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ABSTRACT Secure communication of medical images is essential to telemedicine. Message Authentication
Codes (MAC) can be embedded inside medical images to protect their integrity. Fragile watermarking
algorithms are suitable options since they can be used to detect any tampering attempt. In this paper,
a novel fragile data-hiding algorithm based on Integer-to-Integer Discrete Wavelet Transforms (IIDWT) and
A5 Lattice Vector Quantization (LVQ) is proposed. In the proposed data-hiding algorithm, a combination
of the medical image Metadata and a MAC is embedded into the medical image. The Metadata includes
information about the patient such as name, family, birthday, the place where it is created such as the name
of the hospital, and the physician’s name. To preserve the privacy of the patients and the physician/hospital,
the Metadata is then replaced with fake information. The receiver can extract the Metadata and the MAC.
If the extracted MAC is the same as the expected MAC, the integrity of the medical image is guaranteed.
Otherwise, a tampering attempt is detected. The proposed algorithm can embed 50% more data than similar
algorithms in medical images while keeping the Peak Signal to Noise Ratio (PSNR) in acceptable ranges.
Furthermore, the proposed algorithm is applied to a dataset of medical images and high PSNR values above
53.88 dB are experienced.

INDEX TERMS Data hiding, privacy, medical image privacy, fragile data hiding, integer discrete wavelet
transforms, lattice vector quantization.

I. INTRODUCTION
The developments in multimedia and communication tech-
nologies have provided more and more services such as
telemedicine, but on the other hand, digital content is prone to
manipulation. Thus, the integrity and authenticity of data and
software often need to be protected. Over the past decades,
medical image privacy protection based on data hiding or
watermarking has been a common method [1], [2]. Specifi-
cally, authentication information can be hidden in the marked
images and retrieved when needed. In addition to authen-
tication, the data hidden in medical images may include
Electronic Patient Records (EPR) [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Dimauro .

To employ watermarking schemes as an efficient way of
protectingmedical images, the embedded data must not cause
significant distortion to the medical image. In addition, the
watermarking must be invisible. A detailed description of
watermarking schemes used for medical data authentication
is presented in [4].

Although many watermarking algorithms have been pro-
posed in the literature, the embedding capacity and imper-
ceptibility of the embedding algorithms need to be improved.
Lattice Vector Quantization (LVQ) [5] has been used for
multiple descriptions image coding [6], [7] and multiple
descriptions video coding [8]. However, LVQ is also used for
data hiding [9], [10].

In this paper, a new fragile high-capacity data-hiding algo-
rithm based on similar sub-lattices of A5 LVQ is proposed
to protect the integrity and privacy of digital medical images.
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The new proposed algorithm is an improved version of the
watermarking algorithm proposed by the authors [11] based
on similar sub-lattices of A4 LVQ, with higher capacity as
well as higher imperceptibility. The proposed algorithm can
embed more than 20 KB of data in a 512 × 512 grayscale
image, which is more than other watermarking algorithms
while keeping the quality of the cover image at an acceptable
level of Peak Signal to Noise Ratio (PSNR).

The proposed algorithm is applied to medical images and
the results show that even after embedding the payload which
is composed of the medical image Metadata, the patient’s
photo, and the watermark image, the quality of the marked
cover image in terms of PSNR does not fall below 53 dB,
which is completely acceptable for a semi-reversible data-
hiding algorithm. The contributions of the proposed algo-
rithm are as follows:

1) A systematic procedure for finding the similar sub-
lattices of A5 with arbitrary index, N is presented in
this manuscript.

2) The proposed data-hiding algorithm is based on
A5−LVQ can embed a high amount of data.

3) For the same embedding capacity, the proposed algo-
rithm demonstrates higher perceptual quality in terms
of PSNR compared to similar algorithms. This high
capacity of embedding is consistent among different
medical images.

4) The proposed data-hiding algorithm can hide the data
inside the entire cover image and it is capable of
extracting the embedded data without requiring the
original image.

The rest of this paper is organized as follows. A review of
the related works is provided in Section II. The proposed
lattice vector quantization algorithm as well as the proposed
data-hiding algorithm is introduced in Section III. The sim-
ulation study and the experimental results are presented in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS
Data-hiding algorithms are categorized based on their appli-
cation as well as the employed embedding technique. If the
main objective of the data-hiding algorithm is to preserve
the confidentiality of the embedded data, it is usually called
steganography. But, if the security of the cover media is the
main goal, it can be called watermarking.

Steganography algorithms are usually designed for
grayscale images, and in the case of color images, the algo-
rithms are applied to the 3 color channels equally. However,
the relationship between color planes should be incorporated
into steganography. In [12], a method, of amplifying channel
modification probabilities (ACMP) is proposed, that can be
used to generalize any grayscale steganography algorithm to
a color steganography algorithm. Steganography algorithms
are also divided into single-image and multiple-image meth-
ods. Dividing the payload into multiple images increases
the security of the algorithm. The payload distribution

can be based on the texture of the image and distortion
distribution [13].

Watermarking techniques are also divided into fragile
watermarking methods and robust watermarking methods.
Robust watermarking is suitable for ownership protection,
since the algorithm is robust against possible attacks, and the
embedded data is recovered. Fragile watermarking is suitable
for the detection of tampering attempts [14].

In telemedicine secure communication of medical images
is necessary. Digital medical images are prone to different
attacks. One attacker may try to identify the patient or the
physician, to compromise their privacy. On the other hand,
one may try to tamper with the content of the image to cause
misdiagnosis or to do fake insurance claims.

Zarrabi et al. present a blind diagnostically-lossless
watermarking (BlessMark) [2]. In this research the region of
interest (ROI) map is generated by a deep network and the
watermark is only embedded in the region of non-interest
(RONI) and the ROI is kept intact. The authors claim that
BlessMark is a blind watermarking scheme since neither
the ROI map nor the original cover image is required on
the receiver side to extract the watermark. The proprietary
deep network weights, which are used to find the ROI map
are not publicly known, like a secret key. Therefore, the
confidentiality of the embedded information is preserved.
Fares et al. [15] proposed a blind and robust watermarking
algorithm based on discrete cosine transform (DCT) and
Schur decomposition with the results of 47-49 dB PSNR
values.

The presented algorithm by Gao et al. in [16], separates an
original medical image into ROI and RONI then it estimates
the pixels concentration rate (PCR) of the ROI part. If the
PCR is above a threshold, the ROI histogram is stretched, but
if the PCR is less than the threshold, the ROI histogram is
stretched without shifting. Finally, it embeds the secret data
in the ROI. In addition, the RONI is pre-processed to embed
secret data into it.

YANG et al. presented a framework for secure medi-
cal image communication based on Contrast-Enhancement
Reversible Data Hiding (RDH) and Homomorphic Encryp-
tion [17]. The presented algorithm first embeds the payload
in the medical image using a lesion-extraction-based RDH,
then encrypts the marked medical image by a symmetric key
Homomorphic cipher.

Kahlessenane et al. [18] presented a medical image water-
marking method in the frequency domain which uses dis-
crete wavelet transform (DWT), non-subsampled contourlet
transforms, non-subsampled Shearlet transforms, and DCT.
Robustness against various attacks is tested in this research.
Alshanbari [19] used LZW (Lempel–Ziv–Welch) based frag-
ile medical image watermarking. The results are proven to be
robust against various attacks.

Hemdan [20] proposed a combination of Wavelet Fusion
(WF), Singular Value Decomposition (SVD), and Multi-
Level Discrete Wavelet Transform (MDWT) for medical
image watermarking. The algorithm is proven to be able to
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TABLE 1. Imperceptibly comparisons of the related state-of-the-art methods.

resist severe attacks [20]. Zermi et al. [21] presented an algo-
rithm that uses DWT decomposition and SVD for medical
image watermarking. The PSNR values in the range of 44 are
reported as the results.

Thanki and Kothari [22] used ridgelet transform and SVD
and the Arnold scrambling-based encryption for medical
image watermarking.

An enhanced RDH scheme is presented in [23]. In this
work, a fragile watermark as well as the EPR is embedded
in the medical image. Any kind of tampering attack would be
detected since it will destroy the fragile watermark. During
the embedding process underflow (intensity values <0) and
overflow (intensity values >255) may occur. The authors
have used Paillier cryptosystem to avoid this problem [23].

Sanivarapu [24] proposed a watermarking algorithm for
medical images based on a 2-level DWT for the cre-
ation of sub-bands which are then partitioned into blocks.
Furthermore, Schur decomposition is used for the creation
of Authenticated Block Bits (ABB). The results show PSNR
values larger than 30 dB.

Vaidya [25] presented a hybrid transform-based medical
image watermarking which embeds the patient’s fingerprint
in the medical images using lifting wavelet transform (LWT)
and DWT. The experimental results show the PSNR values in
the range of 36 dB for watermarked medical images.

Singh et al. [26] used Least Significant Bit (LSB) substitu-
tion and pseudo-random key encryption and DiscreteWavelet
Transform-Singular Value Decomposition (DWT-SVD) for
watermarking. The experimental results show PSNR values
in the range of 43 dB. Agarwal and Singh [27] used discrete
cosine transform (DCT) and the genetic algorithm for RGB,
YCbCr, and YIQ image watermarking. An increase in PSNR
value led to 52-53 dB reported. Anand and Singh [4] surveyed
various watermarking techniques in the medical domain.

III. MATHEMATICS OF A5 LATTICES
An n-dimensional lattice 3 in Rn is denoted by a set of
basis vectors, 3 = ⟨b1, b2, . . . ,bn⟩. The lattice points are

generated using a generator matrix. The generator matrix
is composed of the basis vectors of the lattice. The gener-
ator matrix of the lattice 3 with the basis vectors b1 =

(b11, b12, . . . ,b1m) , . . . ,bn = (bn1, bn2, . . . ,bnm) is given
as [28]:

G =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

...
. . .

...

bn1 bn2 · · · bnm

 (1)

The Grammmatrix, A, of a lattice3 is defined as A =GGt ,
whereGt is the transposed matrix ofG. The Grammmatrix A
determines the linear independence of the basis vectors, that
is, they are linearly independent if and only if the determinant
of A is non-zero. Two lattices are called equivalent if they
are with proportionate Gramm matrices. The determinant of
a lattice 3 is also equal to the determinant of the A [28]:

det3 = det(Ǎ) (2)

If the generator matrix is square then (2) is written as [28]

det3 = (det(G))2 (3)

Thus, the volume of the fundamental parallelotope of a
lattice 3 is also calculated as [28]:

vol = det (G) =

√
det(3) (4)

Assume that 3 is an L-dimensional lattice with the gen-
erator matrix G. A sub-lattice 3′

⊂ 3 with generator
matrix G′ is said to be geometrically similar to 3 if and
only if G′

= cUGB, for nonzero scalar c, an integer
matrix U with detU= ±1, and a real orthogonal matrix B
(with BBt = I) [28].

The index N is defined as the ratio of the fundamental
volume of the sub-lattice 3′ to the fundamental volume of
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the lattice 3. The fundamental volume of the lattice (vol)
is equal to the determinant of the generator. Thus, N is
calculated by

N =
vol ′

vol
=

√
det(3′)
det(3)

=
det(G′)
det (G)

(5)

The root lattice An is a subset of points with n+1 coor-
dinates, such that the sum of their coordinates is zero.
Therefore, the lattice An can be defined as:

An =

{
(x0, x1, . . . ,xn) ∈ Zn+1

:x0 + x1+ . . . +xn= 0
}
(6)

A sub-lattice 3′
⊂ 3 with generator matrix G′ is said to be

geometrically similar to 3 if and only if G′
= cUGB, for

nonzero scalar c, an integer matrix U with detU= ±1, and a
real orthogonal matrix B (with BBt = I) [28].
In other words, the existence of 3′ can be determined

(in principle) by searching through 3 to see if it contains
a set of vectors with Gram matrix cA. For small k and
c, this is quite feasible [29]. In lattice vector quantization
(LVQ), the lattice points are used as the quantization bins.
During the LVQ process, every point p ∈ R5 is mapped to
a certain lattice point λ, that is closer to p than any other
lattice point. The region around every λ, which includes all
the points that are mapped onto λ by LVQ is called its Voronoi
region, Voroλ.
Sub-lattice 3′

⊂ 3 is considered a clean sub-lattice if all
the points of the 3 reside only inside the Voronoi region
of the sub-lattice points rather than on the boundary of the
Voronoi region [29]. It means that the lattice points are not
shared between the Voronoi regions of adjacent sub-lattice
points.

A. FINDING SIMILAR SUB-LATTICES OF A5

According to (6), the A5 root lattice is defined as:

A5 =

{
(x0, x1, x2, x3, x4, x5) ∈ Z6

:

∑5

i=0
xi= 0

}
(7)

The A5 root lattice space is spanned by the multiplication of
Z5 points and (8)

GA5+5×6 =


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 (8)

Every An lattice has a n × n square generator in addi-
tion to the rectangular n × (n+ 1) the generator is usu-
ally called a triangular generator. It is difficult to find the
similar sub-lattices of A5 using the rectangular description
A5_5×6. Therefore, the square description of A5 in R5 space
is usually used instead. The square generator of the A5 is

given as:

GA5−5×5

=


1.414 0 0 0 0

−0.707 1.224 0 0 0
0 −0.816 1.154 0 0
0 0 −0.866 1.118 0
0 0 0 −0.894 1.095


(9)

In general, it is not possible to find clean any sub-lattice of
An with any arbitrary N . In other words, for every An lattice,
only certain values of N are possible. In the case of root A5
lattice, similar sub-lattice generators can only be found for:

N= {1, 32, 1024, 32768, 1048576, . . . ,32k , k ∈ Z } (10)

This sequence of integer numbers is named A000302
in [30]. The Gramm matrices of the generators of the sim-
ilar sub-lattices, A′

A5_5×5 and the Gramm matrix of the
lattice, AA5_5×5 are proportional. The Gramm matrix of
GA5_5×5 is:

ǍA55 × 5 =


2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 (11)

Suppose the generator of a clean sub-lattice is

G
′
=


b1
b2
b3
b4
b5

 =


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55

 (12)

Then, the Gramm matrix of the generator of the clean sub-
lattice A′

A5_5×5 would be:

Ǎ′

A5[5×5 =


b1
b2
b3
b4
b5

×


b1
b2
b3
b4
b5


t

=


2 d −d 0 0 0
−d 2 d −1 0 0
0 −d 2 d −d 0
0 0 −d 2 d −d
0 0 0 −d 2 d

 (13)

According to (12), the basis vectors of the generator of the
sub-lattice must have the following properties:

bi · bj =


+2d i = j
−di− j = ±1
0 otherwise

(14)

where d can be 1, 4, 16, 64, 256, 1024, 4096, . . . . In other
words, to find a clean sub-lattice generator with an arbitrary
index N, first A5 lattice is generated by the multiplication of
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Z5 by (8). Any set of 5 points in A5 lattice can be used as
the basis vectors of a potential generator of the sub-lattice.
But only those potential generators with a Gramm matrix A′

that fulfills the requirements of (14) can generate a clean sub-
lattice ofA5. Therefore, theA5 lattice must be searched to find
sets of 5 lattice points such that, if used as the basis vectors
of the generator of the sub-lattice, they satisfy the properties
of (13).

Although the A5 lattice includes an infinite number of
points, it is not required to search all the R5 space because
the lattice points that are possible basis vectors reside in the
proximity of the origin, for example with Euclidean distance
less than 10 it is possible to find sub-lattice generators with
N < 1048690.
In this way, a portion of A5 lattice was generated by the

multiplication of a portion of the Z5 points and (8). The
selected portion of Z5 includes all 5-dimensional integer
vectors that range from [−5 − 5 − 5 − 5 − 5] to [5 5 5 5 5],
therefore it includes 115 elements and consequently the cor-
responding A5 lattice will have the same number of elements.
However, searching among all the 5-combinations of a set

with 115 elements, (161051!)
/
(5! × 161046!) will be infeasi-

ble. To minimize the searching time, a progressive procedure
is defined. Assume that we are going to find sub-lattice gen-
erators with N = 1ord = 1. According to our experiments,
there are 30 lattice points λi in the selected portion of A5 that
hold the following property: λi.λi = 2d = 2.

TABLE 2. A5 lattice points that satisfy λi .λi = 2.

Therefore, these lattice points are potential basis vectors
of the sub-lattice generators with index N = 1, presented
in Table 2. This matrix is called A5_N1. Although, searching
among all the 5-combinations of a set with 30 elements
(30!)

/
(5! × 25!)) is very faster than the previous set with

161051 members, but it is still impossible. Each row of
Table 2 can be used as the first basis vector of the sub-lattice
generator. Next, to find the second basis vector of the sub-
lattice generator, the mutual dot product between the 30 rows
of A5_N1 are computed. Among 30 × 30 couples, there are
120 couples

[
λi, λj

]
such that λi.λj = −1. This matrix

is called A5_N1_ij. Several example couples of A5_N1_ij are
presented in Table 3.

TABLE 3. Example couples of lattice points satisfying λi .λj = −1.

In the third step, for every couple of A5_N1_ij, a suit-
able lattice point λk from A5_N1 must be selected. Among
these 120 × 30 possible tuples, there are only 600 triple like[
λi, λj, λk

]
such that λi.λk= 0,λj.λk = −1. These 600 triples

form a matrix called A5_N1_ijk . Two examples are triples of
A5_N1_ijk are presented in Table 4. These triples all satisfy the
requirements of (15).

TABLE 4. Example triples of lattice points satisfying (12).

For each row ofA5_N1_ijk such as
[
λi, λj, λk

]
, the following

dot multiplications hold:

dot λi λj λk
λi 2 −1 0
λj −1 2 −1
λk 0 −1 2

(15)

In the fourth step, for every triple of A5_N1_ijk , suitable
lattice points λl from A5_N1 are selected. Among these
600 × 30 possible quadruples, there are only 3960 quadruples[
λi, λj, λk , λl

]
such that λi.λl= 0,λj.λl = 0, and λk .λl = −1.

These 3960 quadruples form a matrix called A5_N1_ijkl . Two
examples of quadruples of A5_N1_ijkl are presented in Table 5.

For each quadruple of A5_N1_ijkl such as
[
λi, λj, λk , λl

]
, the

following dot multiplications hold:

dot λi λj λk λl
λi 2 −1 0 0
λj −1 2 −1 0
λk 0 −1 2 −1
λl 0 0 −1 2

(16)

Finally, for every quadruple point inA5_N1_ijkl , possible lat-
tice points are found such as

[
λi, λj, λk , λl, λm

]
, that satisfy

the requirements of (14) and therefore they form a sub-lattice
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TABLE 5. Two example couples of A5_N1_ijkl .

generator of index N = 1. According to our experiments,
720 distinct sub-lattice generators with index N = 1 were
found.

dot λi λj λk λl λm
λi 2 −1 0 0 0
λj −1 2 −1 0 0
λk 0 −1 2 −1 0
λl 0 0 −1 2 −1
λm 0 0 0 −1 2

(17)

This means that each row of A5_N1_ijklm form a new gener-
ator of the A5 sub-lattice with index N = 1. For example, the
3rd quintuple gives the following generator, (18), as shown at
the bottom of the page.

Since G′

A5_N1_3 and GA5_5×5 have the same Gramm
matrices, their relative index isN = 1. The same procedure is

repeated for other values of d= 4, 16, 64,and256, and gener-
ators with indexes ofN= 32, 1024, 32768,and1048576 were
calculated. Example generators are reported in (19) to (22),
as shown at the bottom of the page.

Fast quantizing algorithms are a family of lattice vec-
tor quantization algorithms presented in [28] for different
root lattices. The fast quantizing algorithm first projects
the n-dimensional input vector onto n +1 dimensional vec-

tors on
n+1∑
i=1

xi= 0, xi ∈ R hyper-plane using a matrix-

multiplication [28]. Then, using a manipulation the projected
point is mapped onto a lattice point. The transformation
matrix determines on which lattice the input points must be
mapped. For example, if the points are going to be quan-
tized on GA5_5×5 then TA5_5×5 must be used. The trans-
formation matrix TA5_5×5 is calculated using the relation
between the triangular generators GA5_5×5 and the (n+1)-
dimensional definition GA5_5×6 [31]:

TA5_5×5 =
(
GA5_5×5

)−1GA5_5×6 (23)

IV. PROPOSED MEDICAL IMAGE DATA HIDING BASED
ON DWT AND A5 LVQ ALGORITHM
In this part of the paper, the proposed data-hiding algorithm
is presented. For every data-hiding algorithm whether it is
fragile or not, two different functions must be implemented,

G′

A5−N1−3 =


λ29
λ11
λ19
λ8
λ25




−0.707 0.408 0.2887 −1.118 0
0 0.816 −0.288 1.118 0
0 −0.816 0.288 −0.223 −1.095

0.707 −0.408 −0.288 0.223 1.095
−0.707 0.408 1.154 0 0

 (18)

G′

A5−N32 =


−0.707 −1.224 −1.732 −1.341 −1.095
−0.707 −1.224 1.732 1.341 1.095
−0.707 2.041 −1.154 0.894 −1.095

0 0 0 −1.788 2.190
0 0 1.732 −0.447 −2.190

 (19)

G′

A5
′N1024

=


−3.535 −2.857 −2.020 −1.565 −2.191
1.414 2.449 −1.732 −1.341 4.381
0 −3.265 1.154 4.472 0

3.535 −0.408 −0.288 −3.801 −2.191
−3.535 0.408 3.752 −0.670 2.191

 (20)

G′

A5−N32768 =


−7.071 −4.899 −5.196 −4.024 −3.286
7.071 1.632 −0.577 −4.024 7.668

−8.485 4.899 5.196 2.236 0
2.828 −6.532 −4.618 7.155 2.190
1.414 −3.265 8.082 −6.260 −3.286

 (21)

G′

A5_N1048576 =


−10.606 −6.940 −8.371 3.354 −16.431
10.606 4.490 −13.279 −7.602 12.049
4.242 −17.146 13.856 1.788 −2.190

−18.384 6.532 −3.175 1.118 10.954
13.435 3.674 −2.598 16.770 −5.477

 (22)
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FIGURE 1. The payload data includes patient’s photo, Meta data, and watermark image.

that is embedding function and extracting function. These
functions are described in the following subsections.

TABLE 6. Selected Metadata fields to be anonymized and embedded in
the cover image [32].

A. EMBEDDING FUNCTION
Digital medical image files usually have a DICOM (Digital
Imaging and Communication in Medicine) format. DICOM
makesmedical images exchange easier andmore independent
of the imaging equipment manufacturer. The image data type
is usually uint16 which means every pixel has a positive
number between 0 and 65536. Besides the image data, the
DICOM file format includes other information useful to
describe the images such as the type of patient diagnostic
image (MRI/CT), the patient’s demographic data, the place
where it is created such as the name of the hospital, and the
physician’s name, called Metadata [32].

The medical images that are used in our experiments
include 95 fields, which include 2 KB of Metadata. The
details of the selected Metadata are provided in Table 6.
In the proposed data-hiding algorithm, the patient’s photo and
the watermark logo are also embedded in the cover image.
The image inside the DICOM file is used as the cover image,
in which the sensitive data are embedded.

To describe the proposed embedding algorithm, assume
the cover image has a common size of 512 × 512. It is
important to minimize the distortion due to the embedding
process, therefore the embedding process does not affect all
pixels of the image, but it only selects several blocks of the
image and embeds the data in those blocks. The number
of required blocks depends on the amount of the payload.
Since the algorithm is going to embed the payload using the
DWT coefficients and A 5 LVQ, the blocks must be 10 × 10
pixels so that DWT coefficients become 5 × 5 blocks. Thus,
to create 10 × 10 pixels blocks, the 512 × 512 cover image
is cropped and one 510 × 510 image is formed and then it is
reshaped to 2601 blocks.

Assume a given 10 × 10 block of the image is selected
for embedding. In the second step of the embedding process,
this block is transformed by an IIDWT. This is important to
mention that the DWT must be Integer-to-Integer. If a non-
integer DWT is used instead, then the cover image would
have fractions after the embedding. Since the data type of
the cover image is an unsigned integer then any floating-
point value is rounded and consequently, the embedded data
is lost. The IIDWT transforms the input 10 × 10 block into
four 5 × 5 sub-bands, namely approximation coefficients or
LL, horizontal sub-band (HL), vertical sub-band (LH), and
diagonal sub-band (HH). Embedding inside the approxima-
tion coefficients injects a considerable amount of distortion
therefore it is usually kept intact. The coefficients of the HL,
LH, and HH sub-bands are only used for embedding.

Suppose a vector of the HL is selected for the embed-
ding V . The main idea of the embedding process is to replace
V with V ′ according to a mapping table and recover the
embedded data by having V ′a nd the mapping table. The
set of Z5 points in the vicinity of V are suitable candidates.
However, the mapping table must not be sent along V ′, thus
in the receiver, it will not be possible to recover the data
usingV ′ without themapping table. Themapping table can be
reconstructed in the receiver if the same set of Z5 points can be
formed, which requires to have a consistent relation between

VOLUME 11, 2023 9707



E. Akhtarkavan et al.: Secure Medical Image Communication Using Fragile Data Hiding

FIGURE 2. Similar sublattice of A2 with index N = 7 is shown with red
diamond and Z2 points are shown with blue squares.

the Z5 points in the set and V The lattice vector quantization
can be used to form the required relation.

The set of Z5 points found within the Voronoi region of
any given A5 sub-lattice point λ′, includes Z5 points that are
quantized λ′ by A5-LVQ. If the set of the Z5 points that are
quantized to a fixed point such as λ′

= LVQ_A5 (V ,N ) is
formed, then it is possible to reconstruct the same set Z5
points in the receiver. This set, Zvoro, is defined as:

Zvoro(V ,N ) =
{
∀v | v ∈ Z5andλ′

= LVQ_A5 (v,N )
}
(24)

The process of finding the Z5 points that reside within the
Voronoi region of a given sub-lattice point are as follows.
First, the DWT coefficient vector V is quantized onto λ′,
a sub-lattice ofA5 with a given indexN . Then, λ′ is rounded to
the nearest Z5 and added to each row of a combination matrix
[−e, −e, −e, −e, −e] to [+e, +e, +e, +e, +e], where e is
determined by N . The result is the set of all Z5 points around
λ′. Finally, among these points, only those that are lattice
vector quantized on λ′ are selected and then Zvoro(V ,N ) is
formed.

For N = 1 the value of e can be as small as 1 and for
N= 1048576 the value of emust be as high as 4.When e = 2,
there are 55 rows in the combination matrix. The embedding
capacity depends on the number of Z5 points found inside
Zvoro(V ,N ), which is controlled by N . The most important
property of Zvoro(VHL ,N) is that:

Zvoro (V1,N ) = Zvoro (V2,N )

⇔ V1ϵZvoro (V2,N ) ∧ V2ϵZvoro (V1,N )

(25)

In other words, if any member of Zvoro(V ,N ) is sent instead
of V , such as V ′, the receiver repeats the process and finds
Zvoro(V ′,N ) that is the same as Zvoro(V ,N ). Thus, it is no
longer required to send the mapping table with V ′

HL .
It is impossible to depict the embedding process in

5 dimensions. However, to visualize the process, it is pos-
sible to simulate the process in 2 dimensions, that is,
A2 is used instead of A5 and Z2 is used instead of Z5.

FIGURE 3. The embedding phase of the proposed algorithm.

In FIGURE 2, a sub-lattice of A2 with index N= 7 is
depicted with red diamonds and Z2 points are shown
with blue squares. Suppose the DWT coefficient vector
is VZ_2D = [−4, 7], and VZ_2D is lattice vector quan-
tized onto λ′

= [−3.5, 6.06].. The set of Z2 points that
are also quantized by LVQ onto λ′ is Z voro(VZ2D ,N) =

{N ) = [−4, 6], [−4, 7], [−3, 7], [−3, 6], [−3, 5], [−4, 5]}.
Since these points are all within the Voronoi of the same

sub-lattice point λ′, the same Zvoro will be calculated for each
of them. Among these six points, we can select four points
as the embeddingbins = {[−4, 6], [−4, 7], [−3, 7], [−3, 6]},
as a consequence, the embedding capacity related to VZ_2D is
log2 4, 2 Bits Per 2 Pixels (BPP), or 1 BPP.

According to our experiments, the proposed data-hiding
algorithm shows a very high capacity when the index
N> 1024. For example, if a given vector of DWT coefficient
V = [63, 82, −75, 83, 27] is quantized onto a sub-lattice
of A5 with a given index N = 1, it will be mapped on to
λ′

= [62.932, 82.058, −74.478, 82.734, 27.386, ]. There are
only three Z5 points found in the Voronoi of λ′ which form
Zvoro, provided in Table 7.

The mapping table can be as simple as possible. For exam-
ple, if Zvoro in Table 7 is considered, according to Table 7 the
capacity is 1 bit per 5 pixels. It means that if the payload data
is 0, V ′

= [63, 82, −74, 83, 27] is sent, and if the payload
data is 1, V ′

= [63, 82, −75, 83, 27] is selected.
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TABLE 7. The set of Zvoro corresponding V = [63,82,-75,83,27].

The embedding phase continues by repeating the same
procedure for every row in HL, LH, and HH sub-bands. For
a given 510 × 510 image there are 2601 blocks of the size
10 × 10 and as a consequence, there are 2601 × 3 sub-bands
of the size 5 × 5. The next step of the embedding phase is to
do the inverse IIDWT transform and prepare 10 × 10 blocks
of the embedded cover image. Finally, the embedded image
and anonymized Metadata are used to generate a DICOM
image to send to the destination. The embedding procedure
is depicted in FIGURE 3.

B. EXTRACTING FUNCTION
On the receiver side, the extracting process is applied to the
received DICOM file. The data extraction process is very
similar to the embedding process. First, the cover image is
read from the DICOM file. Next, the cover image is reshaped
to the form of 2601 blocks of 10 × 10 d imensions. Every
10 × 10 block is transformed to the wavelet domain using
the same IIDWT. The result for every block would be four
5 × 5 sub-bands, LL, HL, LH, and HH. As mentioned in IV-
A there is no data embedded in the approximation sub-band,
LL. Thus, HL, LH, and HH sub-bands are used to extract
data. Every 5 × 5 sub-band includes 5 rows and consequently
5 embedded data.

Assume that a row V ′ is received. To extract the data
embedded in V ′, it is required to find its corresponding
Zvoro(V ′,N ), the set of all Z5 points that are in the Voronoi of
the same sub-lattice point λ′. Asmentioned in IV-A, members
of the Zvoro(V ′,N ), set have two properties, they are all close
to the input vector and they are all quantized to the same sub-
lattice point, and consequently, they are all within the Voronoi
of the same sub-lattice point. Thus, the following relation can
be used instead of (24).

Zvoro
(
V ′,N

)
=
{
∀v′ | v′ ∈ Z5andλ′

= LVQ_A5
(
v′,N

)}
(26)

In other words, it doesn’t matter which member of
Zvoro(V ′,N ) has been sent and received, since Zvoro

(
V ′
)
is

the same as Zvoro(V ′,N ) for every one of the rows. Now
the input V ′ is searched in the Zvoro

(
V ′,N

)
and its index

in Zvoro(V ′,N ) is found. The embedded data is decoded by
subtracting 1 from the index of V ′ in Zvoro

(
V ′,N

)
. The

extraction procedure is depicted in FIGURE 4.
According to the example provided in IV-A, if V ′

=

[63, 82, −74, 83, 27] is received, the extracted data bit is
0, whereas if V ′

= [63, 82, −75, 83, 27] is received, the
extracted data bit is 1. The extracting phase continues by

FIGURE 4. The extracting phase of the proposed algorithm.

TABLE 8. The decoding procedure for V ′

HL.

repeating the same procedure for every row in HL, LH,
and HH sub-bands. For a given 510 × 510 image there are
2601 blocks of size 10 × 10 and as a consequence, there
are 2601 × 3 sub-bands of the size 5 × 5. By repeating the
algorithm for the rest of the blocks, the embedded payload,
including the Metadata, the patient’s photo, and the water-
mark image is extracted. The final step of the extracting phase
is to replace the fake Metadata with the extracted original
Metadata and generate a reconstructed DICOM image.

V. EXPERIMENTAL RESULTS
In this section, the performance of the proposed data-
hiding algorithm is evaluated and compared against several
recent algorithms proposed in the literature. The experimental
results are divided into four parts. In sectionV-A the impact of
changing the index N on the embedding capacity for random
vectors is provided. In section V-B, the impact of changing
the index N on the total amount of embedding capacity on
medical images is provided. In sections V-C the Metadata of
the patient, the patient’s photo, and the watermark image are
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embedded in selected medical images with DICOM format.
In these three experiments, a database of 20 medical DICOM
files has been used. Finally, the proposed data-hiding algo-
rithm is compared with similar medical image watermarking
algorithms in sections V-D. In this experiment, 14 images
from [33], 12 images from [34], and 24 images from [35]
were used.

The most common measure for imperceptibility analysis
in the literature is the PSNR. PSNR measures the amount of
distortion between two images. The value of PSNR can be
calculated as:

P (I1, I2) = 10 log10

(
Nrows × Ncols ×

max (I1)2

MSE

)
(27)

where I1 is the first image, I2 is the second image, Nrows
is number rows, Ncols number of columns, max (I1), is the
maximum level of intensity, and MSE is the Mean Squared
Error defined as follows:

MSE (I1, I2) =
1

Nrows ∗ Ncols

∑
i

∑
j

(I1 (i, j) − I2 (i, j))2

(28)

The second imperceptibility measure that we use is the num-
ber of pixels changed ratio (NPCR). To calculate NPCR
the number of pixels that are changed after embedding is
divided by the number of all pixels. The structural similarity
index measurement (SSIM) is another common measure of
distortions between an image and its altered version.

SSIM (x, y) =

(
2µxµy + C1

) (
2δxy + C2

)(
µ2
x + µ2

y + C1

) (
δ2x + δ2y + C2

) (29)

where µx is the average of x, µy is the average of y, δ2x is
the variance of x, δ2y is the variance of y, δxy is the covariance
of x and y, C1 = (k1L) 2-Constant to avoid instability when
µ2
x + µ2

y is close to zero, k1 = 0.01, L = 255, C2 = (k2L)2-
Constant to avoid instability when δ2x + δ2y is close to zero,
k2 = 0.03. The PSNR is not an objective measure of
perceptual quality whereas SSIM is a common measure of
perceptual quality. The embedding capacity of data-hiding
algorithms are usually measured by the value of BPP. To cal-
culate BPP, the number of embedded bits is divided by the
number of pixels used.

A. THE IMPACT OF INDEX N ON THE
EMBEDDING CAPACITY
The lattice vector quantization onto the points of a sub-lattice
depends on the index of the generator which has generated the
sub-lattice. The number of lattice points and Z5 points within
the Voronoi of any sub-lattice point are increased when the
indexN increases. In this part of the experiment, we are going
to check the impact of the index N on the performance of the
data-hiding algorithm in terms of the embedding capacity and
the perceptual quality of the cover image.

In section IV-A, V = [63, 82, −75, 83, 27] as a random
vector was used to generate a sample Zvoro(V ,N ) for index
N = 1. However, if the same V is quantized onto a sub-
lattice of A5 lattice with a given index N= 32, a different
Zvoro(V ,N ) with a larger number of points will be found.
If the index of the sub-lattice is N= 32 then the result of the
quantization of V will be λ′

= [62.932, 82.874, −75.632,
82.734, 27.386] and there are eighty Z5 points inside the
Voronoi of λ′. The embedding capacity for a given vector
depends on the coarse degree of quantization. The embedding
capacity for a given vector V is calculated as

Capacity (V ,N ) =
⌊
log2 (rowsinZvoro(V,N))

⌋
(30)

The number of points in Zvoro is also dependent on the input
vector. In other words, the embedding capacity per vector is
not the same for different vectors. For example, if Z voro in
Table 7 is considered, the capacity is 1 bit per 5 pixels or
0.2 BPP. To show the relation between the input vector and the
number of points in Zvoro(V ,N ), 1000 sample random vectors
are generated and the corresponding embedding capacity is
depicted in Table 9.

TABLE 9. Average Number of Z5 points inside the Voronoi of 1000
random V, for different indexes N = 1, 16, 256, 4096, 65536, 1048576.

According to Table 9, the embedding capacity for the same
random vector increases when the index is increased and it
remains almost constant for the same index across different
vectors, especially for N >32. The total embedding capacity
for a given 512 × 512 image is calculated as follows. There
are 2601 blocks of the size 10 × 10 in a cropped image of
the size 510 × 510 and as a consequence, there are 2601 × 3
sub-bands of the size 5 × 5. The total capacity of the pro-
posed embedding algorithm in a 512 × 512 image will be
determined by:

totalcapacity =

∑2601×3×5

i=1
Capacity (Vi,N ) (31)

It is also possible to trade the quality for a higher capacity.
In other words, if the approximation coefficients are also
used for the embedding, then the capacity will increase but
the quality will decrease. Therefore, the total capacity of the
proposed embedding algorithm in a 512 × 512 image will be
determined by:

totalcapacity =

∑2601×4×5

i=1
Capacity (Vi,N ) (32)
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FIGURE 5. Twelve Selected medical images (out of 20 experimented) with
512 widths and 512 heights. To avoid confusion between similar images,
the filenames are included too.

B. THE IMPACT OF N ON THE TOTAL EMBEDDING
CAPACITY OF MEDICAL IMAGES
In this section the impact of the selected index for the A5 sub-
lattice vector quantization on the total embedding capacity of
the proposed algorithm is studied. According to the embed-
ding algorithm described in section V-A, the cover image is
first divided into 10 × 10 blocks and then these blocks are
transformed into wavelet domains.

The embedding process is done on 3 sub-bands out of
4 available sub-bands and the approximation coefficients are

TABLE 10. The impact of index n on the embedding capacity and
imposed distortion for embedding in the first block of 20 images.

TABLE 11. The impact of index N on the average embedding capacity and
PSNR for embedding in the first 128 blocks of 20 images.

left intact. Therefore, for every block, there are 3 sub-bands
each one having 5 rows, a total of 15 rows per block. The
number of bits per block is dependent on the value of the
row vector and is not consistent for all vectors. In this exper-
iment, 20 medical images have been selected for embedding
random numbers. Selected medical images are illustrated in
FIGURE 5.

For every row vector VZ the set of Zvoro is calculated and
a random number in the range of [1,Capacity (VZ ,N ) − 1] is
embedded. According to our experimental results, presented
in Table 10, the embedding capacity is directly related to the
value of the index N as well as the number of embedded
blocks. In other words, increasing the index or the num-
ber of embedded blocks improves the embedding capacity.
However, increasing the embedding capacity imposes higher
distortions and lower PSNR values.

According to Table 10, the distortion between the embed-
ded image and the original image increases as the value
of index N is increased and consequently, the PSNR value
decreases. On the other hand, the embedding capacity is
increased as the value of index N is increased. Increasing the
number of embedded blocks can impact both the distortion
and the embedding capacity.

Embedding in the first 128 blocks decreases the PSNR
values and increases the average embedding capacity for
the same index N. Details of the average PSNR values and
the average embedding capacities for embedding in the first
128 blocks of the 20 images are shown in Table 6.
To demonstrate the impact of the index N and the num-

ber of embedded blocks on the perceptual quality of the
cover images, the original images and the cover images with
128 embedded blocks are provided in FIGURE 6 with cor-
responding PSNR values and SSIM values.

The maximum embedding capacity of the proposed
embedding algorithm based on the similar sub-lattices of A5
is achieved for the index N= 1048576 and the number of
embedded blocks = 2601. The average PSNR values of the
20 embedded medical images as well as the corresponding
average embedding capacities are plotted as a function of
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FIGURE 6. Two original medical images and their embedded cover images after embedding in the first 128 blocks are provided
with the PSNR values, the number of embedded bits, and SSIM values.
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FIGURE 7. The vertical axis on the left shows the average PSNR and the vertical axis on the right shows average embedding capacity for 20 medical
images vs. number of embedded blocks.

the number of embedded blocks in FIGURE 7 for different
index values. According to FIGURE 7, it is obvious that
the distortion between the embedded image and the original
image and the average or embedding capacity increases as
the number of embedded blocks is increased, despite the
value of index N . Besides, according to FIGURE 7 for the
same number of embedded blocks, the distortion between
the embedded image and the original image increases as index
N is increased.

C. EMBEDDING THE METADATA IN THE SELECTED
MEDICAL IMAGES
As stated in section IV-A, the entire Metadata of the selected
medical images includes less than 2 KB of data. The water-
mark image, which is shown in FIGURE 8, is a binary image
with dimensions of 180 × 50. Thus, 180 × 50 ÷ 4 = 2250
bytes in the payload data are reserved for the watermark.

FIGURE 8. The watermark image.

The patient photo is a gray-scale image with
50 × 50 pixels, and 5000 bytes of payload data must be
reserved for it. Less than 6 KB will be embedded in a typical
medical image. The experimental results of embedding the
patient Metadata, his/her photo, and the watermark image in
the 20 selected medical images are provided in TABLE 12.

According to TABLE 12 the number of required blocks to
be used in the embedding process of the Metadata, patients’
photo, and the watermark image, is constant for each index N
for different image, and PSNR values range from 93.573 dB
to 101.076 dB.

TABLE 12. The experimental results of embedding the Metadata,
patients’ photos, and the watermark in the 20 selected medical images.

As demonstrated in Section IV, the proposed data-hiding
algorithm based onA5 lattice vector quantization is capable of
embedding a high amount of data. Furthermore, for the same
embedding capacity, the proposed algorithm demonstrates
higher perceptual quality in terms of PSNR compared to
similar algorithms. Also, this high capacity of embedding is
consistent among different medical images. Finally, the pro-
posed data-hiding algorithm can hide the data inside the entire
cover image and it is capable of extracting the embedded data
without requiring the original image.

D. COMPARISON WITH RELATED WORKS
The results of the proposed algorithm are compared with the
related works on three medical image datasets. The med-
ical image datasets comprise an MRI image dataset [33],
a radiographic image dataset [34], and an ultrasound image
dataset [35]. The datasets are in BMP format. The comparison
of the PSNR, SSIM, NPCR, and BPP values between the
proposed algorithm index N = 1024, with similar methods
proposed from 2017 to 2021 is presented in TABLE 13.

According to our experiments, as the embedded payload
is increased, that is higher BPP, the PSNR values decrease.
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TABLE 13. Imperceptibility results in comparison with related work.

TABLE 14. Speed of the proposed algorithm.

This is logical because to increase the payload we have to
embed data in more blocks or use a larger index N and
consequently impose more distortion.

E. COMPUTATIONAL COMPLEXITY AND SPEED OF THE
PROPOSED ALGORITHM
To calculate the speed and computational complexity of the
proposed algorithm the simulations are performed on the
same computer system with a processor Intel(R) Core (TM)
i9-10850K CPU@ 3.60GHz 3.60 GHz, with 64 GB of RAM,
Windows 10, and Matlab R2019b for the same three datasets
and the results are reported in TABLE 14.

VI. CONCLUSION
In this paper, a novel data-hiding algorithm based on IIDWT
and the A5 lattice vector quantization is proposed that can
embed the payload data inside the entire image. The proposed
data-hiding algorithm is a fragile data-hiding algorithm that
enables us to detect any tampering efforts. The proposed
data-hiding algorithm embeds the data by finding the Z voro,
the set of Z5 points that coexist in the same Voronoi as the
current vector of the DWT coefficients. Then the vector is
substituted by a proper member of the Zvoro. The embedded
data is recovered in the receiver by doing the same procedure
and finding the index of the received vector in the same Z voro.

The simulation results show that the proposed algorithm
outperforms similar proposed algorithms. The proposed data-
hiding algorithm is applied to 62 BMP medical images from
anMRI image dataset [33], a radiographic image dataset [34],
and an ultrasound image dataset [35]. The experimental
results show that the proposed algorithm can embed more
data than similar algorithms in the standard test images while
keeping the PSNR above 53 dB. In addition, the proposed
algorithm is applied to 20 DICOM medical images to embed

the Metadata of the file together with the patient’s photo and
a watermark as MAC. The fragility of the algorithm enables
us to detect any tampering efforts and keep the integrity of the
system. In addition, the PSNR value which are above 53 dB
guaranties no adverse effect in the process of diagnosis. For
the future works of the proposed algorithm theA6, A7, andA8
similar sub-lattice are considered for increasing the capacity
of the data hiding in various multimedia applications. Fur-
thermore, other applications of the proposed algorithms for
the Internet of Things and smart cities are under investigation.
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