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ABSTRACT As the applications for artificial intelligence are growing rapidly, numerous network
compression algorithms have been developed to restrict computing resources such as smartphones, edge,
and IoT devices. Knowledge distillation (KD) leverages soft labels derived from a teacher model to a less
parameterized model achieving high accuracy with reduced computational burden. Moreover, online KD
provides parallel computing through collaborative learning between teacher and student networks, thus
enhancing the training speed. A binarized neural network (BNN) offers an intriguing opportunity to facilitate
aggressive compression at the expense of drastically degraded accuracy. In this study, two performance
improvements are proposed for online KD when a BNN is applied as a student network: 1) parameterized
weight clipping (PWC) to reduce dead weights in the student network and 2) quantization gap-aware
adaptive temperature scheduling between the teacher and student networks. In contrast to constant weight
clipping (CWC), PWCdemonstrates a 3.78% top-1 test accuracy enhancement with trainable weight clipping
by decreasing the gradient mismatch with CIFAR-10 dataset. Furthermore, the quantization gap-aware
temperature scheduling increases the top-1 test accuracy by 0.08% over online KD at a constant temperature.
By aggregating both methodologies, the top-1 test accuracy for CIFAR-10 dataset was 94.60%, and that for
Tiny-ImageNet dataset was comparable to that of the 32-bit full-precision neural network.

INDEX TERMS Neural network compression, knowledge distillation, binarized neural network,
parameterized weight clipping, dead weight, adaptive temperature scheduling.

I. INTRODUCTION
Over the past decade, artificial neural network-based deep
learning technology has been successfully applied in diverse
fields. However, as networks become deeper and broader,
real-world solutions require consideration of the compu-
tational cost. For example, a representative autoregressive
language model, GPT-3 [1], increases the number of param-
eters to 175 billion, thereby significantly amplifying the
computational burden. A variety of studies on neural network
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compression have been conducted with minimal performance
degradation to alleviate these problems. Through aggressive
reduction of parameters to a data width of 1-bit at the expense
of considerable accuracy loss, binarized neural networks
(BNNs) demonstrate significant benefits in terms of memory
footprint and computational speed. Various studies have
addressed the accuracy loss of BNNs, such as XNOR-Net and
Bi-real [2], [3]. Nonetheless, there is still an inherent limit in
improving BNN performance through parameter processing
or modulation.

Knowledge distillation (KD) is a widely applicable
technique for compressing neural networks [4]. The key
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idea behind KD is to supervise the student network by
imitating the teacher network via soft probabilities, which
exposes more information than the class label and helps
the student network learn. KD performance is primarily
determined by the different characteristics of the teacher
and student networks, such as the data widths, topologies,
and hyperparameter configuration. Denser knowledge can
be acquired as the depth of the teacher network increases,
whereas as a soft label approaches a hard label, it becomes
too taxing for the student network to emulate the teacher
network owing to insufficient capacity [5], [6]. A low-bit
network has been applied to the student network to boost
the KD compression efficiency [2], [7], [8]. However, in KD,
where harmony between the teacher and student networks is
emphasized, the quantization gap between the two networks
causes negative side effects. Furthermore, the data width
parameter is an essential consideration because the difference
in performance between the two networks is closely related
to the number of recognizable classes.

In this study, gradient mismatch mitigation in a BNN
and a KD composed of a binarized student network are
addressed. Conventional constant weight clipping (CWC)
causes a gradient mismatch in BNNs because fixed clipping
values cannot cope with the dynamics of weight distribution.
Although the dynamic clipping range has been suggested as
an alternative, it has enormous complexity. To address this
problem, trainable clipping values used for easing gradient
mismatches were introduced.

Next, we propose a method to alleviate the capacity
shortage of binarized student networks caused by data
width difference between the teacher and student networks.
Numerous studies [2], [6], [7] have revealed that a difference
between teacher and student networks greater than the
effective range results in insufficient knowledge transfer
between them. Hence, adaptive scheduling based on the
quantization gap is required to balance the knowledge
proportion of each network. Inspired by this observation,
information entropy was developed to assess the difference
between the two networks appropriately.

The contributions of this study are as follows:
• To mitigate the drawback of CWC that causes gradient
mismatch in BNNs, we utilize a trainable weight
clipping function adaptable to the dynamic weight
distribution.

• In online distillation, information entropy-based temper-
ature scheduling is introduced to overcome the problems
caused by i) a poorly trained teacher network at the
beginning of learning and ii) a capacity shortage of the
student network.

• The effectiveness is revealed by aggregating the pro-
posed approaches, which can be employed in the diverse
network models. Furthermore, the binarized student
network applied in the proposed methods exhibit a top-1
test accuracy comparable to that of the baseline CNN.

The remainder of this paper is organized as follows. The
related studies are described in Section II. Section III presents
the main algorithm flow of learnable weight clipping and

details the manner in which information entropy is applied
to the technique. The simulation results and an analysis of
several network topologies and datasets are presented in
Section IV. Finally, conclusions are drawn in Section V.

II. RELATED WORK
Various types of neural network compression have been
proposed to compute resource-constrained device deploy-
ment. BNN and KD are representative network compression
schemes with data width conversion and loss function
reinforcement, respectively.

A. BINARIZED NEURAL NETWORK
Courbariaux et al. [9] exploited a straight-through estimator
(STE) [10] as a gradient approximation to overcome zero
gradients at all locations in the sign function. However, the
expressive ability of BNNs in binary space is restricted,
resulting in a significant loss of accuracy. To reduce the
disparity in accuracy between a BNN and its single-precision
32-bit floating-point (FP32) counterpart, XNOR-Net [11]
introduced a scaling factor derived from the L1-norm of the
weights or activations to minimize the quantization error.

The academic community has extensively explored
enhancements in the accuracy of BNNs by building gradient
estimation functions or designing binarization-friendly
network architectures. For example, various BNN schemes
[12], [13], [14] have aimed to apply a continuous activation
gradient that approximates the sign function to refine
the existing STE. ABC-Net [15] was constructed by
utilizing more binary bases for weighting and activation.
Qin et al. [16] applied an error attenuation estimator to
minimize backpropagation information loss on the gradient.
Additionally, ReActNet [17] was applied to formulate an
activation function that was translated to fit the weight
distribution.

Moreover, several studies have focused on gradient
improvement, which is used for predicting the variation
and scale of weight parameters. In addition, Xu et al. [18]
investigated the gradient mismatch problem of STE when
used as a gradient approximation in BNNs. By standardizing
dead weights, whose gradients were not defined by STE,
the authors contributed to BNN performance. Liu et al. [19]
revealed that the Adam optimizer is superior to other
optimizers in BNNs. Dead weights were reactivated not only
from the regularization effect of the second-order momentum
in the Adam optimizer but also because dead weights
decreased through weight decay.

STE is accountable for gradient approximation in
backpropagation by providing a customized gradient to
non-differentiable sign functions. However, the dead weight
problems underlying gradient approximation are yet to be
discussed. Thus, a weight clipping function is required
to revive dead weights and simultaneously reduce the
quantization error between FP32 and binarized weights.

B. KNOWLEDGE DISTILLATION
Low-precision numeric parameters and KD have common
features that remarkably reduce computational requirements
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TABLE 1. Accuracy (%) difference of XNOR-Net based on the weight
clipping.

and memory footprints. Because the two techniques are
different, a cumulative effect is expected if they are applied in
parallel. Usually, KD with a low-bit student network scheme
focuses only on the layer depth disparity while neglecting the
effect of a quantization gap between the two networks.

In [2], the accuracy of 2-bit ResNet 20 [20] was increased
by 1.4% with joint training, mimicking the prediction
probability of the teacher network on CIFAR-10 dataset.
In addition, Cho et al. [6] enhanced the efficacy of KD
by transferring amenable knowledge from early stopped
teachers.

Shin et al. [7] emphasized the importance of a suitable
teacher model and hyperparameter selection for optimizing
the performance of a student network using KD; however,
they did not address adaptive temperature scheduling.
According to several recent studies [21], [22], [23], the use
of adaptive temperature scheduling in online KD has the
potential to achieve higher accuracy in student networks.

III. METHODOLOGY
First, parameterized weight clipping (PWC) is introduced to
efficiently reduce dead weights in a BNN through gradient
descent. In addition, information entropy-based temperature
scheduling is proposed to alleviate the quantization gap
between teacher and student networks for online KD.

A. PARAMETERIZED WEIGHT CLIPPING
CWC prevents a case in which the binary weights are not
updated in backpropagation when the absolute value of FP32
activation is greater than one in the BNN. As shown in
Table 1, we calculated the differences in accuracy between
BNNs with and without weight clipping for various network
models in PyTorch [26] to correctly determine the effect
of weight clipping on the performance of BNNs. Although
the increase in accuracy differed depending on the network
topology and weight clipping, the accuracies of all three
networks increased. In particular, ResNet 20 exhibited the
highest increase in accuracy (5.03%).

sign(W ) =

{
+1, if W ≥ 0
−1, otherwise,

(1)

Ŵ = sign(W ) ·
1
n

∑
n

|W | , (2)

clip (−1,W , 1) = max(−1,min (W , 1)). (3)

In the BNN, the FP32 weight parameter set W was
binarized using (1) and (2) for the forward propagation.
Conversely, in the backpropagation, (3) was applied as an
STE for a non-differentiable sign function. In backward

FIGURE 1. Graphical illustration of the training process with PWC.

propagation, if the FP32 weight exceeds the fixed clipping
range, disagreement between the presumed and actual
gradient functions occurs, resulting in dead weight. Dead
weights hinder correct weight updates during backpropaga-
tion. To minimize the dead weights caused by the CWC,
PWC with gradient approximation was applied, considering
the minimized overhead. To equip learnable clipping values
according to changes in weight, we allocated a gradient for
the clipping functions α and β, as follows:

GW =
∂L

∂ |W |c

∂ |W |c
∂W

,

∂ |W |c
∂W

=

{
+1, if α < W < β

0, otherwise,
(4)

Gα =
∂L

∂ |W |c

∂ |W |c
∂α

,

∂ |W |c
∂α

=

{
+1, if W < α (α < 0)
0, otherwise,

(5)

Gβ =
∂L

∂ |W |c

∂ |W |c
∂β

,

∂ |W |c
∂β

=

{
+1, if W > β (β > 0)
0, otherwise,

(6)

whereL represents the loss function, and ∂L
∂|W |c

represents the
gradient from the deeper layer to the scaled sign function.
Equations (4), (5), and (6) describe the approximated gradient
equations for the clipping functions α and β. First, for the
clipping function (4), based on a given weight, a value of
1 is returned if the weight exists between α and β. If the
weight is greater than the negative clipping value α, it returns
a value of ∂L

∂α
= 1, as shown (5). The gradient ∂L

∂β
for β

can also be computed using the STE to estimate a value of
1 for ∂L

∂|W |c
with (6). Consequently, gradient-descent-based

training can adjust the clipping range to update the weights
dynamically.

Because the weight values satisfy the range of (−1,+1)
through initialization, the default clipping values of α =

−1 and β = 1 include all weights within the clipping
range. Each weight clipping value was adjusted from the
initial value to narrow the range based on the PWC.
Accordingly, the clipping range was modified for every
training step to prevent the generation of dead weight.
Backpropagation of the trainable clipping variables α and β

was applied in the direction of the dashed arrow, as shown in
Fig. 1.
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FIGURE 2. Top-1 error rate of binarized student network with increasing
teacher weight (W) and activation (A) data width (300 epochs).

B. INFORMATION ENTROPY DISTANCE-BASED
TEMPERATURE SCHEDULING
Fig. 2 shows the change in performance of the binarized
student network as a function of the data width change in
the teacher network. The blue bar and line represent the
n-bit weight and 1-bit activation, respectively, and the red
bar and line represent the n-bit weight and n-bit activation,
respectively. It was observed that the increase in data width
in the teacher network was not directly related to the increase
in performance. Therefore, the differences in data width
between teacher and student networks must be considered
when optimizing KD.

QiS =
exp(

Z iS
τ
)∑

j exp(
Z jS
τ
)
, (7)

LKD = Sf L (QS , y)+ (1− Sf )KLdiv(QiS ,Q
i
T ). (8)

In KD, (7) is used for the output layer that generates
the soft logits ziT and ziS for the teacher and student
networks, respectively, and regularizes the probability of each
class according to the hyperparameter τ , which denotes the
temperature. The loss function with the scaling factor Sf
of the student network is given by (8), which includes the
Kullback-Leibler divergence (KLdiv) between student and
teacher distributions. However, considering student capacity,
teacher knowledge close to the hard label caused by low
temperatures can be overloaded. In addition, a strict teacher
is required to maximize the effect of KD on the student
network [4]. Therefore, the class classification of poorly
trained teacher networks in the initial stage of learning can
negatively affect the training process of the student network.

Fig. 3 illustrates the effect on the loss value of the student
networks depending on the temperature during learning. The
student network imitates the knowledge that changes from
a hard label to a soft label as the temperature gradually
increases, as shown in Fig. 3(a). In contrast, Fig. 3(b)
shows the loss in the student network, which indicates the
knowledge that changes from soft labels to hard labels using
gradually decreasing temperatures. Accordingly, gradually
decreasing the temperature resulted in a 12.85% lesser
loss than gradually increasing the temperature. Therefore,
in online KD, a soft label (i.e., probability smoothing) should

FIGURE 3. Change in the student network loss value based on
temperature (Temp) change at 150 and 225 epochs with learning rate
(LR): gradually (a) increasing and (b) decreasing temperatures.

be actively adopted in the early stages of learning. In contrast,
in the latter half of learning, where the performance of the
teacher network is guaranteed, knowledge close to the hard
label should be provided at a low temperature.

As previously mentioned, it is difficult for the teacher
network to predict the correct class during the early stage
of online KD learning. The variation in learning speed
depending on the quantization gap between the teacher and
student is shown in Fig. 3. Therefore, it is preferable to
use a temperature scheduling technique that reflects the
performance variation between the two networks instead of
using a constant temperature for the entire learning process.

As learning progresses, the student network requires
more accurate hard label knowledge. Thus, as illustrated in
Fig. 3(b), the temperature should be gradually decreased to
cope with the hard label. Therefore, we chose an information
entropy distance that can measure the amount of information
in the network while gradually decreasing. Using a low
temperature at the beginning of the training interferes with the
student network training owing to the knowledge of a poorly
trained teacher network. Conversely, a high temperature
cannot completely mimic the encyclopedic knowledge of the
teacher network in the late stages of learning. The information
entropies of the two networks were calculated using (9)
and (10), where the sets T and S are the outputs of branched
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FIGURE 4. Conceptual diagram of the proposed information entropy
distance-based temperature scheduling. The information entropies of
both networks were calculated based on a convolution layer with
maximum complexity, and the temperature was determined based on the
distance between two values.

SoftMax in the teacher and student networks, respectively,
with the convolution layer containing the most significant
number of channels, as shown in Fig. 4. The distance between
the two information entropies was calculated using (11).

Hence, adaptive temperature scheduling based on the
performance difference between the two networks was
formulated, as shown in (12), with the normalized factor λ

by involving Ddistance.

H (T ) = −
C∑
c=0

H∑
h=0

W∑
w=0

tc×h×w log tc×h×w,T ∈ tc×h×w,

(9)

H (S) = −
C∑
c=0

H∑
h=0

W∑
w=0

sc×h×w log sc×h×w, S ∈ sc×h×w,

(10)

Ddistance = ∥H (T )− H (S)∥2 , (11)

TAS = LKD + λ · Ddistance. (12)

To summarize, two techniques were developed for online
KD, which comprises a binarized student network. First,
the PWC lessens the dead weight problem of the CWC in
backward propagation. Moreover, considering the character-
istics of online KD, students learn the prediction probability
of a poorly trained teacher at the beginning of the training
process by implementing a soft label with a high temperature.
Conversely, when a well-trained teacher is ready, temperature
scheduling increases student performance through hard labels
with a reliable teacher prediction probability at a low
temperature.

The overheads of the PWC are the added gradient values
corresponding to α and β of every layer, except for the first
and last layers, with l representing the number of layers.
In addition, the required clipping values are expressed as
2 · (l − 2). Taking ResNet 20 as an example, two clipping
values per layer are required for 18 of the layers. Thus, only
36 parameters are added, for a total of 0.27M parameters.

The pseudocode for binarized student network train-
ing, which includes PWC and temperature scheduling,
is described in Algorithm 1.

Algorithm 1 Training Binarized Student Network With
Online KD Using PWC and Temperature Scheduling
Input: MT , teacher network; MS , student network; W ,

weight set; |W |c, clipped weight set; Ŵ , binarized weight
set; F ′ output of convolution; e, number of iterations; γe,
learning rate; α/β, parameterized clipping value.

Output: MS , trained binarized model.
1: for e← 0, iterations do
2: (1) forward computation
3: Run forward computation ofMT ,MS simultaneously.
4: |W |c = clip(α,W , β).
5: Ŵ = sign (|W |c) ·

1
n

∑
n

∣∣|W |c∣∣.
6: Calculate F ′ = Ŵ · F̂in.
7: (2) backward and gradient computation.
8: Compute information entropy distance between

teacher and student using Eq. (11).
9: Compute distillation loss LKD.

10: Calculate temperature using Eq. (12).
11: Run backward and compute gradients.
12: Calculate ∂L

∂Ŵ
using ∂L

∂Fout
.

13: Calculate ∂L
∂|W |c

using ∂L
∂Ŵ

.

14: Calculate ∂L
∂W using ∂L

∂|W |c
.

15: Calculate ∂L
∂α

using ∂L
∂|W |c

.

16: Calculate ∂L
∂β

using ∂L
∂|W |c

.

17: We+1← We − γe ·
∂L
∂W ,

αe+1← αe − γe ·
∂L
∂α

,

βe+1← βe − γe ·
∂L
∂β

.
18: end for
19: return trained binarized student modelMS

IV. EVALUATION
The benefits of parameterized weight clipping and infor-
mation entropy distance-based temperature scheduling were
validated by independently estimating and jointly evaluating
the overall increase in accuracy compared with the various
clipping functions and KDs. Furthermore, Table 2 presents
the top-1 accuracy for the baseline network on the CIFAR-
10 to further clarify the performance enhancement brought
about by both proposed schemes.

A. EXPERIMENTAL SETUP
To analyze the PWC and distance-based temperature
scheduling performance, we constructed an experimental
environment using Pytorch 1.3.1, CUDA 10.2, and CUDNN
7.6.5 with multiple NVIDIA TITAN Xp (Pascal) GPUs
and an Intel Xeon E5-1650 CPU. In addition, CIFAR-10,
CIFAR-100 and, Tiny-ImageNet datasets [27], [28] were used
to compare their performances, and the well-known BNN
methodologies XNOR-Net [11] and Bi-Real Net [3] were
utilized.

The hyperparameters underwent a total of 300 epochs with
a weight decay of 1e-4 and learning rates of 1e-1, 1e-2, and
1e-3 for the 1st, 150th, and 225th epochs, respectively.
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TABLE 2. Top-1 test accuracy (%) of the baseline network on CIFAR-10
dataset.

TABLE 3. Top-1 test accuracy (%) of XNOR-Net and Bi-Real Net for
CIFAR-10 dataset with various weight clipping.

TABLE 4. Top-1 test accuracy (%) of each network model with several
fixed temperature values and proposed temperature scheduling on
CIFAR-10 dataset.

B. WEIGHT CLIPPING COMPARISON
Table 3 lists the top-1 accuracy using weight clipping for each
network model on CIFAR-10 dataset. No-weight clipping
(NWC) indicates that no weight clipping was applied prior to
binarization, and CWC, with a range of (−1, +1), was used
as a clipping value in the existing XNOR-Net.

For the PWC, the weight clipping value was adjusted based
on the gradient descent training. The positive clipping value
β was updated by the corresponding gradients from 1.28 to
0.5 to decrease the dead weight as shown in Fig. 5. Overall,
the PWC improved the accuracy of all network models; in
particular, the accuracy of WRN 22 × 4 increased by 3.78%
compared with CWC.

C. KD TEMPERATURE SCHEDULING
The information entropy distance was used to determine
the difference between the teacher and student networks for
temperature scheduling. First, the temperature change based
on λ was checked to match the different scales of loss and
distance, based on (12). As shown in Fig. 6, when λ was
fixed to 1, the temperature was configured from three to
one. Based on this λ value, in the temperature scheduling
experiment employing CWC, WRN 22 × 4 exhibited an
accuracy of 94.56%, which is an improvement of up to 2.51%
over VGG-small in comparison with τ = 3, as presented in
Table 4.

D. COMPARISON WITH SOTA METHODS
Knowledge transfer to quantized (particularly 1-bit CNN)
networks from networks composed of FP32 weights and
activations has rarely been explored in previous KDmethods.

FIGURE 5. Weight distribution on layer 4 using the binarized ResNet
20 with PWC: (a) 100, (b) 200, and (c) 300 epochs. Trained negative
clipping value α (blue line) and trained positive clipping value β (red line).

FIGURE 6. Temperature changes based on scaling factor λ in ResNet
20 on CIFAR-10 dataset.

Therefore, KD for a quantized neural network was chosen
as a counterpart in this experiment to compare the KD
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TABLE 5. Experimental results using CIFAR-10 and CIFAR-100 datasets.

TABLE 6. Top-1 test accuracy of ResNet18 on Tiny-ImageNet dataset.

FIGURE 7. Attention maps for FP32 ResNet 18, 1-bit ResNet 18, and 1-bit
ResNet 18 with the proposed method transferred by the knowledge of the
teacher network on Tiny-ImageNet dataset.

performance for the quantization gap between the two
networks. Table 5 presents the experimental results for
CIFAR-10 and CIFAR-100 using the proposed method
integrated with PWC and information entropy distance-based
temperature scheduling. In the counterparts, the student
network was configured using a 2-bit neural network.
However, we obtained strength in deploying a binarized
student network that achieved superior accuracy to the

state-of-the-art KD for quantized deep neural networks.
Specifically, our strategy when applied on CIFAR-100
dataset surpassed the 2-bit student network with a 9.89%
improvement in accuracy. In Tiny-ImageNet experiment, the
binarized student network significantly outperformed the
BNN trained alone and showed comparable accuracy to the
FP32 teacher network composed ResNet 18 network model,
as shown in Table 6. This is because the hard labels were
reflected in the temperature scheduling.

Information entropy-based temperature scheduling applied
to online distillation shows a relatively faster training speed
than its counterparts of offline distillation [2], [7], [8],
composed of a two-stage training process. Even though, com-
pared with the baseline online distillation, the computation
overhead for the information entropy-based temperature in
ResNet 20 is only 0.26%. While ResNet 110 has an overhead
of 0.07% because this overhead decrease as the network depth
are deeper.

To visualize the performance improvement for the dis-
parity between the baseline (FP32 and 1-bit) and proposed
techniques, attention maps were depicted for the qualitative
results, as shown in Fig. 7. In the attention maps, a closer
red value indicates a weight concentration in the network.
1-bit ResNet 18 with the proposed method is more clearly
classified than the 1-bit baseline, and it can be seen that
the performance for some images matched that for the FP32
baseline.

V. CONCLUSION
KD achieves high accuracy with a relaxed network depth
by using soft labels derived from a teacher model for a less
parameterized model. In contrast, a BNN can achieve a high
compression rate by incorporating an aggressive reduction
in the data width; however, it has an adverse effect on the
accuracy. This study developed techniques to enhance the
accuracy of online KD by using a BNN as a student network.
Specifically, a PWCwas applied to diminish the dead weights
missing the gradient, and a temperature scheduling method
was proposed to assess the quantization gap between the
teacher and student networks. Consequently, for CIFAR-100
dataset, the accuracy of our technique increased by 9.89% in
comparison with offline 2-bit student KD.

VOLUME 11, 2023 8063



J. Y. Kang et al.: Binarized Neural Network With PWC and Quantization Gap Minimization for Online KD

BNN can be advantageous in mobile and edge devices with
resources constrained where energy efficiency is the primary
concern. However, low capacity and performance originating
from binarization lets BNN have challenges for application
in a wide range. Therefore, further investigation on BNN
includes more challenging applications (complex vision tasks
such as object detection and unsupervised learning).
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