It is
particularly remarkable that conservation of certain core
functionalities, modular and hierarchical organization, and
the use of exploration, which play an important role in
evolvability [40], [41], are also essential ingredients for the
flexibility of human learning and thinking [31], [43]. The
omnipresence and universality of certain design character-
istics that foster flexibility in living systems with regard
to very different tasks is what makes us believe that their
role should also be investigated more deeply and holistically
for man-made task-performing systems. Promoting this idea
and research related to this idea is the main motivation for
introducing the elements of flexibility in Section IV.

III. SYSTEM FLEXIBILITY OPTIMIZATION
In this section, we take some first steps towards a general,
formal theory of system flexibility that equally applies to any
area in which systems appear that have to perform tasks.
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FIGURE 3. General concepts involved in system flexibility optimization and their relations. The three main concepts explicitly
mentioned in Definition 2 are shown in bold.

The key idea is that we cast the problem of improving
system flexibility such as informally defined in Definition 1
as an optimization problem over a space of task-performing
systems. For this, we first have to specify a task context,
formally given by a tuple

W = (T ,Q), (1)

where T is a set of tasks and Q a (transition) probability
distribution on T . The distribution Q either describes the
probability of a task to come or the probability of a task
following another task which tasks. Next, we have to specify
a flexibility measure fW (S) which quantifies in a suitable
way how flexible a given task-performing system S is in
the given task context W . Larger values of the flexibility
measure indicate larger flexibility. There is more than one
way to formalize the two flexibility aspect ‘‘adaptability’’
and ‘‘task diversity’’ which we have informally described
in Definition 1. We elaborate some flexibility measures in
Section III-C. Let us for now just state that these flexibility
measures are based on certain cost functions that measure the
cost to reconfigure or adapt a system. Maximizing flexibility
then amounts to minimizing reconfiguration or adaption cost
in a suitable way.

Abstractly, we may now define the general system opti-
mization problem as follows:
Definition 2: Given a space of task-performing systems S,

a task context W = (T ,Q), and a flexibility measure

fW : S → R

for the given task context, the goal of system flexibility opti-
mization is to find the task-performing system S∗ with the
maximal flexibility in the given task context,

fW (S∗) = max
S∈S

fW (S).

In practice, we will seldom be in a situation where we
can perform an extensive search in a large space of different

task-performing systems suitable for the considered task con-
text. Hence, we will rarely have the chance to find the opti-
mal system. Rather, we will be interested to systematically
understand which characteristics in the system design allow
us to increase the value of the flexibility measure fW . Here
the elements of flexibility, which we introduce in Section IV,
come into play. The basic hypothesis driving this paper is that
the elements of flexibility, properly incorporated in the design
of a task-performing system, allow to attain high flexibility
values for various flexibility measures in many task contexts.

In the following, we discuss the general concepts that have
to be put to concrete terms in order to systematically approach
system flexibility optimization. In this way, we provide a
formalism that is supposed to help interdisciplinary teams
in communicating about system flexibility. For an overview
of the involved concepts, see Figure 3. To demonstrate the
application of the formalism, we present some brief examples
in Section III-D and a detailed example in Section V.

A. TASKS
A key ingredient of system flexibility optimization is the
definition of a task context. It describes the tasks with regard
to which we wish to have a flexible system. A comprehensive
formulation of a task includes

i) a description of the goal,
ii) a description of additional requirements or conditions,

iii) a description of the environment,
iv) and a performance measure indicating if the task is

performed sufficiently well or quantifying how good a
system is in performing the task, e.g. in terms of quality
or resource consumption.

Let us explain why it is important to include all these
aspects in the task definition. When speaking informally
about a task, we usually associate the task with the goal to be
achieved. However, additional requirements, environmental
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conditions and how we measure performance affect the char-
acter of a task and its difficulty. Hence, properly formu-
lated, performing a task means to achieve a goal in a given
environment according to certain performance criteria while
possibly fulfilling additional requirements or conditions. This
is easily seen by an illustrative example. Consider a task
where the goal is throw a ball into a basket. An example
for a further requirement is from where on the court the ball
has to be thrown into the basket. Examples for environmental
conditions are wind direction and strength. The performance
measure can simply be the percentage of throws where the
ball hits the basket but we can also be more demanding
and only count those throws as hits where the ball does not
touch the rim of the basket. Everybody who has ever trained
to throw a ball into a basket will remember how changing
the position, changing wind conditions, and demanding a
cleaner throw requires extra training because one has to learn
how these different scenarios affect the arm movement to be
performed. Hence, when we speak of ‘‘throwing a ball into
a basket’’ we may actually refer to a whole context of tasks
that share the same goal but vary in other aspects.

Formally, a task can considered as a tuple

T = (E,F, t,P). (2)

The space E describes the possible states of the environment
which the system interacts with. Additional requirements and
conditions lead to a subset F ⊆ E of feasible states that any
system that is trying to perform the task is allowed to set the
environment to or has to try to keep the environment in. The
goal is formally described by a map

t : X → Y , (3)

where X ⊂ F is a subset of initial states and Y ⊂ F∗ a subset
of target states or target state sequences (F∗ is the Kleene
closure of F , i.e., the set of all vectors of arbitrary dimension
with components in F). The map t describes which target
state or sequence of states is supposed to be reached from
which initial state. Typically, the function t will map initial
states to target states if the goal is about achieving certain
static properties of objects in the environment, e.g., a tar-
get position. If the goal is about achieving certain dynamic
properties, e.g., maximizing the speed of a moving object,
then the target will often be described by a sequence of states
that represent the desired dynamic property. We can think
of the map t as an oracle that perfectly describes what to
achieve. That a system performs a task basically means that
it runs a process that approximates the map t sufficiently
well. We describe this formally in Section III-B3, after we
have explained the notion of task-performing system in more
detail. In Section III-B3, we also give a formal description
of the performance measure P. Note that for many real-
world tasks, it will be hard, impractical or even impossible
to analytically specify the map t but we might approximately
realize it by a high-fidelity simulation engine or have finitely
many samples of it in the form of training and test data.

FIGURE 4. System-environment interaction.

B. TASK-PERFORMING SYSTEMS
In general, a task-performing system S is a collection of
components that serve three purposes:

• Storage components hold collections of objects.
• Sensory components can perceive signals from the envi-
ronments, e.g., cameras or eyes.

• Manipulatory components can take and manipulate
objects in the environment of the system or in storage
units, e.g., actuators, tools, computation units, enzymes
and other functional proteins, etc.

As in reinforcement learning, we do not consider the
task-performing system as a part of the environment but
that it receives signals/percepts from the environment and
extracts and manipulates objects from the environment
through sequences of actions, see Figure 4. If the task-
performing system is equipped with a learning system as
described in Section III-B4, then it is an intelligent agent.
For a best-practice discussion where to draw the boundaries
between system and environment, we refer to [6, Chap. 3].

1) SYSTEM DESIGN AND CONFIGURATION
A system design or system architecture describes the compo-
nents a system consists of, how they are arranged and what
connections between the components exist or are possible.
The system design determines which basic actions or opera-
tions can be executed by the system.

The components that make up the system can be config-
urable. A system configuration is a concrete value assignment
for the set of adjustable parameters of the system. The nature
and complexity of the adjustable parameters can be quite dif-
ferent depending on the type of system under consideration.
Moreover, which adjustable parameters we actually take into
consideration will depend on the tasks that we are interested
in. Examples for adjustable parameters are:

• Simple numeric parameters of a controller.
• The weights and intercept terms in an artificial neural
network.

• The program that is to be executed by a computer.
• Genes in the genome of an organism that are switched
on or off by a natural mutation or in a controlled
experiment.

Given a system S, we denote by 0(S) the system con-
figuration space, which is the space of all possible system
configurations. Initially, any system S has to be in some initial
configuration γ0 ∈ 0(S).
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2) ALGORITHMS AND PROCESSES
A process is a finite sequence of actions that manipulate
physical objects (e.g., substrates or work pieces) or virtual
objects (i.e., data) in the system’s environment. The object or
environmental state that the first action manipulates is called
the input. The object or environmental state that results from
the manipulation of the last action is called the output.
An algorithm is an unambiguous description of a sequence

of instructions that tell the system which actions to perform.
Processes result from executing algorithms on a system.
For technical systems, the algorithm underlying a process is
always known, while for biological systems, the algorithm
that leads to the observed process might be unknown. If a
task-performing system has no configurable components,
then there is exactly one, hard-coded algorithm that is imple-
mented by the system and the resulting processes have hard-
coded characteristics. Configurable systems can implement
more than one algorithm and a change in the system config-
uration can alter the characteristics of actions. Given a sys-
tem S and a configuration γ ∈ 0(S), we denote by S(γ ) the
algorithm that is implemented on the system when choosing
the configuration γ . The algorithm S(γ ) and the associated
processes realize a certain input-output relationship, which is
mathematically given by a function

fS(γ ) : X̃ → Ỹ , (4)

where X̃ ⊆ E is the set of accepted inputs and Ỹ ⊆ E
the set of realizable outputs. Running an algorithm on a
system incurs costs, such as the required runtime or some
energy consumption. These costs can generally depend on the
input x ∈ X̃ .
Definition 3: The execution cost

crun(S, γ, x)

are the cost of executing the algorithm S(γ ) on the system S
when the input is x ∈ X̃ . The worst-case execution cost
associated to a configuration are given by

cwor−run(S, γ ) := max
x∈X̃

crun(S, γ, x),

the best-case execution cost associated to a configuration are
given by

cbest−run(S, γ ) := min
x∈X̃

crun(S, γ, x),

and given a probability distribution p on the space of inputs
X̃ , the average-case execution cost associated to a configu-
ration are given by

cavg−run(S, γ ) := E
[
crun(S, γ,X )

]
,

where X is random variable taking values in X̃ with distribu-
tion p.

For simplicity, we consider only the worst-case execution
cost in this paper and denote them by

crun(S, γ ) := cwor−run(S, γ ). (5)

Note that since a configuration change can alter the char-
acteristics of actions it may change the cost and peformance
of an algorithm run.

3) PERFORMING A TASK
Recall from Section III-A that a task is formally given by
a tuple T = (E,F, t,P). Given a task T , a system S in a
configuration γ ∈ 0(S) is able to perform the task if the
actions in the processes resulting from the algorithm S(γ )
keep the environment within the set of feasible states F and
the algorithm S(γ ) leads to an input-output relationship fS(γ )
that approximates the goal map t : X → Y sufficiently
well according to some performance criteria. What ‘‘suffi-
ciently well’’ means precisely is encoded by the performance
measure P. For instance, the performance measure P could
quantify the distance between fS(γ ) and t according to a
norm ∥ · ∥,

P(S(γ )) = ∥fS(γ ) − t∥. (6)

For simplicity, we assume for the remainder of this paper that
P is binary with

P(S(γ )) = 1 (7)

if the system performs the task sufficiently well according to
the performance criteria, and P(S(γ )) = 0 otherwise.

4) LEARNING SYSTEM
If a task-performing system S should be able to put itself into
the correct configuration for a task T and this configuration
is not known in advance, then the task-performing system
must be able to learn and to do problem-solving. To this
end, it needs a subsystem which we generally refer to as the
learning system. The learning system operates on the system
configuration space 0(S).

In the case of problem-solving, the learning system has a
model of the task T that is accurate and powerful enough to
do a targeted search in the configuration space 0(S) without
further interaction with the environment. In the case of learn-
ing, the learning system needs observations and trial-and-
error runs to direct the search in the configuration space and to
learn a model of the task using some learning algorithm, e.g.
backpropagation if the learning system is given by a artificial
neural network.

Note that the task-performing system and the learning
system can coincide. This is for instance the case when we
consider the flexibility of a deep artificial neural network
architecture with regard to a number of object recognition
tasks.

C. FLEXIBILITY MEASURES
Recall the informal definition of system flexibility given
in Definition 1. It has two aspects. The first, which we
call adaptability, puts emphasis on how easy it is to switch
between tasks. The second, which we call task diversity, puts
emphasis on the ‘‘size’’ of the set of different tasks that can
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be performed by the system. In this section, we discuss
how to make these two aspects quantifiable such that we can
optimize a system and its design in terms of these two aspects.

Concerning adaptability, we first consider the special case
where the tasks and suitable system configurations for the
tasks are already known. Then we are only concerned with
the reconfigurability of the systems, i.e., how costly it is two
switch between configurations. Subsequently, we consider
the general adaptability scenario where suitable configura-
tions for tasks are not known in advance and the system has to
do some form of problem-solving or learning to find suitable
configurations.

1) RECONFIGURABILITY
Consider a task-performing system S with configuration
space 0(S) and two different tasks T1 and T2. Let us assume
that for both tasks suitable configurations γ1 ∈ 0(S)
and γ2 ∈ 0(S) are already known that allow the system to
perform task T1 and T2, respectively. Then no learning or
problem-solving is required. However, although γ1 and γ2 are
known, switching between these configurations can still
require some operations that are not for free. For instance,
a reconfiguration could involve to load a substantial amount
of data from disk tomemory or, in the case of amanufacturing
system, it could require to change some tools that leads to a
downtime of the system. We denote the cost (time, energy,
number of operations, etc.) that are necessarily incurred when
moving from one configuration to another as reconfiguration
cost. A first, basic formal definition can be given indepen-
dently of the task concept as follows.
Definition 4: Given two configurations γ1, γ2 ∈ 0(S) of a

system S, the reconfiguration cost

creco(S, γ1, γ2)

are the cost resulting from taking the necessary steps to get
from configuration γ1 to configuration γ2.

As we are interested in low reconfiguration cost for con-
figurations that are associated to tasks, we also would like
to have a definition of reconfiguration cost in terms of two
tasks. For this, we have to take into account that there might
be more than one suitable configuration per task. This leads
us to the following formal definition.
Definition 5: Given two tasks T1 and T2 that can be per-

formed by a system S, let 0(S,Ti) be the set of configurations
in which system S can perform task Ti. Then, the minimal
reconfiguration cost to switch from task T1 to task T2 are
formally given by

cmin−reco(S,T1,T2) = min
γ1,γ2

creco(S, γ1, γ2),

where the minimum is taken over all γ1 ∈ 0(S,T1) and
γ2 ∈ 0(S,T2).
Given two tasks, the smaller the reconfiguration cost for the

corresponding system configurations, the more easily we can
reconfigure the task-performing system. Hence, with regard
to two tasks, it seems natural to define the reconfigurability

of a system either as the reciprocal of the minimal reconfig-
uration cost,

reconfigurability =
1

reconfiguration cost

or as the negative reconfiguration cost

reconfigurability = −reconfiguration cost.

In both cases, smaller reconfiguration cost means higher
reconfigurability. The latter approach is more suitable from
a numerical point of view as taking a reciprocal can have
numerical stability issues. Hence, we only use the latter in
the following. Generalizing the reconfigurability notion to
more than two tasks, there is more than one way to do
this. One option is to take a conservative, worst-case point
of view. Then we ask for the maximal pair-wise minimal
reconfiguration cost that can occur for a given system in a
tasks context.
Definition 6: The worst-case reconfiguration cost of a

system S in a tasks context W = (T ,Q) are given by

cwor−reco
W (S) := max

T1,T2∈T
cmin−reco(S,T1,T2).

Then, we define the worst-case reconfigurability as

ρwor
W (S) := −cwor−reco

W (S).
Another, less conservative approach is to consider the min-

imal reconfiguration cost in the average-case.
Definition 7: Given a task context W = (T ,Q), let T1 and

T2 be two independent random tasks taking values in T with
distribution Q. Then, the average-case reconfiguration cost
of a system S in the context W is given by

cavg−reco
W (S) := E

[
cmin−reco(S,T1,T2)

]
.

Then, we define the average-case reconfigurability as

ρ
avg
W (S) := −cavg−reco

W (S).
Using fW = ρwor

W or fW = ρ
avg
W as the flexibility measure

in Definition 2, we optimize the task-performing system for
reconfigurability.

2) ADAPTABILITY
If a suitable configuration for a new task T is not already
known, then the learning system has to do some kind of
problem-solving or learning. In addition to reconfiguration
cost, adapting to the new task T then also incurs search or
learning cost, e.g., cost to compute a suitable configuration,
the number of observations, or trial-and-error runs to find
a suitable reconfiguration. By adaption cost we denote the
combination of learning and reconfiguration cost. Formally,
we define adaption cost as follows.
Definition 8: Given a task T and a system configura-

tion γ ∈ 0(S), the adaption cost

cada(S, γ,T )

denote the effort that is necessary for the system S in con-
figuration γ to find and attain a configuration γ ′

∈ 0(S)
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FIGURE 5. System adaption starting from some arbitrary system
configuration compared to system adaption from a configuration that is
optimal for a previous task T1.

via problem-solving or learning that allows it to perform
task T . If no suitable configuration exists or cannot be found
to perform task T , then we set

cada(S, γ,T ) = ∞.

If the task-performing system we are interested in is in fact
the learning system, then we will often find that reconfigura-
tion cost are negligible compared to learning cost. Adaption
cost then effectively reduce to learning cost. Hence, we can
also consider learning cost as a special case of adaption cost.

When a system adapts, the crucial difference to classical
learning or problem-solving is how one gets to the config-
uration γ in Definition 8 from which the learning system
starts the search in the configuration space 0(S). If it was
arbitrarily fixed or chosen at random, thenwewould in fact be
considering a classical learning or problem-solving situation.
However, with adaption, we are interested in situations where
the configuration γ results from the fact that system S has
already been configured for another task T1, or more gener-
ally, that the system has already been performing a sequence
of tasks

Hn = (T1, . . . ,Tn), (8)

from the context W which we call a task history of length n.
There are several possibilities how a task history may arise.
For instance, it may be an arbitrary but fixed selection of
tasks from the context. The tasks in the history may also
be drawn independently at random from the context, which
makes Hn a random vector. A random task history may also
be constructed from a Markov decision process on the task
set T or a subset thereof such that a task Tj follows a task Ti
with some transition probaility.

A task history gives the learning system a chance to gain
experience and knowledge about the context W , which is
then reflected in the system configuration γ . For instance, the
system configuration γ might already be in the right region of

the configuration space or the system might have developed
a better search strategy to find a suitable configuration for the
new task T , see Figure 5 for an illustration. However, if the
new task T is completely unrelated to the tasks in the task
history, then using the knowledge gained from the task history
can also worsen the search compared to a random search.
In any case, we expect that the adaption cost depend on the
task history. This leads us to the following definition.
Definition 9: Let n ∈ N. Given a task history Hn of

length n and a task T , the adaption cost

cada(S,Hn,T )

are the search and reconfiguration cost that system S gen-
erates to be able to perform task T if it has previously been
able to perform the tasks in the task history Hn. For n = 0,
we let H0 = {} be the empty set and define cada(S,H0,T ) to be
the search and reconfiguration cost that system S generates to
learn to perform the task T from scratch, i.e., from the initial
configuration γ0.

Equipped with a formal definition of adaption cost, we can
now define adaptability in a precise way.
Definition 10: Let n ∈ N. Given a random task history Hn

of length n and a random task T from the context W , we define
the adaptability αW ,n(S) of system S with a task history of
length n from the context W as

αW ,n(S) = −E[c(S,Hn,T )].
Note that αW ,0(S) quantifies the ability of the task-

performing system S to learn to perform a random task from
the task context W from scratch. Since the task history is
random in Definition 10, one would in general expect that
the adaptability increases with the size of the task history.
Ultimately, if the learning system is powerful enough and
perfectly capable to learn the structure of the task contextW ,
then we expect that the adaptability converges to the average-
case reconfigurability,

lim
n→∞

αW ,n(S) = ρ
avg
W (S), (9)

as the learning cost decrease to zero. The reconfigurability is
thus an upper bound for the adaptability (and the reconfigu-
ration cost a lower bound for the adaption cost).

3) TASK DIVERSITY
In this section, we discuss ways to quantify the diversity of
tasks that a system is able to perform. This addresses the
second aspect of the informal flexibility definition given in
Definition 1.
Measuring diversity requires in the first place a way to

quantify how related or unrelated two tasks are. Formally,
we can think of a distance measure

d : T × T → [0, ∞) (10)

defined on the task space T , where d(T1,T2) is the larger the
more dissimilar the task T1 and T2 are.

For a task-performing system S, let TS denote the subspace
of all tasks from T which the system S is able to perform. It is
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a natural idea to define task diversity as the diameter of the
set TS ,

1W (S) := diam(TS ) = max{d(T1,T2) : T1,T2 ∈ TS}. (11)

Such a definition, however, completely disregards how effi-
ciently the system performs the tasks and howwell the system
exploits similarities when adapting from one task to another.
Moreover, it neglects the structure of the task context encoded
in the (transition) probability measure Q, e.g., how important
a task is.

To better capture efficiency aspects and the structure of
the task context, we propose to measure task diversity as the
longest chain of representative tasks from the task context
which the task-performing system is able to perform given
a total cost budget. In the following, we formalize this idea.

We begin with a notion of total cost. Let S be a
task-performing system with some initial configuration γ0 ∈

0(S). Consider a sequence T1, . . . ,Tn from a given tasks
context W . Optimizing the system to perform task T1 puts
it into a configuration γ1 ∈ 0(S). This will have some initial
configuration and search cost

cada(S,H0,T1), (12)

where H0 = {} is the empty task history. The system is then
equipped with a task history H1 = (T1) and performing the
task has execution cost crun(S, γ1). Optimizing the system for
the subsequent task T2 puts it into a system configuration
γ2 ∈ 0(S) at adaption cost

cada(S,H1,T2). (13)

Performing task T2 has cost crun(S, γ2) and its task history is
now

H2 = (T1,T2). (14)

Iteratively proceeding in this way until the system has per-
formed all tasks T1, . . . ,Tn generates the following total cost.
Definition 11: Let S be a task-performing sytem with ini-

tial configuration γ0 ∈ 0(S). Let T1, . . . ,Tn be a sequence of
tasks from the context W . Let

H0 = {}

and, for i = 1, . . . , n, let

Hi = (T1, . . . ,Ti).

Furthermore, for i = 1, . . . , n, let γi ∈ 0(S) be the configu-
ration resulting from adapting the system to task Ti. The total
cost of performing the task sequence Hn is given by

ctot(S,Hn) :=

n∑
i=1

(
cada(S,Hi−1,Ti) + crun(S, γi)

)
.

Now we can formally define task diversity as follows.
Definition 12: Let T1,T2, . . . be an infinite sequence of

independent and identically distributed random tasks from a

FIGURE 6. System designs where task diversity grows faster when
increasing the total cost budget are better optimized for a given context.

given task context W = (T ,Q). For every n ∈ N, let Hn =

(T1, . . . ,Tn). Furthermore, let

ℓ(Hn) = 1 +

n−1∑
i=1

d(Ti,Ti+1).

The task diversity of task-performing system S for a given
total cost budget b > 0 is given by

1W ,d,b(S) = E
[
max{ℓ(Hn) : ctot(S,Hn) < b}

]
,

where the expectation is taken with respect to T1,T2, . . . .
Based on this definition of task diversity, we can say that

one system design is more suitable or better optimized for a
context than another system design if the task diversity of the
former grows faster with the available total cost budget, see
Figure 6 for an illustration.
Note that task relatedness is inherently difficult to measure.

In the end, the relatedness of tasks is given by the similarity of
the algorithms and processes that solve the tasks. Quantifying
task relatedness rigorously in advance is thus hardy possible.
Proxy measures can be derived by human experts evaluating
task relatedness but these measures are not guaranteed to
be correct. Developing formal notions of task relatedness is
an ongoing research topic in statistical learning theory [44].
Hence, in many practical situation we have to accept that
we do not have a distance measure d at hand and thus can
not apply Definition 12. A practical remedy is to simply
assume that all tasks are equally dissimilar. This leads us
to the following special case of Definition 12, which we
call task richness following the biological notion of species
richness which simply is the number of different species in a
population.
Definition 13: Let T1,T2, . . . be an infinite sequence of

independent and identically distributed random tasks from a
given task context W = (T ,Q). For every n ∈ N, let Hn =

(T1, . . . ,Tn). The task richness of task-performing system S
for a given total cost budget b > 0 is given by

1W ,b(S) = E
[
max{k ∈ N : ctot(S,Hk ) < b}

]
,

where the expectation is taken with respect to T1,T2, . . . .
We close this section with a remark on the total cost

and the different roles adaption can play depending on the
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FIGURE 7. Necessary system adaptions (top) vs. system specialization
on-the-fly (bottom).

scenario under consideration. If each task necessarily requires
a different system configuration, then a system adaption is
strictly necessary. In this case, minimizing the adaption cost
is an endeavour that must bemade irrespective of any needs to
minimize the execution cost. This scenario frequently occurs
in manufacturing. However, there are also scenarios where
the same system configuration, say γ̄ ∈ 0(S), works for all
tasks but in an suboptimal way. Then, system adaption is not
strictly necessary but can be still be used to achieve a system
specialization on-the-fly. The goal of the adaption is then to
find a configuration γi such that

cada(S,Hi−1,Ti) + crun(S, γi) < crun(S, γ̄ ). (15)

The minimization of adaption cost is in this case part of the
minimization of execution cost. A practical example for this
scenario is instance-based algorithm selection for NP-hard
optimization problems [45].

D. APPLYING THE FORMALISM
To give some life to the abstract concepts introduced in this
section, we discuss aspects and examples from the research
areas presented in Section II using the language and concepts
of the formalism. A fully detailed application example is
presented in Section V.

1) EVOLVABILITY
One aspect of an organism’s evolvability as defined in [40]
is to reduce the number of mutations needed to produce
phenotypically novel traits. Considering the organism as
the task-performing system and its genotype as the system
configuration, this aspect of evolvability can be understood
as a reconfigurability in the sense of Section III-C2 where
reconfiguration cost is the number of needed mutations to
restore a certain performance, i.e. fitness level, in a new
environment by natural evolution. The number of generations
needed by natural evolution to find the right mutations can
be considered as adaption cost. Task-diversity as introduced

in Section III-C3 is not directly address by the evolvability
definition in [40]. However, it is indirectly involved as a key
motivation to study evolvability is to understand the great
morphological and physiological diversification in metazoan
evolution which led to more and more complex organisms
that are able to perform more and more complex immaterial
tasks such as listed in Table 1.
One should note that capturing biological evolvability rig-

orously by formal concepts such as the ones developed in this
section is hardly possible. Due to the richness of influencing
factors, it is already very difficult to define the notion of fit-
ness properly and almost impossible to measure it rigorously,
see, e.g, [46], [47, p. 219ff], and [48] for mathematical mod-
els. Cost/benefit studies are mostly conducted in laboratory,
greenhouse, or outdoor cages, and may not accurately reflect
the realities of nature [13]. In other words, we do not really
know the natural task context in which organisms are flexible.
For this and other reasons, it is difficult to evaluate how par-
ticular characteristics of cellular, developmental, and physio-
logical processes affect an organism’s evolvability [40].

Due to such experimental intricacies, computer simula-
tions based on simplified models play an important role in
the study of evolvability. Such simplified models also have
the advantage that they can be rigorously described in terms
of the formalism developed in this section. In Section V,
we demonstrate this by reformulating results on the evolv-
ability of logic circuits using the concepts and terminology
of the formalism.

2) LEARNING TO LEARN
For learning to learn, let us discuss in general the case of
transfer learning where we take a machine-learning model
trained on a sequence of n source tasks from a given task con-
textW as a starting point for training amodel on a new, related
target task T from the same task context W . Then, the task-
performing system S under consideration is a learning system
consisting of a machine-learning model in combination with
a meta-learning algorithm that learns how to efficiently fit
the model to a new task when it has been pretrained on prior
tasks. The configuration space 0(S) is given by the trainable
parameters of the model and the parameters of the meta-
learning algorithm. In the beginning, when there has been
no prior task, the initial system configuration is typically
random. Adaption cost is given by the amount of training
data needed for fitting the pretrained model to the new task.
Now, learning to learn as defined in Section II-B means that
the adaptability αW ,n(S) of the system, see Definition 10,
increases with increasing n.

3) MANUFACTURING FLEXIBILITY
We discuss a basic example of machine flexibility where the
task-performing system S is a single machine tool, and each
operation i that can be performed by the machine tool is
considered a task Ti associated with a unique configuration
γi of the machine tool. In [49] the n × n matrix FRS = (aij)
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is considered where n is the number of operations that can
be performed by the machine tool and aij = creco(S, γi, γj)
are the reconfiguration cost in terms of direct cost, quality,
and time. The paper then defines machine tool S1 to be more
flexible than machine tool S2 if FRS1 ≤ FRS2 where ≤ is
understood component-wise. The authors note that this is a
very conservative flexibility notion. Indeed, it is even more
conservative than comparing the flexibility of the machine
tools using the worst-case reconfigurability, see Definition 6.

E. RELATED ASPECTS OF SYSTEM DESIGN AND
OPTIMIZATION
In this section, we discuss relations of system flexibility to
other aspects of system design and optimization.

1) ROBUSTNESS
A system is robust if it continues to function in the face of
perturbations [47]. Depending on the context and the system
under consideration, the nature of a perturbation can be quite
different and it can be considered small or large. Typical
small perturbations are erroneous or noisy inputs or errors
occurring during process execution. Typical examples for
large perturbations are damages or failures within system
components or drastic changes in requirements or environ-
mental conditions. For small perturbations, system robustness
is closely related to system stability [50]. Depending on the
field, robustness to large perturbations is also referred to as
resilience [51], [52] or fault tolerance [53].

In general, we can distinguish two different approaches
to robustness. The first seeks for system designs that allow
the system to cope with perturbations in a static fashion
without changing its configuration. This corresponds more to
the daily use of the term ‘robust’ and in some areas of engi-
neering, ‘robust design‘ solely refers to this first approach,
e.g., in controller design [54], [55] or supply chain risk
management [56]. In the second approach, a system achieves
robustness by adapting its configuration to the changed sit-
uation caused by a perturbation. Here we have an obvious
connection to system flexibility, in particular, in the case
of large perturbations. Sustaining a certain function is the
overarching goal and perturbations lead to variations in the
tasks that have to be performed to reach the overarching goal.
System flexibility on a lower level can thus be a means to
make a system robust on a higher level. High adaptability
means that the system can quickly restore its function in the
face of perturbations, and high task diversity supports the
system in coping with a large variety of perturbations.

Concerning the search in a configuration space, system
flexibility and robustness on the same level can be in conflict.
While it is favorable for robustness that many configurations
lead to the same system functionality, it is more difficult
to find novel system functions under such circumstances.
The monograph [47] discusses how the structure of search
spaces can mitigate this conflict in the evolution of biological
systems such that evolvability and robustness can go hand in
hand, see also Section IV-E.

2) MULTI-OBJECTIVE OPTIMIZATION
Assume to be given n tasks T1, . . . ,Tn with associated perfor-
mance measures P1, . . . ,Pn (this includes the case where all
tasks are basically the same expect that we want to optimize
different performance criteria or objectives). Leaving aside
any feasibility constraints, the multi-objective optimization
problem of finding a system configuration that is optimal for
all n tasks simultaneously can mathematically be formulated
as

max
γ∈0(S)

(P1(γ ), . . . ,Pn(γ )), (16)

where the maximum is taken component-wise and

Pi(γ ) := Pi(S(γ )) (17)

is the performance of system S in doing tasks Ti when it is in
configuration γ .

Typically, there will be no configuration that maximizes
all performance measures simultaneously. Therefore, one is
interested in optimal trade-offs between the tasks perfor-
mances. Concretely, one is interested in Pareto-optimal con-
figurations, which are configurations that cannot be improved
for any of the tasks without degrading the performance in at
least one of the other tasks. In mathematical terms, a system
configuration γ ∈ 0(S) is said to Pareto-dominate another
system configuration γ ′

∈ 0(S) if

Pi(γ ′) ≤ Pi(γ ) (18)

for all i ∈ {1, . . . , n} and

Pj(γ ′) < Pj(γ ) (19)

for at least one j ∈ {1, . . . , n}. Now a system configuration is
called Pareto-optimal if there does not exists another configu-
ration that dominates it. The set of all Pareto-optimal configu-
rations is called the Pareto front. If no preferences with regard
to the tasks are available, then solving the multi-objective
optimization problem is understood as approximating or
computing all or a representative set of the the Pareto
front [57].

It is common to scalarize the multi-objective optimization
problem [58]. For scalarization, one chooses a scalar fitness
function

h(γ ) = h(P1(γ ), . . . ,Pn(γ )) (20)

such that configurations maximizing h are Pareto optimal
for the original multi-objective problem. The fitness function
h can be used to incorporate importance differences with
regard to the tasks. Under certain assumptions on the fitness
function h and the performancemeasuresP1, . . . ,Pn, one can
show that the Pareto front takes the form of a polytope with n
vertices in the configuration space 0(S), where vertex i is the
configuration that maximizes Pi [59].
Let us discuss the difference in focus between system flex-

ibility and multi-objective optimization based on the example
in Figure 5 where we considered three tasks. Under the
assumptions described in the previous paragraph, the Pareto
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front forms a triangle. With multi-objective optimization,
our interest is the triangle as such. For instance, we could
be interested to determine its position in the configuration
space. Given certain preferences with regard to the tasks,
we could also be interested in finding the optimal trade-off
configuration in the triangle reflecting the preferences. Ide-
ally, we would like to have a system design that makes the
triangle as small as possible such that we have to make
less severe trade-offs. In contrast, with system flexibility,
we are interested in system designs that allow us to travel as
cheaply as possible within the triangle. In a mixed scenario of
multi-objective optimization and flexibility, the interest could
be to have means to recalculate the Pareto front efficiently
when conditions change that affect all considered tasks.

IV. THE ELEMENTS OF FLEXIBILITY
With Definition 2 and the flexibility measures defined in
Section III-C, we have formalized what it means to opti-
mize for reconfigurability, adaptability and task diversity.
An aspect that we have not addressed yet is the space of
system designs that we search in. What kind of system
designs we consider is central for practically doing system
flexibility optimization since a search step will in many cases
be very costly. We have to evaluate the performance of a
task-performing system on many different tasks or task vari-
ations and the evaluation on one single task can already be
costly, in particular for real-world tasks. Hence, to evaluate
as few system designs as possible, we are interested to search
only in relevant directions, that is, to use and vary design
features where there is in general a good chance that they
affect the flexibility of the system.

What are good candidates for such design features? A
look at nature provides interesting clues. We have seen in
Section II-C and Section III-D that with evolvable organisms
nature has brought forth task-performing systems that are
reconfigurable, adaptable and task-diverse on an evolutionary
scale. Phenotypic plasticity (Section II-C) and the flexibil-
ity of human learning (Section II-B) demonstrate flexibility
within the lifespan of organisms. Remarkably, there is a
strong overlap between the structural and behavioral char-
acteristics of biological systems responsible for evolvability,
phenotypic plasticity, and the flexibility of human learning.
It seems that no matter what level of biological organization
and what kind of tasks we consider, we always find the
following features in the behavior and design of biological
systems that promote flexibility:

1) Hierarchy,
2) Modularity,
3) Weak regulatory linkage,
4) Exploration,
5) Degeneracy and neutrality,
6) Weak links.

We call these the elements of flexibility. Their omnipres-
ence in living systems suggests that they should also play a

vital role in the flexibility optimization of man-made task-
performing systems.

How can we make use of the elements of flexibility in
the flexibility optimization of man-made task-performing
systems? First of all, a human system designer can think
about how to incorporate the elements in a task-performing
system. From this perspective, some of the elements are
certainly nothing new. For instance, hierarchical and modular
design are well established practices in computer science and
engineering. A more interesting perspective is to think about
how the elements of flexibility can be used in algorithmic
approaches to system flexibility optimization. For instance,
if we have metrics that quantify to what degree an element of
flexibility is present in a task-performing system, we could
use the elements as quality dimensions in the recently very
popular quality-diversity algorithms [60], [61]. It is beyond
the scope of this paper to detail such ideas further. We point
out some interesting research questions in this direction in
Section VI.
The remainder of this section is organized as follows.

We properly introduce each of the elements of flexibility,
briefly discuss available approaches to quantify the presence
of an element, and give an overview of how the elements of
flexibility appear in biological systems and promote flexibil-
ity. The latter is intended primarily as a source of inspiration
and a motivation to think in a bio-inspired way about the
potential to incorporate the elements of flexibility in man-
made task-performing systems. As any form of adaption in
a man-made task-performing systems involves some form of
learning and adjusting of model structures and/or parameters,
it is a debatable point if a distinction between evolvability,
phenotypic plasticity, and learning flexibility makes sense
for man-made task-performing systems. Hence, to keep the
presentation of the elements of flexibility concise, we focus
mainly on evolutionary aspects in the following.

A. HIERARCHY
1) DEFINITION
A hierarchical system can be defined as system that is com-
posed of interrelated subsystems, each of which is hierarchi-
cal again until some lowest level of subsystem is reached [62].
A special form of hierarchy arises from recursion. Here
the same subsystems appear on each level of the hierarchy.
Likewise to systems, processes and tasks can be hierarchical.
A process being hierarchical means that there is an algo-
rithmic description of the process that has a hierarchical
structure. A hierarchical decomposition decomposes a given
system, process or task into a hierarchy of interrelated ele-
ments. This yields a hierarchical view or representation of the
system, process or task, which does not have to be unique.
A hierarchical decomposition usually leads to a description
of increasing detail along the levels of the hierarchy. In a
hierarchical composition, systems are built by combining
primitive elements which in turn can be combined to create
more complex systems, and so on.
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2) METRICS
In general, a hierarchy measure is a function that maps
graphs to real numbers, typically in the range [0,1] with
high values indicating a strong hierarchical organization and
low values indicating the absence of hierarchy. Examples are
the global reaching centrality (GRC) [63], the random walk
hierarchy measure [64], and other measures derived from
information-theoretic considerations [65].

3) EXAMPLES
Hierarchy has long been identified as an important feature
of complex biological systems, contributing both to their
robustness and adaptability [62], [66], [67]. For example,
Simon [62] used the watchmaker parable already in 1962 to
argue that it is much easier and faster to evolve hierarchical
systems by first evolving the elementary subsystems and
then building up on and reusing them when necessary. Some
examples of the presence of hierarchy in complex biological
systems are given below:

• In the metabolic network of E. coli, the properties of
scale-free distributions (only a few nodes with many
connections) and modularity (high clustering coeffi-
cient) coexist in a hierarchical structure formed by
highly interconnected modules that combine in larger
modules, both structurally and functionally [68].

• The gene regulatory networks of E. coli and S. cerevisiae
and the network formed by the administrative organi-
zation of the government of Macao have a hierarchical
structure where the mid-level nodes are more essen-
tial [69]. Regulatory networks are also part of a higher
hierarchy, as especially the top-level nodes receive sig-
nals from external agents.

• Brain networks have the property of hierarchical modu-
larity both anatomically and functionally. This has been
shown for cortical networks of the cat brain, where
a node is a cortical area and edges are interactions
between cortical areas [70], and human brain functional
networks, where nodes correspond to brain regions and
connections are made between nodes if their functional
time series are sufficiently correlated [71].

A sophisticated example for the occurrence of hierarchy
in nature is the hierarchical refinement of the body plan
during embryogenesis [72], [73], see Figure 8. In the very
early stages, relatively little spatial organization of the cells
is given. This quickly changes and a spatial division of the
embryo starts to occur. Cells start to migrate to different
parts in order to form layers. These layers are divided into
further segments such that a two-dimensional coordinate
system is established in the embryo, which describes the
high-level body axes. The segments in this coordinate sys-
tem are the starting point for the development of secondary
fields, in which precursors and initial structures for organs
and appendages begin to grow such as the heart, the nervous
system and limbs.With the secondary fields, additional, more
fine grained coordinate systems are established to control

FIGURE 8. Generalized scheme of embryonic development with selected
stages of hierarchical refinement of the body plan. 
 2013 John Wiley &
Sons, Ltd.

positioning, number and identity of forming structures. This
is followed by further divisions into subdomains and com-
partments.

A small group of genes, which is called the genetic toolkit
of development, controls the developmental process. The
formation of the first high-level body axis is controlled by
five groups of genes of the toolkit that influence different
parts of the axis formation. Other groups of genes control
the formation of the second high-level body axis. A very
important role for the secondary fields play the Hox genes.
This is a family of genes which act as selector genes to initiate
the development of certain organs, cell differentiations or
compartments. It is important to understand that these genes
themselves do not describe how to develop certain body parts
but only trigger developmental modules located elsewhere
in the genome. An often-observed phenomenon is that the
order of the selector genes in the genome corresponds to the
order of the segments that they influence, which is called
collinearity [73].

The genetic toolkit of development is highly conserved
across all animal species. Some genes, though not exactly the
same, can even be interchanged between animal species as
different as a fly and a mouse [73]. This suggests that evolu-
tion once has found a program superior to all other possible
ways of how to develop organisms. This program is since
then only varied, refined, and enhanced. It is an elaborate
combination of hierarchy, modularity (see Section IV-B), and
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exploratory behavior (see Section IV-D) that helps organisms
to adapt during evolution [40] but also to adjust to environ-
mental conditions within their lifespan [13].

The origins of hierarchy during evolution is still an ongoing
research topic. The work in [74] defines a three dimensional
space of directed networks in order to characterize how hier-
archical a network is. Both randomly generated artificial net-
works and a number of real networks from biology, society,
and technical systems have a bow-tie architecture, are not
ordered, and are not feedforward, lying in the same region
of this space. This suggests that in many cases, hierarchy
in nature can be a byproduct of randomness and of how
networks are generated instead of a result of evolutionary
advantages or selection pressure. Some networks, however,
lie outside this region, as gene regulatory networks, ecolog-
ical networks, and electronic circuits, suggesting that some
form of selection pressure may be at work.

Flack et al. [75] argue that higher levels in the hierarchy of
a system can act as slow variables, which are variables that
serve as aggreate or average measures over a larger number
of lower level system variables. As such, slow variables tend
to oscilate less over time, and a larger change in lower level
variables is required for that to result in a change in a higher
level, or slow, variable. On one side, slow variables reduce
uncertainty and contribute to the robustness of a system –
as they are more stable, selection can act on them instead
of tracking every change on lower level variables. On the
other hand, they also provide feedback to and control over
lower level variables, facilitating variation, making it possible
to selection act on different levels, and thus contributing to
evolvability.

In [76], Mengistu et al. suggest that a selection pressure
towards minimizing connection costs in networks is one of
the explanations for the emergence of hierarchy in biological
systems. A selection pressure on connection cost is biolog-
ically plausible, given that some networks, like the brain,
are optimized with regard to connection cost. They con-
duct experiments where an evolutionary algorithm evolves
a neural network to match the input and output of a simple
boolean circuit. When optimizing both for quality and lower
connection cost, the circuits evolved present higher modu-
larity and hierarchy and converge faster. There is also an
increase in functional hierarchy, where individual nodes in
the solutions are responsible for solving subtasks. Further-
more, the obtained modular and hierarchical solutions also
adapt faster to solving a related task (a circuit with a related
pattern). All of these observations also hold when the system
is configured to produce solutions that are hierarchical but not
modular, showing that the effects of hierarchy are additive to
modularity and can be isolated.

B. MODULARITY
1) DEFINITION
Modularity is studied in many areas with differing defini-
tions that have a common gist, however. In the strongest

sense, we call a subsystem a module if it has the following
properties:

1) Separation of function: eachmodule has a distinct func-
tion and thus carries out a separable subtask within the
system.

2) Reusability: The subtask solved by a module appears
frequently in the overall task or in many different tasks.

3) Recombinability: The module can be usefully com-
bined with other modules to form new systems capable
of solving different tasks.

4) Encapsulation of detail: Communication with the part
happens via an interface such that internal details can
be unknown to other modules. There is typically more
intra-module interaction than inter-module interaction.

Modularization is the process to decompose a given system
into modules.

2) METRICS
In contrast to technical systems, identifying modules in bio-
logical systems is a reverse engineering process that requires
measures to quantify the presence or absence of the different
aspects of modularity. Reusability can be derived from reoc-
currence of structures in a biological system, e.g., via network
motif identification [77], [78]. Encapsulation of details can be
measured by clustering techniques or methods to find cliques
or communities in graphs [79], [80]. Function identification is
certainly themost challenging aspect that requires assessment
by human experts or costly algorithmic approaches, e.g.,
subnet output comparison to reference values [81].

3) EXAMPLES
Modularity is a well known property of complex biological
systems [82], which can mostly be decomposed into subsys-
tems where inter-system interactions are less frequent than
intra-system interactions [62]. In turn, changes in specific
subsystems have a lower chance of negatively affecting the
whole organism, promoting robustness and evolvability [40].
Some examples of modularity in biological systems are:

• Different cell types have specialized functions in the
organism, and form different organs which have specific
functions [83].

• Neuronal networks in animal brains have modular
structures - some motifs appear more frequently than
others [84].

• If one models protein-protein interactions as a protein
network, in which nodes correspond to proteins and
edges to interactions, it is possible to identify modules -
sets of highly connected proteins with less connections
to other sets [83].

• Some evolutionary traits can also be viewed as modules,
as, for example, some beak traits in birds, which were
evolved independently from each other [83].

• The body plan of all metazoans is similar in an early
stage (phylotypic stage), composed of modules (con-
served core processes) that can evolve to very different
bodies [40], see also Section IV-A.
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FIGURE 9. Examples for the five basic functional module types of sensory
transcription networks in cells. (a) autoregulation, (b) single input
module (SIM), (c) bi-fan, (d) two-output feedforward loop, (e) dense
overlapping regulons (DOR).

• Sensory transcription networks in cells are basically
build from only four types of functional modules [85],
see Figure 9.

The debate what constitutes modules in biological systems
is not settled [86]. While reusability, recombinability and
encapsulation of detail is frequently encountered, separation
of function does often not apply to modules in biological
systems, see Section IV-E. From the examples given above
one can differentiate three types of modularity at different
levels of biological organization: variational modules are sets
of features that vary together throughout evolution; func-
tional modules are sets of features that together perform a
physiological function; developmental modules are elements
responsible for pattern formation and differentiation during
development [83], [87]. Traits that are varied together tend to
be dedicated to the same function, which means that varia-
tional modules correspond often also to functional modules.

Although there is abundant proof of the existence of mod-
ules in biological systems, it is still not clear how they arise
during evolution. In ‘‘neutral models’’, modularity is not

selected directly – for example, modularity can arise from
gene duplication and differentiation [83]. A scenario in which
modularity is selected for is when it directly affects fitness
during the development phase – modular systems present a
developmental advantage. For example, evolving the topol-
ogy of a neural network and then training the weights for
the specific problem to be solved results in modular net-
works [83]. Also, selection may favour robust systems, which
selects modularity indirectly, as changes inside a module
have less effect than changes between modules [83].

Interesting results from the viewpoint of system flexibility
are the ones from [88] and [89]which show that when systems
are evolved under changing environments they tend to result
in modular structures and are more flexible. To demonstrate
this, the authors use an evolutionary algorithm to evolve
digital circuits and RNA structures under a regime where the
objective function varies cyclically over modularly similar
goals with the same structure but different modules.

Solutions evolved under such a regime can be easily
adapted to solve other problems that were also used as
objective during evolution, and solutions are often modu-
lar, with different modules being responsible for specific
functions. Adapting from one solution to another requires
only small changes that consist mainly of mutating specific
positions in the genotype that switch certain modules on or
off. Additionally, mutations have a larger effect on themodule
to which they are applied but have small effects on other
modules (reduced pleiotropy). Solutions, however, are not
easily adapted to novel unseen goals, unless these novel goals
consist of the same constrained structure of the ones used
during evolution.

It is also possible for modularity to arise without changing
environments [84], [90], [91], [92]. In [90] a neural network
is evolved to detect objects on the left and right sides of a
retina and compare between using only the performance or
the performance plus a measure for the connection cost as
fitness. Networks evolved for optimizing also the connection
cost have both better performance and higher modularity.
When the problem changes (from detecting if there is an
object on the left OR right side to left AND right side, and
vice-versa), the evolved modular networks also have a much
greater evolvability, for example, needing 12 as opposed to
222 generations to adapt to the new task. In the context of
network-based communications subsystem on an integrated
circuit (network-on-chip) it has been confirmed that using
higher weights for the cost factor in the fitness functions leads
to more modular networks [91].

The work [84] obtains a result in the same direction for
motifs in brain networks when studying structural motifs,
which are specific nodes and edges patterns, and functional
motifs, that are all motifs that can be derived given the
constraints of a determined structural motif. When evolving
networks using a selection pressure towards more functional
motifs, the resulting networks are similar to brain networks in
terms of number of structural motifs and which motifs appear
with a higher frequency.

VOLUME 11, 2023 8045



S. Mayer et al.: Elements of Flexibility for Task-Performing Systems

In conclusion, it seems that there are many mechanisms by
which modules can arise and be selected for by evolution.
As stated in [83], ‘‘it seems that the origin of modularity
requires both a mutational process that favours the origin of
modularity and selection pressures that can take advantage of
and reinforce the mutational bias’’.

C. WEAK REGULATORY LINKAGE
1) DEFINITION
Weak regulatory linkage refers to design principles andmech-
anisms underlying the interface of a module or a system
that facilitate its reconfiguration and recombination. Typical
characteristics of interfaces obeying weak regulatory linkage
are:
(i) Control signals are unspecific and can be imprecise.
(ii) Control signals are non-instructive, only selecting

between a number of predefined states of the regulated
process.

(iii) The integration of new signal types is possible without
disturbing the existing input-output-relationship too
much.

(iv) Changes to existing control signals are possible without
disturbing the existing input-output-relationship too
much.

Items (iii), (iv) are referred to as scalable integration of
many inputs into one, or many, outputs in [93].

In biological systems, linkage refers to the connection
of processes to each other or to particular conditions [41].
Regulatory linkage is the special case where one process
controls the activity of another process, i.e., the output of the
first process acts as a control signal to regulate the activity
of the second process. Weak regulatory linkage now refers
to a number of evolved design principles and mechanisms
for regulatory linkage in biological systems that allow the
regulatory links to be ‘weak’ such that the regulated processes
can be easily reconfigured and recombined [40], [41], [93],
[94]. Typical characteristics of weak regulation are described
by items (i)-(iv) above.

2) METRICS
Although we are not aware of approaches to measure the
property of weak regulatory linkage in biological or techni-
cal systems, one particular architecture where this feature is
present, the bow-tie architecture, can be identified based on
graph-theoretical measures [95].

3) EXAMPLES
An example for an implementation of weak regulatory link-
age is allostery [96]. Allosteric proteins have a regulatory site,
which binds to activators or inhibitors, and a functional site,
which binds to a substrate to perform the protein’s function.
A variety of regulators bind to the regulatory site, either
to activate the protein (activators) or to inhibit its activity
(inhibitors). These regulators are independent from the pro-
tein’s function, and they do not need to coevolve; different
regulators can activate or inhibit the protein’s activity, which

reduces constraint and renders additional flexibility to the
system. Allosteric proteins are omnipresent and have many
functions in the organism, e.g., in metabolism, signal trans-
duction pathways, and neuronal excitation.

Another frequently encountered realization of weak reg-
ulatory linkage are bow-tie architectures [95], [97]. In a
bow-tie, there is a large number of inputs called the fan-
in, an unchanged mechanism called the knot that processes
these inputs, and a large number of resulting outputs called
the fan-out. The knot is able to process a large number of
inputs and produce a large number of outputs, being robust to
fluctuations in the inputs and versatile to be used in different
situations to produce different outputs, by means of regula-
tory processes and feedback networks. An important example
for a bow-tie architecture can be found in the metabolism.
A large variety of nutrients can be synthesized into necessary
building blocks for metabolism such as sugars, amino acids,
nucleotides, and so on. Nutrients form the fan-in and the
building blocks are the fan-out. Specific carriers and precur-
sors metabolites act as the knot, the unchanged process that
acts as starting point for the biosynthesis. Regulation and
feedback make it possible for the same knot to act under
different diets and to produce building blocks for specific
purposes.

Bow-tie architectures can also be hiearchical. The amino
acids and nucleotides produced as output in the metabolic
bow-tie are used by a few universal polymerase molecules
for the DNA translation and transduction processes. These
polymerases act as the knot of the another bow-tie archi-
tecture, while genes and proteins act as the fan-in and fan-
out, respectively. That is, the translation and transduction
processes are robust to a variety of inputs and can produce
specific outputs.

Weak regulatory linkage plays an important role for
evolvability by reducing constrains between biological pro-
cesses [40]. Processes that interact are weakly linked do
not need to coevolve; they do not need a specific chemical
activator to perform its function, only something that initiates
the process. Thus, activators can vary, change, and evolve
without the need of simultaneously changing the process they
activate, and the process itself can also evolve without the
need of changing the activators at the same time. This makes
systems more flexible and tolerant to variation, and increases
evolvability by accommodating changes.

Computer experiments on the evolution of circuits and
RNA secondary structures show that weak regulatory linkage
can be the result of changing environmental conditions [88].
The authors find that individuals evolved under a varying
goal can be easily adapted to solve other problems that
were also used as objective during evolution, and that these
solutions are often modular, with different modules being
responsible for specific functions. Adapting from one solu-
tion to another requires only small changes to use one module
instead of other, for example, and these changes consists
mainly of mutating specific positions in the genotype, which
were called genetic triggers. This can be seen as a simple
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example of weak regulatory linkage, as it enables modules to
be activated or deactivated. Furthermore, these modules have
a conserved mechanism and an interface that allows them to
interact with signals from different modules – they can be
combined in different ways and evolved independently.

D. EXPLORATION
1) DEFINITION
An exploratory process is a process that generates a variety of
outputs without a-priori information on the usefulness of the
outputs and subsequently selects the most suitable one. The
generation of outputs for exploration often involves a random
process. A system that performs exploratory processes under
certain conditions, e.g., in response to an environmental stim-
ulus, exhibits exploratory behavior.

2) METRICS
Differently than more structural properties, it is difficult to
think of a metric to measure how explorative a system is.
However, at least some form of control is discussed in the
context of the well known trade-off between exploration
versus exploitation in the metaheuristics and reinforcement
learning literature, e.g., combining and adjusting alternative
forms of evolutionary schemes like novelty search and quality
diversity in evolutionary algorithms [98], [99], [100], [101].

3) EXAMPLES
Most fundamentally, natural evolution is an exploratory pro-
cess. Genetic mutations generate a set of diverse organisms
upon which natural selection acts. Environmental conditions
and structural properties of organisms affect the efficiency of
the evolutionary process, see also Section II-C. For example,
digital circuits and RNA secondary structures evolved under
a varying goal have a genetic and phenotypic neighbourhood
with a high concentration of solutions to related problems
that can be achieved by a small number of mutations [88],
[89]. Degeneracy, where structurally different systems have
the same or overlapping functions, contributes to the robust-
ness and evolvability of organisms by means of neutral net-
works [102], [103], see also Section IV-E.
Exploration also occurs within organisms. Specifically

for certain cellular and developmental core processes,
exploratory behavior has been defined as ‘‘an adaptive behav-
ior [. . . ], wherein they generate many, if not an unlimited
number of, specific outcome states, any of which can be sta-
bilized selectively by other kinds of agents’’ [72]. Examples
for such exploratory processes are [40] and [41]:

• The microtubules inside cells which grow in random
directions from a nucleation center. The ones that meet
a stabilizing agent are trapped while the others shrink
back. Depending on where stabilizers are located, the
spatial array of the microtubules will be different.

• In the nervous system, axons extend from the central
nervous system exploring target organs and muscles.

FIGURE 10. All mammals share the same basic bone structure in their
forelimb2.

Selected ones are stabilized by a nerve growth factor
while others shrink back.

• The immune system of vertebrates can produce an
extremely large variety of antibodies. A specific anti-
body can be activated by the appropriate antigen, being
therefore stimulated to proliferate.

Similar to variation and selection in a population during
evolution, such exploratory processes allow for variation and
selection within an organism during development [41]. That
is, a variety of outcomes is generated of which the ones will
be selected that work best depending on the surrounding envi-
ronment and condition. When these conditions change, dif-
ferent outcomes can be selected. The property of exploratory
behaviour of some systems, like the ones presented above,
enhance the robustness of systems because otherwise harm-
ful mutations can be accommodated by selection of a more
suitable state among the diversity of states that is generated
by these systems. It also enhances evolvability because it
eliminates the need of coevolution for some systems and
reduce finding evolutionary innovations to a smaller number
of mutations to some regulatory elements. Such systems are
probably selected and kept by evolution because of their high
robustness, evolvability, and adaptability.

An elaborate example for the use of exploratory processes
during development is the growth of a mammalian limb.
While the skeleton has a modular structure and its growth is
controlled by amodular developmental program that is highly
conserved across all mammalian species, see Figure 10, the
formation of the tissue—including blood vessels, muscles,
and nerves—is accomplished by exploratory processes. This
developmental mechanism, termed ‘‘follow the bone’’ prin-
ciple in [72], demonstrates a sophisticated combination of
exploitation (growth of skeleton) and exploration (growth of
tissue), which provides flexibility on at least two scales. First,
it helps to adjust body growth to the environmental conditions

2By Volkov Vladislav Petrovich - Own work, CC BY-SA 4.0, https:
//commons.wikimedia.org/w/index.php?curid=37704829
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FIGURE 11. Example trajectories of a Brownian motion (blue) and a Lévy
flight (orange). With the same travelled distance, a Lévy flight on average
visits more different sites and returns less frequently to already visited
sites than Brownian motion.

the organism is exposed to, e.g., the food supply. Second,
it facilitates the evolution of limbs because adaptions of the
skeleton can be accomplished by a small number of mutations
in some regulatory elements and tissue growth processes need
not coevolve.

Exploration also plays an important role when animals
have to find randomly located objects, e.g., when searching
for food in unknown territories or for mating partners for sex-
ual reproduction. An interesting aspect of the search strate-
gies is the distribution of travel distance per unit time. Model
studies [104], [105] have shown that heavy-tailed, scale-
free distributions such as Lévy flights [106], where large
jumps occur much more frequently than in Brownian motion,
are advantageous under various natural environmental condi-
tions. Lévy flightsminimize the probability of returning to the
same site again and maximize the number of newly visited
sites [104], see Figure 11 for an illustration. The applied
search strategies affects the organism’s flexibility as it deter-
mines how fast the organism can aquaint itself with unknown
territory. For the importance of scale-free distributions in the
context of system flexibility, see also Section IV-F.

E. DEGENERACY AND NEUTRAL SPACES
1) DEFINTION
Two or more systems, system configurations, or modules
are called degenerate if they have the same functions under
certain conditions but distinct functions in other condi-
tions [107]. Degeneracy is different from redundancy which
means that the systems or modules have the same functions
under all conditions, i.e., they are effectively copies of each
other.

Given a task, a neutral space is a collections of sys-
tems, system configurations or modules that perform the task
equally well [47, p. 195]. With regard to the given task, the
elements of the neutral space are equivalent. The set 0(S,T )
of all system configurations for which system S can perform
task T , which we have defined in Definition 5, is a neutral
space. A neutral modification refers to a transition from one
element in a neutral space to another element in the same
neutral space.

2) METRICS
Information-theoretic measure of degeneracy and redun-
dancy have been introduced in [108]. Note that for degen-
eracy to occur it requires a certain level of system com-
plexity. Intuitively, the reason is that effective degeneracy
needs sufficiently many structurally different parts in a sys-
tem that can interact in sufficiently many different ways to
yield the same output or functional result [107]. Information-
theoretical analyses of the relationship between degeneracy
and complexity can be found in [109] and [110].

3) EXAMPLES
Degeneracy is present on many levels in biological sys-
tems [107], [111]. Examples include different nucleotide
sequences in the genetic code encoding the same polypeptide,
functionally equivalent alleles in genes, and different patterns
of neural architecture being functionally equivalent. Degener-
acy can also be observed in perceptual-motor systems [112].
In inter-animal communication, there is a large number of
ways by which the same message can be transmitted. Fur-
ther, there are multiple acoustically diverse and temporally
distributed cues that encode the same sound, and different
tongue configurations that lead to the similar acoustic out-
puts [113]. For an extensive list of further examples, we refer
the interested reader to [107].

Degeneracy is pervasive in biological systems since nat-
ural evolution is likely to bring forth degenerate systems.
There are several reasons for this. First of all, degeneracy
is a source of robustness as it lowers the probability that
a mutation is lethal [40], [102], [103]. Evolutionary search
through mutation is initially undirected and in consequence
will most likely find frequent solutions that can be realized
in many different ways. Hence, problems with degenerate
solutions tend to have a large neutral space. These natu-
ral neutral spaces contain fragile regions, where a search
driven by mutation is likely to leave the space, and robust
regions, where it is likely that the evolutionary search will
remain in the neutral space. Through evolution by natural
selection, some biological systems have come to reside in
regions of high robustness [47, p.215f]. For such systems,
most mutations will be neutral, i.e., they do not change a
well-defined aspect of a biological system’s function in a
specific environment and genetic background [47, p. 224].

While degeneracy is a source of robustness, it does also
increases evolvability. Although neutral mutations do not
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FIGURE 12. Relationship between degeneracy, complexity, robustness
and evolvability according to [102]4.

change primary functions, they can change other system fea-
tures and thus the phenotypic neighbourhood of genotypes.
This allows organisms to evolve to regions of neutral spaces
where most mutations will be neutral but few non-neutral
mutations have a higher chance to trigger sudden useful phe-
notypic change. Another effect are exaptations [114] which
are organismal features that become adaptions only long
after they arise. Under certain conditions, it is shown that
these effects give systems more robustness and a greater
evolvability, since more phenotypes are available than it
would be possible only with non-neutral mutations [102],
[103]. In consequence, degeneracy can be understood as both
a prerequisite and a product of evolution and specifically
natural selection [107]. The interplay between degeneracy,
complexity, evolvability, and robustness in biological systems
is summarized in Figure 12.

While degeneracy is able to increase evolvability, redun-
dancy is not [115]. Increasing neutral network exploration or
changing neutral network topology can only have an effect on
evolvability in degenerate systems. Although redundant sys-
tems are robust, they do not offer a selective advantage when
compared to each other in face of environmental changes or
mutations. Hence, robustness as a property alone does not
guarantee better evolvability.

F. WEAK LINKS
1) DEFINITION
A link between two components of a system is called weak
when its addition or removal does not change the mean value
of a target feature of the system in a statistically discernible
way [116]. Note that ‘weak link’ in this section has a different
meaning than in Section IV-C on weak regulatory linkage.

4By BioWikiEditor - Own work, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=14948898

2) METRICS
Certain topological properties indicate the presence of weak
links in networks. One of these properties is scale-freeness
which means that the probability of a node having k links
decreases by a factor of k−α , with α between 0 and 3 [117].
More generally, there are many nodes with few connections
and only a few nodes, called hubs, that are connected to a
large number of other nodes. Weak links appear as a natural
consequence of this architecture [118], [119]. Another prop-
erty present in many of these networks is the small-world
effect that describes networks where any two nodes are con-
nected by a relatively short path. Weak links are necessary for
the establishment of small-worldness [119].

3) EXAMPLES
Weak links are present in most biological systems on all
scales of biological organization, frommolecules and the cell,
passing through systems in the organism such as immuno-
logical networks, muscle nets, and the neuro-glial network,
reaching up to whole ecosystems [119]. Weak links also
occur in social interaction networks and man-made systems
such as the internet [119]. Two examples of biological sys-
tems exhibiting the network topological properties discussed
above are protein-protein networks and metabolic networks.

In protein-protein networks, which model interactions
between proteins, most proteins participate in only a few
interactions, whereas a few proteins participate in dozens
(scale-free topology) [117]. In S. Cerevisiae, only 10 percent
of the proteins with less than 5 links are essential, but this
fraction increases to over 60 percent for proteins with more
than 15 interactions, which demonstrates the importance of
hubs. Furthermore, highly interacting proteins have a smaller
evolutionary distance to their orthologues. Hence, hubs are
evolutionary conserved.

In metabolic networks, nodes are substrates/metabolites,
and edges are enzyme-catalyzed biochemical reactions. Most
metabolic substrates participate in only one or two reactions,
but a few, such as pyruvate or coenzyme A, participate in
dozens and function as metabolic hubs. Moreover, most reac-
tions have quite small fluxes (the amount of substrate that is
being converted to a product within a unit of time), coexisting
with a few reactions with extremely high flux values.

In complex systems that are scale-free and disassortative,
most links are weak. As they do not connect hubs, the addition
or removal of some of those links does not affect the system in
a significant way. Also the strentgh of interactions (for exam-
ple, the flux of a metabolic reaction in metabolic networks)
contributes to the weakness of many links. Yet, in their total-
ity, weak links play an important role for the adaptability and
robustness of the system in several ways. While conserved
hubs and modules are difficult to be modified, the weak links
can easily change to adapt to new conditions or form different
connection patterns to restore a certain system function.

The importance of weak interactions between species in
ecological communities has been demonstrated using the
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FIGURE 13. Histograms of the number of changed nodes B needed to
change the state of a network with two randomly selected functional
states in a network of 1,000 nodes. For details, see [118]. 
 2004 National
Academy of Sciences.

example of a simple rocky-intertidal food web system [116].
When there is only a predator and a prey, the interaction
between them is always strong. However, when there is a
second prey that interacts with the original predator and prey,
the indirect interaction effect of the original predator and prey
varies according to predator density and the density of the
second prey, which means that in some situations it is strong
and in other situations it is weak. Ultimately, when the direct
effect between predator and prey is weak, then it is more
susceptible to the indirect effect involving other components
of the system, which also generates variation.

The effect of weak links on system adaptability has been
demonstrated in [118]. The paper studies complex networks
that have a high sensitivity to determined kinds of stimuli
while retaining robustness against other random disturbances.
Complex systemswith these two properties aremore robust to
environmental changes and at the same time more adaptable.
Results of simulations show that both random and scale-free
network topologies have a similar behavior when random
stimuli are used, but scale-free networks require much less
nodes to be affected before changing to another state when
stimuli directed to the nodes with higher connectivity are
used. In addition, if a value for α (the scale parameter) similar
to the ones found in networks in nature is used, then it is
possible to build networks that require four or even only
one node with the highest connectivity to be affected for the
entire network to change its state, whereas much more nodes
need to be affected by random stimuli for that to happen,
see Figure 13. These networks thus have a high sensitivity
to the right stimuli while retaining robustness against random
stimuli.

V. DETAILED APPLICATION EXAMPLE
The origin of the ability to generate novelty is one of the main
mysteries in evolutionary theory. The theory of facilitated
variation (FV) [41] suggests that organisms have a design that
makes it more likely that random genetic changes will result

FIGURE 14. IEEE shape symbol of NAND gate.

TABLE 3. Truth table of NAND gate.

FIGURE 15. NAND construction of the OR gate.

in organisms with novel shapes that can survive. In [88] it
has been demonstrated that FV designs can spontaneously
emerge by using computer simulations of two well-studied
model systems, logic circuits and RNA secondary structure.
As a detailed example for the application of the formalism
developed in Section III, we recapitulate the main findings
on logic circuits using the concepts and language of the
formalism and discuss which elements of flexibility play a
role.

Before we turn to the formalism, let us describe the
essence of the flexibility problem considered in [88]. A
Boolean expression is a formula that evaluates to 1 (true)
or 0 (false). An example for a Boolean expression with four
variables x1, x2, x3, x4 ∈ {0, 1} is

t(x1, x2, x3, x4) = (x1 AND x2) OR (x3 EQ x4). (21)

A Boolean expression including Boolean variables is also
called Boolean function. It is known that every Boolean func-
tion can be equivalently constructed from a combination of
NAND gates. The NAND gate is defined by the truth table
given in Table 3 and its standard shape symbol is depicted in
Figure 14.
As an example, consider the OR gate. It can be written as

x1 OR x2 = (x1 NAND x1) NAND (x2 NAND x2). (22)

The corresponding circuit is depicted in Figure 15.
The flexibility problem addressed in [88] is essentially the

following.
Definition 14 (Logic circuit flexibility problem (LCFP)):

Given Boolean functions t1, t2, . . . , tn, find a template
Boolean function build solely from NAND gates such that its
structure allows for the following:
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1) For any Boolean function ti, it takes only few modifica-
tions to the template to have a construction of ti based
on NAND gates (low reconfiguration cost).

2) It is easy to find the necessary modifications (low adap-
tion cost).

Moreover, we wish the reconfiguration and adaption cost to
be low for as many different Boolean functions as possible
(high task diversity).

Definition 14 captures the essence of the flexibility prob-
lem. A number of details are missing for a problem formu-
lation that is completely precise and detailed enough that
a computer can solve it. We use the flexibility formalism
to guide us through the process of filling the gaps. In the
end, we will have an exact formulation of the LCFP version
considered in [88] and the system used to solve it.

A. FORMAL DESCRIPTION OF THE TASKS
Reproducing the truth values of a Boolean expression in d
Boolean variables x = (x1, . . . , xd ) can be described as a task

T = (E,F, t,PT ) (23)

with the following elements. The environment is given by the
space of all possible values (or states) a vector of d Boolean
variables can take, E = {0, 1}d . All states are feasible,
hence F = E , and all states are possible initial states, which
means that X = E . The goal is now to map an input state x ∈

X to a target state in

Y = {(x1, 1, 1, 1) : x1 ∈ {0, 1}}. (24)

Note that Y is one of 2d−1 subspaces in E that are equivalent
to {0, 1}. The particular choice of Y is arbitrary and we may
simply identify Y = {0, 1}. The goal is formally given by a
Boolean function

t : {0, 1}d → {0, 1}. (25)

The performance (or fitness) of a given Boolean function
u : {0, 1}d → {0, 1} in reaching the goal is measured by
the fraction of outputs where u coincides with t ,

P̃(u, t) =
|{x ∈ E : u(x) = t(x)}|

|E|
. (26)

To be able to read adaptability and reconfigurability num-
bers from [88], we consider a task to be performed success-
fully by a Boolean function u if we have P̃(u, t) ≥ ε, where
the specific choice of ε ∈ [0, 1] is discussed in Section V-G.
Hence, the ultimate performance measure is given by

PT (u) =

{
1, if P̃(u, t) ≥ ε,

0, otherwise.
(27)

We discuss the specific task context considered in the flexi-
bility problem in Section V-D.

B. FORMAL DESCRIPTION OF THE SYSTEM
In [88] a standard genetic algorithm (GA) is used to evolve
a population of logic circuits consisting of NAND gates
towards varying Boolean target functions t . The population
size is Npop = 5000. We consider both together—the logic
circuit and the GA—as a self-adapting system S where the
GA operates as the learning system. To be precise, the sys-
tem S consists of the following elements:

1) A logic circuit consisting of
a) d input gates (d = 4),
b) M NAND gates (M = 12),
c) one output gate.

The input gates can be connected to more than one
non-input gate. A NAND gate can be connected to
more than one of the other NAND gates and to the
output gate. This is the phenotype in the language of
evolutionary computation.

2) A binary encoding γ of the circuit wiring. This is the
genotype in the language of evolutionary computation
and what we consider the system configuration to be
adapted.

3) A genotype-phenotype-mapping that translates the
genotype into an actual wiring of the logic circuit.

4) An array of lengthNpop that contains alternative system
configurations.

5) The genetic algorithm.
The genetic algorithm operates on the array of alternative

genotypes. Every generation it evaluates the performance of
all genotypes/system configurations in the array and selects
the best-performing as the current configuration γ of the sys-
tem. The system then realizes an algorithm S(γ ) that compute
the d-variate Boolean function specified by the wiring of the
NAND gates.

It remains to describe the structure of the binary encod-
ing and the resulting system configuration space 0(S). The
encoding consists ofM ‘‘gate genes’’ and one ‘‘output gene’’.
A gate gene has a length of

2m = 2⌈log2(M + d)⌉ = 8 (28)

bits where the first m bits encode which input or NAND gate
is connected to the first input of the gate, and the second m
bits encode the wiring of the second input. The output gate
has a length of m = 4 bits. Hence, the binary encoding has a
length of B = 4(2M + 1) bits and the system’s configuration
space is given by

0(S) = {0, 1}B. (29)

C. ADAPTION AND RECONFIGURATION COST
Given a current system configuration γ ∈ 0(S) and a new
task T , the adaption cost are the number of generations it
takes the genetic algorithm to find a configuration γ ′

∈ 0(S)
such that PT (S(γ ′)) = 1. The reconfiguration cost are the
number of mutations that have to be applied to get from
the previous configuration γ to the new configuration γ ′

(i.e., the Hamming distance between γ and γ ′).
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FIGURE 16. Transition probabilities between tasks in the MVG scenario.

D. THE FLEXIBILITY PROBLEM IN DETAIL
Let us now describe one variant of LCFP that is actually
addressed in [88] using the language of the flexibility for-
malism. The considered task context consists of tasks T that
all share the same environment E but have different goals t :

X → Y of the form

t(x1, x2, x3, x4) = f (g(x1, x2), h(x3, x4)) (30)

where g, h ∈ {EQ,XOR} and f ∈ {AND,OR}. More
specifically, we have a training task context

W train
= ((T1,T2,T3),Q) (31)

and a test task context W test consisting of twenty equally
probable tasks where the goals are such that either f , g, or h
is a Boolean function not present in T1,T2,T3. What is now
examined by means of a computer experiment in the paper,
see [88, Fig. 6D], is the effect of two different task histories
generated from the training contextW train on the adaptability
and reconfigurability of the system S in the test contextW test.
Hence, LCFP is solved for the Boolean expressions given in
W test. We discuss their results in the next section

E. ADAPTABILITY AND RECONFIGURABILITY RESULTS
In the first case, called fixed goal (FG) scenario in the paper,
the system is only presented one task T1 for a certain number
of generations L (formally, the probability measure Q is
chosen such that T1 has probability 1). In the second case,
called modularly varying goals (MVG) scenario, the system
is presented a random task history that results from perform-
ing a random walk between three tasks T1,T2,T3 according
to the transition probabilities in Figure 16, where the task is
switched every E = 20 generations. This leads to two task
histories HFG

n and HMVG
n of length n = L/E .

Let T be a random task from W test. Given our choice of
the performance threshold ε, see Section V-G, the numerical
results in [88, Fig. 6D] show that

E[cada(S,HFG
n ,T )] > 10, (32)

while

E[cada(S,HMVG
n ,T )] = 3. (33)

Moreover, the reconfiguration cost in the MVG scenario
are on average five times smaller than in the FG scenario,
see [88, last paragraph on p.3].

Though we do not change the design of the system S or the
design of the configuration space0(S), one may still consider
the training phase in the MVG scenario as a system optimiza-
tion that improves the array of alternative system configu-
rations and the initial configuration in the testing phase by
locating them in a beneficial region of the configuration space
0(S). In that sense, the FG and the MVG scenario lead to two
different systems SFG and SMVG, where the latter is at least
three times more adaptable,

αn(SMVG,W test) > 3αn(SFG,W test), (34)

and five times easier to reconfigure on average,

ρavg(SMVG,W test) > 5 ρavg(SFG,W test). (35)

F. ELEMENTS OF FLEXIBILITY
The reason for the better adaptability and reconfigurability in
the MVG scenario is that the switching between the tasks in
the historyHMVG

n lets the genetic algorithm search in a region
of the configuration space 0(S) where the corresponding
wirings between the NAND gates reflect the hierarchical and
modular structure of goals, which is not the case in the FG
scenario. To see how also weak regulatory linkage appears in
the MVG scenario, we refer to the explanations in [88].

G. FURTHER DETAILS
To exclude that the same results could be reached by random
guessing, the authors consider a normalized fitness measure
given by

FN =
F − Fr
1 − Fr

, (36)

where F = maxγ1,...,γNpop
PT (S(γi)) is the maximal fitness in

the evolved population and Fr the average maximal fitness
in a population of random genotypes of the same size Npop.
The results in [88, Fig. 6D] are specified for the normalized
fitness. Since Fr is independent of the considered system S,
we may consider Fr as a constant such that FN is proportional
to F . We choose ε such that

F = Fr + (1 − Fr )FN > ε (37)

if FN > 0.8.

VI. SUMMARY AND OUTLOOK
Based on the abstract notion of task-performing system,
we have developed a general formalism to describe flexibility
problems from various disciplines, e.g., evolutionary biology,
machine learning, or CIM. Moreover, we have introduced the
elements of flexibility, which are universal design features
of living systems that promote flexibility. As sketched in
Section IV, studying the elements of flexibility promises
new bio-inspired directions for the algorithmic exploration
of large design spaces, which is of interest in many areas
of science and engineering, e.g., for developing CPPS or
efficient deep learning architectures. An in-depth and holistic
consideration of the elements of flexibility includes the fol-
lowing aspects.
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A. INCORPORATING THE ELEMENTS
For applied flexibility problems, a bio-inspired research
agenda would deal with the question in which concrete form
the elements of flexibility could be integrated in a given
task-performing system to improve its flexibility in a given
task context. General guiding questions are:

I. Which of the elements of flexibility are already present
in the system under consideration?

II. Are the elements of flexibility which are present in the
system already used to increase the system’s flexibil-
ity?

III. Could further elements of flexibility be incorporated
into the system?

IV. Is the interplay of the elements of flexibility understood
for the system under consideration?

Studying the elements of flexibility in this form for
cyber-physical production systems can contribute to the
emerging research frontier biologicalization in manufactur-
ing, which refers to ‘‘the use and integration of biological
and bio-inspired principles, materials, functions, structures
and resources for intelligent and sustainable manufacturing
technologies and systems with the aim of achieving their full
potential’’ [120].

B. QUANTIFYING THE CONTRIBUTION OF AN ELEMENT
For a comprehensive understanding of the elements of flexi-
bility, a particularly important research aspect is to quantify
the contribution of an element to the flexibility of a given
type of task-performing system in a given task-context. This
requires in the first place a measure to quantify to which
degree an element of flexibility is present or not. For hier-
archy, modularity, degeneracy, and weak links, such mea-
sures are available in the literature, see Section IV and the
references there. With regard to exploratory behavior, inves-
tigating the contribution of exploratory behavior is closely
related to the exploitation-exploration-dilemma [121], [122].
Quantifying the presence of weak regulatory linkage first
requires a more rigorous formal definition that is missing in
the literature. Once a measure is available that quantifies the
presence of an element, one can conduct numerical experi-
ments in a given task context to measure the effect that the
presence of the element has on the flexibility measure. To our
knowledge, there are only a few works that follow such an
approach [76], [90], [123].

C. BENCHMARK FLEXIBILITY PROBLEMS
Clearly, a direct extensive study of the elements of flexibil-
ity for systems that have to perform physical tasks is often
impractical due to high experimental cost. This requires to
resort to suitable computer experiments based on numeri-
cal simulations where only final outcomes are validated in
physical experiments. But also for realistic computation and
learning tasks, a direct systematic flexibility optimization
can be too costly. We thus believe that research on system
flexibility optimization and the elements of flexibility can

benefit tremendously from properly devised benchmark flex-
ibility problems. An important criterion for the tasks in such a
benchmark flexibility problem is that solutions are known an
each single task is cheap to solve in terms of required training
data or numerical simulations. Moreover, the task context
should consists of well-established benchmark tasks. This
allows to focus complexity on flexibility aspects. Providing
domain-specific benchmark flexibility problems is already a
valuable research contribution.
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