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ABSTRACT Finding a gas source in a cluttered outdoor environment using autonomous robot is a complex
challenge. The gas movement is difficult to predict as it is significantly affected by the wind and the shape
of objects in the environment. In this paper, we propose a new probabilistic model and an integration of
Bayesian inference and anemotaxis methods used for a robot to find a gas source in a large cluttered outdoor
environment. An autonomous robot installed with a gas sensor is expected to find the location of the gas
source after the gas leak occurs for a particular time. The advantage of the Bayesian inference technique has
been presented previously so that a robot can find the gas source in an isolated indoor building without any
significant wind flow. The large environment is divided into some particular regions. A set of probability
density function was collected previously from a large amount of gas dispersion simulation to estimate the
maximum likelihood of where the gas source is. The challenge gets more extensive if the Bayesian inference
method is applied in an outdoor and cluttered environment. Instead of only measuring the gas concentration,
the wind angle is also used as the wind profile significantly affects the gas dispersion. Therefore, the
probability model is modified to allow the wind direction as a new variable.Moreover, an anemotaxis method
is incorporated as the decision-making support as it may be more efficient to direct the robot explicitly to
the upwind direction. Evaluations of the proposed method were carried out and its advantage was shown
through simulation in a number of different scenarios.

INDEX TERMS Gas source localization, Bayesian inference, anemotaxis.

I. INTRODUCTION
Nowadays, unmanned ground or aerial vehicles are needed in
a response to a chemical, biological, radiological, and nuclear
(CBRN) leaks [1], [2]. The unmanned vehicles or robots are
used to assist in a CBRN mitigation process as they are not
affected by the CBRN contamination. The robots can carry
some CBRN sensors to do a gas distribution mapping or gas
source finding. The map and source location estimation can
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be useful for evacuation decisions or decontamination as the
next phase of the mitigation process.

Research in gas source localization (GSL) by a robot are
classified into reactive, heuristic, learning, and probabilistic
methods [3]. The reactive methods are inspired by insect
behaviors and they are classified into chemotaxis and
anemotaxis methods. By using chemotaxis methods, the
robot is driven along the gradient of the gas concentration [4].
By using anemotaxis methods, the robot finds a source
by going against the wind direction [5]. [6]. However, the
behavior of the reactive method is straightforward without
considering previous information.
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FIGURE 1. An illustration of time-variant gas dispersion in an outdoor
cluttered environment with some turbulence points (G: gas source
location).

Instead of using reactive methods, heuristic optimization
may be a better alternative solution as historical samplings
are used. [7], [8], [9], [10], [8]. They used a distributed
nano multi-quadcopter in indoor cluttered GPS-denied
environment. As the popularity of machine learning is
significantly increased in the last decade, both supervised
and unsupervised machine learning methods are adapted
to solve the GSL problem. The deep learning architecture
is used for odor source direction classification and gas
source localization [11]. By adapting reinforcement learning
methods [12], [13], a robot can autonomously find the
optimal behavior for finding a gas source through trial and
error with the environment.

A probabilistic method is another option as a learn-
ing method is data-hungry. Particle filter [14], [15],
Information-driven [16], Entrotaxis [17], Bayesian inference
[18], [19], [20], or Markov Decision Process (MDP) [21]
based methods are some promising methods for GSL.
Most of the works used a generalization of the plume
model for estimating the likelihood probability. Realistically,
a simple plume model does not consider the wind turbulence
and the existence of obstacles. Near-realistic time-variant
gas dispersion in a cluttered environment is depicted in
Fig. 1. At first, the gas leaks in location (G) with small
amount of gas particles. Eventually, the gas particles are
distributed extensively to other regions by the wind advec-
tion, gravity, buoyancy, random movement and molecular
diffusion.

The summary of the state-of-the-art related to GSL is
shown in Table 1. Each research has its problem assumption,
such as the existence of the obstacle, the wind turbulence
and the size of the environment. The more the obstacle
exists, i.e. in a cluttered environment, the more the wind
turbulence spots exist. Moreover, the wind direction in an
area which is very near to the obstacle is more irregular.
The larger the environment is also more challenging as the
robot may go far away from the source and cannot find
the gas source because the robot repeatedly goes around the
same track. Furthermore, how to evaluate the method is also
very important. Some researchers have done the evaluation
using real experiments; otherwise, the evaluation has been
conducted in a simulated environment.

A few GSL works have considered realistic gas dispersion.
The most frequently used gas dispersion simulators is
GADEN [22]. In [19], a Bayesian filtering technique was
used for localizing a gas source. The likelihood is estimated
from a set of likely gas dispersal simulations. This work
was extended by considering the time factor in the Bayesian
model by [20] in a more complicated indoor environment.
Another work in [12] used deep reinforcement learning.
It used a 10× 10 grid environment in the training phase. The
result was also evaluated in GADEN, but some experiments
were not more efficient than simple bio-inspired methods.

The challenge is become more complex for finding
the gas source in outdoor cluttered environment. Many
papers used anemotaxis as it is effective in an environment
with strong wind flow. However, other methods were also
proposed. Computational Fluid Dynamics (CFD) simulation
and LSTM-RNN method are utilized by [11] to allow a
robot predicts the source location in a chemical plant that
has complex terrain. Simulated annealing method was used
by [9] in a multi-building environment. However, there is no
comprehensive evaluation as it only used one simple wind
profile. In this paper, we use an outdoor environment that
contains some buildings. In that kind of environment, the
wind flow is chaotic, and the distribution can be different
depending on the current weather. We proposed a new
probabilistic method and integrating Bayesian inference
with anemotaxis to more efficiently find the gas source
location.

In a Bayesian framework, the most challenging thing is
how to estimate the likelihood. In this case, the likelihood
probability can be estimated by utilizing a set of gas
simulations with different wind profiles. The likelihood
probability means the probability of the robot observing the
gas and the wind direction at a specific time and region,
given a set of probability density functions (PDF). As in
the Bayesian inference technique, the estimated likelihood
updates the posterior probability of each region whether it
is more likely to contain a gas source or not. The decision
of each iteration is not only based on Bayesian inference
but also incorporates an anemotaxis method. We named it
as Bayesian+anemotaxis method. The anemotaxis method is
used as a local search. The robot will move to a neighbor
region where the smallest difference between the robot’s
heading to the region with the highest posterior and the angle
of the wind direction is.

Several simulations are conducted to evaluate the effi-
ciency of the proposed method. A comparison among other
methods such as chemotaxis+anemotaxis and Bayesian
inference only is analyzed. Robot Operating System (ROS)
and GADEN simulator are used as the robot and gas
simulator. The robot used in this paper is an UnmannedAerial
Vehicle (UAV) installed with a gas sensor. The UAV estimates
the wind direction by using a method in [23].

The paper is organized as follows. Section II describes the
formulation of the problem addressed. Section III elaborates
the methods used to solve the problems. Section IV shows the
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TABLE 1. Summary of some relevant GSL literatures.

results and discusses the comparison among other methods.
A conclusion and some future works are written in Section V.

II. PROBLEM FORMULATION
The strong airflow rapidly distributes a gas leak from a
single gas source in a cluttered outdoor environment. It is
assumed that the 3Dmap building is available apriori. A robot
installed with an appropriate gas sensor is driven to find the
location of the gas source. The gas dispersion is time-variant
and the wind distribution varies. Therefore, a joint PDF of
gas source location and time should be computed, given the
measurement of gas and wind direction. The use of PDF is to
estimate the maximum likelihood of where the gas source is.
The likelihood is used to update the posterior probability in a
Bayesian inference framework.

The contribution of this paper are a novel probabilitymodel
and a goal decision-making strategy combining Bayesian and
anemotaxis methods for GSL. A novel probability model is
presented, in which somewind profiles are joined to construct
the PDF. The anemotaxis method, an oriented movement in
response to a current of wind flow, is expected to increase the
efficiency of the GSL.

III. METHODOLOGY
A. PROBABILISTIC MODEL
In this paper, the environment is divided apriori into NR
regions R = {r1, r2, .., rNR} using a Voronoi partition in
a non-convex area [24]. The time is also divided into NT
periods T = {t1, t2, .., tNT }. As an outdoor building is used,
the wind distribution can vary in order that there areNW wind
profiles W = {w1,w2, ..,wNW }. For example, four different
wind profiles are depicted in Fig. 2.
A gas source is located in one of the regions (ra). The

gas leakage starts at (tgas). The gas sensor measures the gas
concentration (ygas) at a particular time (trobot ) in a particular
region (rb) with a specific wind profile (wi). It is assumed that
the wind profile is time-invariant. Therefore, the wind (ywind )

FIGURE 2. Different wind profiles generated in a campus building:
(a.) West to East, (b.) East to West, (c.) South to North, and (d.) North to
South.

is measured in a particular region (rb) with a specific wind
profile (wi).

P(ra, tgas|ygas(trobot , rb,wi), ywind (rb,wi))

=
P(ygas(trobot , rb,wi), ywind (rb,wi)|ra, tgas)P(ra, tgas)

P(ygas(trobot , rb,wi), ywind (rb,wi))
(1)
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FIGURE 3. Several PDFs of gas that are taken with wind profile as in
Fig. 2.c if the gas source is located in region-1 in a particular time.

Eq. 1 is a Bayes rule which models the probabil-
ity of the joint PDF of the gas source location and
the start time given the measurement of gas concentra-
tion and wind angle. The prior probability, P(ra, tgas),
is initialized equally depend on the number of region,
time period and wind profile. The posterior probability,
P(ra, tgas|ygas(trobot , rb,wi), ywind (rb,wi)), will be continu-
ally updated and assigned to prior probability in the next
iteration. Moreover, the posterior can only be updated if the
likelihood, P(ygas(trobot , rb,wi), ywind (rb,wi)|ra, tgas), can be
estimated.

B. GENERATING A SET OF GAS SIMULATIONS
To estimate the likelihood, a set of gas distribution data is
needed. At least a simulation of a gas source in each region
is done for each wind distribution. Therefore, the minimum
number of simulations is NR × NW . For each simulation,
the time is divided into NT periods. The gas concentration
readings for each period of gas simulation in each region are
assembled using Kernel Density Estimator (KDE) in Eq. 2.

f̂h(x) =
1
nh

n∑
i=1

K
(x − xi

h

)
(2)

A Gaussian kernel K and a bandwidth h are selected based
on [25]. The KDE equation is formulated in Eq. 2. The
number of gas concentration readings is n.
There are two PDFs (PDF of gas and wind) which

are useful for estimating the likelihood of gas and wind
separately. For a such clarity, illustration of the PDF of gas
and wind are depicted in Fig. 3 and 4 respectively.

From the Fig. 3, it can be observed that the PDF of gas
in region-1 has the highest probability of measuring high gas
concentration. The curves of PDF of gas in region 2 and 3
are almost the same. In region-5 only contains low gas
concentration and there is almost zero gas concentration in
region-4.

The statistics of wind in region 1, 2 and 3 with the wind
profile as in Fig. 2.c is depicted in Fig. 4. As it is seen from the
PDFs, the wind flow in region 1 and 3 are laminar but region
1 has lower standard deviation. In region-2, it is observed that

FIGURE 4. Several PDFs of wind that are taken with wind profile as in
Fig. 2.c.

there is two dominant wind angles around 0 and 100 degrees.
A turbulence flow has occurred in region 2.

C. ANEMOTAXIS
The movement of gas particles is highly affected by the
wind vector w⃗i. Intuitively, the robot can drive to the upwind
direction to find the gas source. However, in a complex
environment, the wind profile is not laminar.Wind turbulence
may occur in some places. Therefore, θ̄w, the circular mean of
n sample before current time t of wind vectors is used instead
of a single wind sample, which may be fluctuated as in Eq. 3.

As there are many goal candidates of ra, each angle
between the robot position x and the center of each region
ra, θ

ra
x , should be obtained as in Eq. 4. It is used to define a

region that has the slightest difference between θ
ra
x and the

upwind angle.

θ̄w = atan2(
t∑

i=t−n

sin ̸ w⃗i,
t∑

i=t−n

cos ̸ w⃗i) (3)

θ rax = ̸ (x, center(ra)) (4)

In the place where wind turbulence exists, the wind
direction is more uncertain. In consideration of that, the
circular standard deviation of n sample of wind angle is
needed to detect whether an area has a turbulence flow or
not. The circular standard deviation (σθw ) of a wind angle
measurement set is calculated using Eq. 5. If an area has a
turbulence flow, the wind measurement of that particular area
will be neglected. Therefore, the decision is only depend on
the gas concentration measurement.

σθw =

√√√√√(1
n

t∑
i=t−n

sin ̸ w⃗i

)2

+

(
1
n

t∑
i=t−n

cos ̸ w⃗i

)2

(5)
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Algorithm 1 Bayesian+Anemotaxis GSL
Require: R,T ,W
collect set of P(ygas(trobot , rb,wi), ywind (rb,wi)|ra, tgas)
set Pprior (R,T ) = {1/(NRNT ), . . . , 1/(NRNT )}
for sensor time sampling do
get ygas(trobot , rb) gas observation in region rb at trobot
get ywind (rb) wind observation in region rb
for ra := r1 −→ rNR do

for tk := t1 −→ tNT do
LGW = {}

for wi ∈ W do
Lgas = PDF(ygas(trobot , rb,wi)|ra, (tk + trobot ))
Lwind = PDF(ywind (rb,wi)|ra)
LGW = LGW

⋃
{Lgas.Lwind }

end for
L = maxwi (LGW )
Ppost (ra, (tk + trobot )|y(trobot , rb)) =

L · Pprior (ra, (tk + trobot ))
end for

end for
normalize Pposterior (R,T )
Pprior (R,T ) = Pposterior (R,T )
compute P(R)
estimate rgoal using (6)
if no gas source in region rgoal then
Pprior (rgoal) = 0

end if
end for

After calculating the circular mean and standard deviation
of the wind angles, the robot’s destination (rgoal) can be
calculated by using Eq. 6. The rgoal considers the circular
standard deviation of the angle. If the value is less than a
particular threshold (σthr ), the upwind angle is used to weight
the posterior probability obtained by the Bayesian inference
method. Otherwise, the rgoal is calculated only from the
posterior probability.

rgoal =

{
argmax( P(R)

|(−π+θ̄w)−θ
ra
x |

), if σθw ≤ σthr

argmax(P(R)), otherwise
(6)

D. THE ALGORITHM (BAYESIAN + ANEMOTAXIS)
In this paper, we address a combination of the Bayesian
and anemotaxis methods for gas source localization. The
anemotaxis mechanism is expected to support the Bayes
decision to allow the robot finds the gas source location more
efficiently.

The proposed method is illustrated in Algorithm 1. This
algorithm needs three important sets: set of region (R),
time (T ) and wind (W ). The set of probability density
functions also needs to be obtained to estimate the likelihood
of the Bayesian inference.

According to the common procedure for performing the
Bayesian inference, a set of prior probabilities is equally

initialized. The likelihood of gas (Lgas) and wind (Lwind )
are estimated based on the PDF. The posterior probability is
updated for each iteration based on the maximum likelihood
and the prior probability. Then, the new posterior probability
will be used for the next prior probability after normalizing
the posterior probability.

After obtaining the new posterior probabilities, then, the
joint posterior probabilities of a region P(R) are computed.
It is used to decidewhere the robot should go. However, rather
than only using the P(R), the circular mean and standard
deviation of the wind angle are used (See: Eq. 6). If there is
no gas source in the region, then the prior probability in that
region is assigned to zero. The gas declaration can be done
using visual check or using a particular gas concentration
threshold as in [26].

IV. EXPERIMENTAL RESULTS
A. SIMULATION SETUP
A large cluttered outdoor campus environment with approx-
imately 500m× 700m area is used in the simulation. The
building is divided into 50 regions. The division of regions
is conducted using non-convex Voronoi tesselation as it is
used in [27] to allow an equal area discretization. The robot
actuators and sensors model, including GPS, LIDAR and
gas sensors, that are used to do the navigation, localization
and mapping are simulated in ROS platform. The GADEN
simulator is used as the gas dispersion simulator.

B. RESULT AND DISCUSSION
Four scenarios with different gas source locations, initial
robot locations and wind profiles are carried out. For each
scenario, the length of the trajectory of using three different
strategies: (1) Bayesian+anemotaxis, (2) Bayesian only and
(3) chemotaxis+anemotaxis are statistically compared. The
chemotaxis+anemotaxis, a conventional reactive method,
is formulated in Eq. 7. The anemotaxis part is weighted by
α and the chemotaxis part is weighted by β. The objective of
the anemotaxis is to search the region which has the slightest
difference in upwind angle. The objective of the chemotaxis
is to decide which region has the neighbor where the average
of the gas concentration (ȳgas) is maximum. To test the
repeatability, each strategy is conducted five times.

rgoal = argmin
r

(α|(−π + θ̄w)

−θ rx | − β max(ȳgas(neighbor(r))) (7)

1) SCENARIO 1
In this scenario, the robot’s initial position and gas source
location can be seen in Fig. 5 by the symbol S and G, respec-
tively. Our proposed method, the Bayesian+anemotaxis
method, results in the shortest trajectory as it is seen
in Fig. 6. Compared to the Bayesian method without
anemotaxis, a Bayesian+anemotaxis method is slightly more
straightforward and directed to the source (See: Fig. 5 red
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FIGURE 5. Trajectory comparison by different strategies in scenario 1.

FIGURE 6. Path length comparison by different strategies in scenario 1.

and black trajectories) as this method not only considers the
posterior probability P(R) but also the upwind angle.
Another strategy is using the reactive method named

chemotaxis+anemotaxis method. The chemotaxis+anemo-
taxis method is more consistent than the others as it
is deterministic. However, the average trajectory length
produced is the least efficient. This is reasonable as the
average of the wind direction is to the west, and the robot
tends to check all regions to the east.

2) SCENARIO 2
The second scenario depicted in Fig. 7 illustrates the exact
gas source location and wind profile as the previous scenario
but different robot’s start location. This scenario is more
straightforward for the robot as the difference in wind
angle is small. As expected, the chemotaxis+anemotaxis
method results in the most efficient trajectory. For the
chemotaxis+anemotaxis method, this scenario is effortless as
the robot just follows the upwind and then finally finds the gas
source.

The trajectory result by using only the Bayesian method is
inefficient. Sometimes the robot chooses a wrong path, as the

FIGURE 7. Trajectory comparison by different strategies in scenario 2.

FIGURE 8. Path length comparison by different strategies in scenario 2.

black line in Fig. 7, as it does not consider the wind. By com-
bining the Bayesian with anemotaxis method, the result is
slightly better. However, the Bayesian+anemotaxis method
cannot be more efficient than the chemotaxis+anemotaxis
method. Bayesian+anemotaxis also considers the posterior
probability of all regions, makes the robot may want to check
another region.

3) SCENARIO 3
This scenario is aimed to analyze the trajectory differences if
there are some turbulence flows between the robot and the gas
source. The chemotaxis+anemotaxis method is too greedy,
as is expected. There are back-and-forthmovements in certain
areas, which result in a very inefficient robot path.

The Bayesian+anemotaxis and Bayesian only method
result in almost the same path at first. However, by using
only Bayesian, the robot sometimes travels in the opposite
direction to where the gas source is (see: black path in
Fig. 9). This behavior may indicate that the region with
the largest posterior probability is in the opposite of the
gas source location. The robot may be more confident
with the gas measurement and the likelihood estimation
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FIGURE 9. Trajectory comparison by different strategies in scenario 3.

FIGURE 10. Path length comparison by different strategies in scenario 3.

than the wind information. Therefore, incorporating the
wind information in the goal decision-making process as
the Bayesian+anemotaxis method may become an alter-
native solution. The Bayesian+anemotaxis method con-
siders the wind information but is not as greedy as the
chemotaxis+anemotaxis method.

4) SCENARIO 4
In this scenario, the gas source is placed in the north-west of
the environment and thewind is flown to the east (see Fig. 11).
Although this scenario seems to be easier than the previous
scenario, however, by using only the Bayesian method, the
robot travels far from where the gas source is. It is also

FIGURE 11. Trajectory comparison by different strategies in scenario 4.

FIGURE 12. Path length comparison by different strategies in scenario 4.

statistically proven by the Fig. 12 that the Bayesian only
method in a very large environment is inefficient.

From this experiment, it can be argued that if the
robot has not yet measured gas concentration more than
zero, the Bayesian only method will greedily check the
farthest area. Although the wind likelihood is estimated
from the PDF, it does not seem enough to drive the
robot more straightforward to the gas source. Incorporating
the anemotaxis method is way more promising than only
considering the wind in the probability model, as it may not
stand with the turbulence flow.
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FIGURE 13. Initial robot (S) and gas source location (G) for Entrotaxis
(black path) and Bayesian+anemotaxis (white path) comparison testing
in a small area. (a.) The whole building used (b.) Small part of the
building zoomed.

FIGURE 14. Path length comparison of Entrotaxis and
Bayesian+anemotaxis.

C. COMPARISON WITH ENTROTAXIS
The Entrotaxis method is a GSL method which assumes that
the source strength is unknown and the gas distribution is
turbulence [17]. It causes an irregular gradient of the gas
concentration. The idea of thismethod is how the robot counts
the appearance of the gas particle rather than measuring the
continuous gradient value. The particle is calculated in a
specific area once the gas sensor senses a relatively high
concentration.

The Entrotaxis method utilizes the particle filter method.
Each particle weight is updated according to a Poisson
probability distribution involving the particle encounters. The
Poisson probability distribution will also be used to calculate
the entropy for each action candidate. The optimal action is
the action with the maximum entropy.

In this section, the efficiency of the Entrotaxis will be
compared with the Bayesian+anemotaxis method. In [17],
a small free area (without any obstacle) is used to evaluate
the efficiency of the Entrotaxis method. It is different from
the problem that this paper wants to solve: a GSL in a large
cluttered environment. The implementation and testing of
Entrotaxis in a large cluttered area have been conducted.
However, it is challenging to find the gas source if the initial
robot position is too far from where the gas source. The robot

does not have a piece of information in an area with no gas
contamination. Therefore, a combination with anemotaxis
may improve the efficiency of the Entrotaxis method.

As Entrotaxis also utilizes a particle filter method. A larger
number of particles is needed in a large area. It may
cause inefficiency in time computation. Moreover, the wind
turbulence caused by the obstacles is more irregular than
in free space. The original Entrotaxis method cannot deal
with that kind of environment. With all of those conditions,
we can only compare the efficiency of Bayesian+anemotaxis
and Entrotaxis if the robot location is initially near the gas
source, as seen in Fig. 13. Bayesian+anemotaxis show more
efficiency according to the trajectory length illustrated in
Fig. 14.

V. CONCLUSION
This paper presented the advantage of the anemotaxis
method, which can be incorporated with the Bayesianmethod
in a robotics gas source localization in a large cluttered
outdoor environment. The Bayesian method estimates the
likelihood of where is the region which most likely contains
a gas source by considering a set of PDFs from simulations.
The anemotaxis method seeks a gas source by driving
the robot to the upwind direction. Our proposed algorithm
combines those two methods and shows a promising result
from several evaluations. Without enough gas information,
the Bayesian method cannot efficiently decide where the gas
source is located. Using only the reactive method such as
chemotaxis+anemotaxis results in greedy behavior, which is
not efficient in a complex environment with some turbulence
flows. Thus, combining those two methods cause the robot
drives to the gas source more efficiently.

Besides evaluating the proposed method using the real
robot, modifying the Entrotaxis method in a large cluttered
environment is also one of the future research that seems
promising. The Entrotaxis method has a more realistic
assumption, whereas we do not need to depend on the low
accuracy of the gas sensor. Moreover, the disadvantage of our
proposed method is that prior information about the building
structure is mandatory. A pre-processing phase is also needed
to construct the robot’s knowledge about gas distribution.
Modifying other heuristic GSL methods may allow a robot
to find a gas source in a large cluttered environment.

REFERENCES
[1] R. R. Murphy, J. Peschel, C. Arnett, and D. Martin, ‘‘Projected needs

for robot-assisted chemical, biological, radiological, or nuclear (CBRN)
incidents,’’ in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot. (SSRR),
Nov. 2012, pp. 1–4.

[2] R. Guzman, R. Navarro, J. Ferre, and M. Moreno, ‘‘Rescuer: Development
of a modular chemical, biological, radiological, and nuclear robot for
intervention, sampling, and situation awareness,’’ J. Field Robot., vol. 33,
no. 7, pp. 931–945, 2016.

[3] T. Jing, Q. Meng, and H. Ishida, ‘‘Recent progress and trend of robot odor
source localization,’’ IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 7,
pp. 938–953, Jul. 2021.

[4] Y. Yang, Q. Feng, H. Cai, J. Xu, F. Li, Z. Deng, C. Yan, and X. Li,
‘‘Experimental study on three single-robot active olfaction algorithms
for locating contaminant sources in indoor environments with no strong
airflow,’’ Building Environ., vol. 155, pp. 320–333, May 2019.

22712 VOLUME 11, 2023



Y. A. Prabowo et al.: Integration of Bayesian Inference and Anemotaxis for Robotics GSL

[5] V. H. Bennetts, A. J. Lilienthal, P. P. Neumann, and M. Trincavelli,
‘‘Mobile robots for localizing gas emission sources on landfill sites: Is bio-
inspiration the way to go?’’ Frontiers Neuroeng., vol. 4, p. 20, Jan. 2012.

[6] A. T. Hayes, A. Martinoli, and R. M. Goodman, ‘‘Distributed odor source
localization,’’ IEEE Sensors J., vol. 2, no. 3, pp. 260–271, Jun. 2002.

[7] F. Li, Q. H. Meng, S. Bai, J. G. Li, and D. Popescu, ‘‘Probability-PSO
algorithm for multi-robot based odor source localization in ventilated
indoor environments,’’ in Proc. Int. Conf. Intell. Robot. Appl. Berlin,
Germany: Springer, 2008, pp. 1206–1215.

[8] B. P. Duisterhof, S. Li, J. Burgues, V. J. Reddi, and G. C. H. E. De Croon,
‘‘Sniffy bug: A fully autonomous swarm of gas-seeking nano quadcopters
in cluttered environments,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2021, pp. 9099–9106.

[9] Z.-Z. Yang, T. Jing, and Q.-H.Meng, ‘‘UAV-based odor source localization
in multi-building environments using simulated annealing algorithm,’’ in
Proc. 39th Chin. Control Conf. (CCC), Jul. 2020, pp. 3806–3811.

[10] A. S. Amjadi, M. Raoufi, A. E. Turgut, G. Broughton, T. Krajník, and
F. Arvin, ‘‘Cooperative pollution source localization and cleanup with a
bio-inspired swarm robot aggregation,’’ 2019, arXiv:1907.09585.

[11] H. Kim, M. Park, C. W. Kim, and D. Shin, ‘‘Source localization for
hazardous material release in an outdoor chemical plant via a combination
of LSTM-RNN and CFD simulation,’’ Comput. Chem. Eng., vol. 125,
pp. 476–489, Jun. 2019.

[12] Y. Zhao, B. Chen, X.Wang, Z. Zhu, Y.Wang, G. Cheng, R.Wang, R. Wang,
M.He, andY. Liu, ‘‘A deep reinforcement learning based searchingmethod
for source localization,’’ Inf. Sci., vol. 588, pp. 67–81, Apr. 2022.

[13] T. Wiedemann, C. Vlaicu, J. Josifovski, and A. Viseras, ‘‘Robotic
information gathering with reinforcement learning assisted by domain
knowledge: An application to gas source localization,’’ IEEE Access,
vol. 9, pp. 13159–13172, 2021.

[14] H. Zhu, Y. Wang, C. Du, Q. Zhang, and W. Wang, ‘‘A novel odor source
localization system based on particle filtering and information entropy,’’
Robot. Auto. Syst., vol. 132, Oct. 2020, Art. no. 103619.

[15] J.-G. Li, Q.-H. Meng, Y. Wang, and M. Zeng, ‘‘Odor source localization
using a mobile robot in outdoor airflow environments with a particle filter
algorithm,’’ Auto. Robots, vol. 30, no. 3, pp. 281–292, Apr. 2011.

[16] P. Ojeda, J. Monroy, and J. Gonzalez-Jimenez, ‘‘Information-driven gas
source localization exploiting gas and wind local measurements for
autonomous mobile robots,’’ IEEE Robot. Autom. Lett., vol. 6, no. 2,
pp. 1320–1326, Apr. 2021.

[17] M. Hutchinson, H. Oh, and W.-H. Chen, ‘‘Entrotaxis as a strategy for
autonomous search and source reconstruction in turbulent conditions,’’ Inf.
Fusion, vol. 42, pp. 179–189, Jul. 2018.

[18] T. Wiedemann, D. Shutin, and A. J. Lilienthal, ‘‘Model-based gas source
localization strategy for a cooperative multi-robot system—A probabilistic
approach and experimental validation incorporating physical knowledge
and model uncertainties,’’ Robot. Auto. Syst., vol. 118, pp. 66–79,
Aug. 2019.

[19] C. Sánchez-Garrido, J. G. Monroy, and J. G. Jiménez, ‘‘Probabilistic
estimation of the gas source location in indoor environments by combining
gas and wind observations,’’ in Proc. APPIS, 2018, pp. 110–121.

[20] Y. A. Prabowo, R. Ranasinghe, G. Dissanayake, B. Riyanto, and
B. Yuliarto, ‘‘A Bayesian approach for gas source localization in large
indoor environments,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2020, pp. 4432–4437.

[21] F. Rahbar, A. Marjovi, and A. Martinoli, ‘‘An algorithm for odor source
localization based on source term estimation,’’ in Proc. Int. Conf. Robot.
Autom. (ICRA), May 2019, pp. 973–979.

[22] J. Monroy, V. Hernandez-Bennetts, H. Fan, A. Lilienthal, and
J. Gonzalez-Jimenez, ‘‘GADEN: A 3D gas dispersion simulator for
mobile robot olfaction in realistic environments,’’ Sensors, vol. 17, no. 7,
p. 1479, Jun. 2017.

[23] P. P. Neumann and M. Bartholmai, ‘‘Real-time wind estimation on a
micro unmanned aerial vehicle using its inertial measurement unit,’’ Sens.
Actuators A, Phys., vol. 235, pp. 300–310, Nov. 2015.

[24] S. Bhattacharya, N. Michael, and V. Kumar, ‘‘Distributed cover-
age and exploration in unknown non-convex environments,’’ in Dis-
tributed Autonomous Robotic Systems. Berlin, Germany: Springer, 2013,
pp. 61–75.

[25] D. M. Bashtannyk and R. J. Hyndman, ‘‘Bandwidth selection for kernel
conditional density estimation,’’Comput. Statist. Data Anal., vol. 36, no. 3,
pp. 279–298, May 2001.

[26] H. Ishida, H. Tanaka, H. Taniguchi, and T. Moriizumi, ‘‘Mobile robot
navigation using vision and olfaction to search for a gas/odor source,’’
Auto. Robots, vol. 20, no. 3, pp. 231–238, Jun. 2006.

[27] A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, and D. Rus,
‘‘Voronoi coverage of non-convex environments with a group of net-
worked robots,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2010,
pp. 4982–4989.

YAQUB A. PRABOWO received the B.Eng.
and M.Eng. degrees in electrical engineering and
intelligent systems and control engineering from
the Institut Teknologi Bandung (ITB), Indonesia,
in 2015 and 2019, respectively, where he is
currently pursuing the Ph.D. degree in robotics.

Since 2012, he has been begun to learn robotics
in a robotics club with ITB. From 2019 to 2020,
he was chosen as a Research Scholar at the
Centre for Autonomous System (CAS), University

of Technology Sydney. He attended some humanoid robot competitions,
from 2013 to 2015, at the national and international levels. His team was
awarded the 2nd Winner of the International Robot Competition in FIRA
Robo World Cup in Shijingsan Stadium, Beijing, China.

BAMBANG R. TRILAKSONO (Member, IEEE)
received the bachelor’s degree in electrical engi-
neering from the Bandung Institute of Tech-
nology, and the master’s and Ph.D. degrees in
electrical engineering from Waseda University,
Japan. He is currently a Professor with the
Control and Computer System Research Group,
Bandung Institute of Technology. His research
interests include optimal control, robust control,
intelligent control and systems, discrete event

systems, control applications, robotics, and embedded control systems.

EGI M. I. HIDAYAT received the bachelor’s
degree in electrical engineering from the Bandung
Institute of Technology, the Master of Science
degree in control and information system from
Universität Duisburg–Essen, Germany, and the
Ph.D. degree in electrical engineering from the
University of Uppsala, Sweden. He is currently a
Lecturer with the School of Electrical Engineering
and Informatics, Bandung Institute of Technology.
His research interests include modeling and iden-

tification systems, control systems, and robotics.

BRIAN YULIARTO received the bachelor’s degree
in physics engineering from the Bandung Institute
of Technology, and the master’s and Ph.D. degrees
in quantum engineering and systems science from
The University of Tokyo, Japan. He is currently a
Professor with the Advanced Functional Material
Group, Bandung Institute of Technology. His
research interests include nanoenergy materials
and gas sensor development.

VOLUME 11, 2023 22713


