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ABSTRACT Abi-level optimizationmodel for the logistics UAV air route network capacity evaluation based
on traffic flow allocation is designed in order to meet the future trend of large-scale and normalized operation
of logistics UAVs. The maximum sorties of logistics UAVs that can be served by the air route network are
the upper-bound model objective, namely, the maximum flow of the logistics UAV air route network. The
impedance function is constructed by considering safety and efficiency factors, and the lower-bound model
objective function with theminimum logistics UAV air route network impedance value. An improved particle
swarm optimization(PSO) algorithm is combined with the method of the successive algorithm(MSA) for
solving the bi-level optimization model. To verify the effectiveness of the proposed model and algorithm,
a simplified logistics UAV air route network is built. The results show that the proposed algorithm obtains
reliable results after 26 iterations, and most segments capacity utilization rate is more than 70%. Parametric
analysis of safe separation and algorithm population size shows that the capacity of logistics UAV air route
network decreases with the increase of safe separation and the decreasing trend is gradually slowed down,
and the optimal algorithm population size corresponding to different safe separations also varies. Based on
the study described above, a logistics UAV air route network based on actual geographic information data
is constructed, and the experimental results demonstrate that the suggested technique could be used to a
specific scale of logistics UAV route network capacity evaluation and had validity.

INDEX TERMS Air traffic management, urban air mobility, UAV logistics, airspace capacity.

I. INTRODUCTION
The worldwide civil aviation sector has had an unprecedented
impact since the onset of COVID-19, with people’s travel
habits altering, flight numbers plummeting, and several carri-
ers declaring bankruptcy. Entering the post-epidemic period,
countries’ prevention efforts are uneven, and although the
civil aviation industry is increasingly recovering, it is difficult
to return to its peak, but it creates development opportuni-
ties for Urban Air Mobility(UAM) and Unmanned Aerial
Vehicle(UAV) industry. The United States, Europe, Japan,
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and South Korea have successively proposed urban low-
altitude airspace management and UAV operation control
planning strategies. National Aeronautics and Space Admin-
istration(NASA) spearheads Advanced Air Mobility(AAM)
program to integrate air cabs, UAV delivery, and other
advanced aircraft concepts into the national airspace sys-
tem [1]. The European Single Sky program jointly related
companies to release the U-Space design blueprint will pro-
vide a new intelligent service program for the future of large-
scale UAV hybrid operations. Among the industries related to
UAM and UAVs, UAVs logistics is one of the most focused
research fields. Amazon analyzed the weight of parcels, and
the statistics showed that about 86% of the parcels can meet
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the requirements of UAV logistics capacity [2]. NASA pro-
posed that UAV logistics is expected to undertake 500 mil-
lion orders of parcel delivery services in 2030 [3]. Other
multinational enterprises with global influence, such as DHL
and ZipLine, also have made breakthroughs in logistics UAV
manufacturing and pilot applications, and continue to explore
and promote the UAV logistics scale development. In terms of
core technologies, Kuru et al. developed an intelligent deliv-
ery platform for logistics UAVs, which compares multiple
delivery methods [4].

The development of UAV logistics and other emerging
industries has put new demands on low-altitude airspace
management. Airspace capacity evaluation, as a core element
of air traffic management, is an important prerequisite for
the rational allocation of airspace resources. Airspace capac-
ity evaluation originated in the 1940s [5]. The main meth-
ods commonly used today are mathematical model-based
methods [6], controller workload-based methods [7], com-
puter simulation-based methods [8], and data-driven meth-
ods [9]. Cheung et al. proposed aMixed Integer Programming
(MIP) airport scheduling optimization model considering
runway capacity to address the problem of capacity-demand
imbalance during peak hours, and verified the advantages
of dynamic airport capacity and dynamic runway configu-
ration over fixed capacity [10]. Mohamed et al. developed
a dynamic neural network model based on the workload
of air traffic controllers for terminal area capacity evalua-
tion and adjusted the model parameters using Neural Partial
Differentiation (NPD) equation [11]. Wang considered two
factors: controller workload and acceptable delay level, sum-
marized the process of airspace capacity evaluation based on
computer simulation and elaborated the simulation principle,
and reproduced the real airspace environment to verify the
effectiveness of the proposed method [12].

However, low-altitude airspace is complex and variable,
and there are limitations in applying existing typical airspace
capacity evaluation methods to low-altitude airspace. Since
the research on low-altitude airspace capacity evaluation
technology is still in the early stage, a unified definition
of low-altitude airspace capacity has not yet been formed.
The Cal Unmanned Lab at the University of California
believes that intelligent aircraft such as UAVs will be the
main operating vehicle in the future low-altitude airspace, and
with the emergence of Unmanned Aircraft Systems(UAS),
the capacity of low-altitude airspace can be defined as the
maximum number of aircraft that can be accommodated in
the airspace under an acceptable level of conflict to ensure
operational safety [13]. On the other hand, the change in
airspace capacity can also be characterized by a sudden
change in a specific index, when the number of aircraft in
the airspace exceeds its capacity due to a sharp change in
a specific index caused by the addition of an aircraft to the
airspace [14]. The low-altitude airspace environment is com-
plex and volatile, and flying according to pre-planned flight
paths can effectively improve the supervisability and safety

of the low-altitude airspace operating environment, Nanyang
Technological University (NT) of Singapore proposed a low
altitude capacity evaluation method based on the flight path
network and defined the low altitude flight path network
capacity as the maximum number of aircraft that can be
carried by the whole air route network in specific airspace
at a specified time [15].

In recent years, research scholars have gradually carried
out research on the low-altitude airspace capacity evalua-
tion method according to the operational characteristics and
airspace management rules. The exploration of low-altitude
airspace capacity evaluation techniques at the University of
California, Berkeley, USA sprang from the estimation of air
traffic complexity in an unmanned environment. In 2016,
Bulusu et al. argued that in the future low-altitude envi-
ronment, UAVs will present an organized free flight state,
and proposed two air traffic complexity measures, Con-
flict Cluster Size and Normalized Time Spent in Conflict
(NTSC), respectively, to build a simulation platform using
the San Francisco Bay Area as a prototype, and based on
simulation experiments, it was concluded that the future
San Francisco Bay Area can carry an average of 100,000
daily UAV flights [13]. On this basis, motivated by the
study of the impact of UAS on the operation of low-
altitude airspace, Bulusu et al. clarified the definition of
low-altitude airspace capacity and realized the evaluation
of low-altitude airspace capacity using mathematical meth-
ods [14]. Since then, Bulusu and his team have gradually
established the research route of ‘constructing specific met-
rics - simulating experiments - locking threshold mutation -
determining airspace capacity’, measuring safety in terms of
Total Loss of Flight per Flight Hour and performance in terms
of Change in Direct Operating Cost, and comparing airspace
capacity under two modes of UAV operation: cooperative
and non-cooperative [14], [16]. Subsequently, a throughput-
based capacity evaluation method for low-altitude airspace
is proposed, in which three conflict detection and deconflic-
tion algorithms and two minimum spacing requirements are
evaluated by simulating unmanned aerial vehicle traffic in
the airspace, considering the variability of traffic flow, and
analyzing their impact on throughput. The results show that
the throughput tends to decrease before the system security
decreases, and this index has reference meaning for low alti-
tude airspace capacity evaluation [18]. These studies take the
future airspace operation characteristics as the background,
weaken the consideration of controller factors, more consid-
eration of the aircraft’s conflict avoidance ability, and is not
limited by the airspace structure, oriented to the future free
flight setting, with a certain degree of foresight.

Sunil et al. at Delft University predict a large number of
small UAVs to operate in urban airspace in the future. In this
context, the Metropolis project, in which Sunil is involved,
investigates the impact of airspace structure on the capacity,
complexity, safety, and efficiency of high-density operational
airspace. Therefore, four concepts of airspace structure are
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proposed, including full mix, layers, zones, and tubes. Simu-
lation experiments show that the layers structure has the best
performance considering capacity, safety, and efficiency, and
can better adapt to the future high-density urban air traffic
operation [2]. This study proposes four airspace structures
with different degrees of freedom, and the simulations verify
the performance characteristics of different types of airspace.
The simulations consider different traffic densities, tidal char-
acteristics of urban traffic, and the effects of stochastic factors
such as wind and rogue aircrafts.

Cho et al. analyzed the urban airspace capacity in terms
of available airspace identification using two types of
geofences: keep-out and keep-in. Define inaccessible bound-
aries for UAVs around static obstacles by using keep-out
geofences, and identify available airspace using keep-out
geofences in combination with an alpha-shaped method. The
simulation results show that the available airspace identi-
fied by keep-in is the upper limit of keep-out. Meanwhile,
geofence parameters should be decided according to the
complexity of the geospatial and the purpose of the flight
in practical applications, rather than relying on fixed val-
ues [19]. According to the above studies, a mature architec-
ture has not yet been formed for the study of low-altitude
airspace capacity evaluation, but it follows a combination
of mathematical analysis models and simulation validation.
This research combines geo-fencing technology for UAVs
and airspace identification, utilizing the relevant technologies
already applied to UAVs to make it more compatible with
real-world conditions.

For the complex airspace environmental conditions at low
altitude, most of the current research uses computer sim-
ulation methods. Most of the current simulation platforms
for capacity evaluation lack the verification of actual opera-
tion data, and the parameters are mostly hypothetical, which
cannot expose the airspace capacity regulation in the real
low-altitude airspace in a three-dimensional environment,
and have certain limitations. Based on the research pre-
sented above, this paper proposes a method for evaluating
the capacity of logistics UAV air route networks based on
traffic flow distribution, which includes optimization mod-
eling and heuristic algorithms. This approach considers the
safety and efficiency of logistics UAVs during operation, and
can be applied to different sizes of logistics UAV air route
networks.

Logistics UAV air route network capacity is defined as
the maximum number of UAV sorties that the air route net-
work can serve, namely, the maximum flow of the logis-
tics UAV air route network. The main contributions are as
follows:

1) A bi-level optimization model for evaluating the capac-
ity of logistics UAV air route network based on traffic
assignment is established, considering efficiency and
safety factors.

2) A bi-level optimization model solving algorithmmixed
improved particle swarm optimization algorithm with
the method of the successive algorithm is designed.

FIGURE 1. PSO-MSA algorithm operation mechanism schematic.

3) The simplified logistics UAV air route network is estab-
lished, and several simulation experiments were carried
out for parameters comparisons such as safe separation
and algorithm population size, and the experimental
results are analyzed.

4) Based on the real geographic information data, the
logistics UAV air route network is built to verify the
effectiveness of the proposed model and algorithm.

II. METHODOLOGIES
A bi-level logistics UAV capacity evaluation optimization
model is developed in this study to address the trend of
large-scale logistics UAV operation. The bi-level optimiza-
tion model is a popular tool for studying urban transporta-
tion networks. With the development of UAV logistics, the
operation scale is gradually expanded, the network structure
is increasingly complex, and the factors to be considered are
also increased, and these factors should be placed at differ-
ent levels. The bi-level optimization model can construct a
bi-level decision mechanism. The upper bound has the right
of control and guidance over the lower-bound. The upper-
bound makes a decision and passes it to the lower-bound.
The lower-bound receives the decision, then makes appro-
priate decisions and feeds back to the upper-bound. The two
different level models interact iteratively to find the optimal
solution [23].

The improved particle swarm optimization algorithm is
combined with the method of the successive algorithm to
solve the model. The operation mechanism of the algorithm
is shown in Figure 1. Suppose there is a simple logistics UAV
air route network consisting of a starting point O, an end
point D. There are two air routes available from O to D.
The PSO algorithm will input a set of solutions, which is the
flight flow between OD. According to the MSA algorithm,
the flight flow will be allocated to different air routes. Then,
the PSO algorithm evaluates the allocation results, and if the
segment capacity requirement is satisfied it is a set of feasible
solutions, if not, it is an invalid solution [22].

A. PROBLEM DESCRIPTION
This paper aims to propose a logistics UAV air route net-
work capacity evaluation method, which provides support
for future urban air mobility management. The logistics
UAV air route network structure is known, including air
route length, Origin-Destination (OD) pair location, etc. The
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vertical take-off and landing logistics UAV is used as the
delivery tool to execute logistics distribution. On this basis,
in order to better build the model, assuming:

1) Logistics UAVs must follow a fixed air route and are
not allowed to change during flight.

2) Logistics UAVs fly at constant speed in the air route
network, ignoring the influence of parcels’ weight on
flight speed.

3) The minimum safe separation must be maintained
between logistics UAVs in the same flight segment.

4) Ignore the power consumption of logistics UAVs.
5) Ignore the impact of weather on the logistics UAVs

operation.
6) Ignore the transmission signal delay and loss during the

logistics UAVs operation.
7) Ignore the possible collisions and crashes of logistics

UAVs in the operation process.

B. UPPER-BOUND MODEL ESTABLISHMENT
1) OBJECTIVE FUNCTION
According to the definition of the logistics UAV air route net-
work capacity in Section I, the Upper-bound model objective
function is set as the maximum sum of the logistics UAV air
route network flow.

C = MaxQ =

∑
i

∑
j

fij, ∀i ∈ I , ∀j ∈ J (1)

where, C is the capacity of logistics UAV air route network;
Q is the total flow of the capacity of logistics UAV air route
network; i is the origin node, namely, express station; I is the
set of origin nodes, i ∈ I ; j is the destination node, namely,
receipt station; J is the set of destination nodes, j ∈ J ; fij is
the flow from the origin node i to destination node j.

2) CONSTRAINT CONDITIONS
The flow between the origin node i to the destination node j in
the logistics UAV air route network cannot exceed its capacity
and must be nonnegative integers.

0 ≤ fij ≤ Cij, ∀i ∈ I , ∀j ∈ J (2)

whereCij is the capacity of the OD pair, the same OD pair has
one or more air routes, Cij is equal to the sum of all air routes
between OD pairs; The air route capacity will be limited
by the minimum segment capacity, therefore, the capacity
of each air route is equal to the minimum capacity in the n
segments. The specific formulas are:

Cij =

∑
i

∑
j

Ca
ij, ∀i ∈ I , ∀j ∈ J , ∀a ∈ Aij (3)

Ca
ij = Min

{
Ca
k1 ,C

a
k2 , · · · ,Ca

kn

}
, ∀i ∈ I ,

∀j ∈ J , ∀a ∈ Aij, ∀k ∈ K (4)

In formula (3), where a is the air route between OD pairs, Aij
is the set of air routes, a ∈ Aij; k represents the segment that
constitutes the air route a, K is the set of segments, k ∈ K ;

Ckn is the capacity of the nth segment k in the air route a, the
calculation formula is as follows:

Ckn =
Lkn

du + ds
, ∀k ∈ K (5)

where, Lkn is the length of the segment k; du is the length of
the logistics UAV; ds is safe separation.

C. LOWER-BOUND MODEL ESTABLISHMENT
1) OBJECTIVE FUNCTION
When the OD pairs flight traffic input from the upper-bound
model to the lower-bound model, the lower-bound model
needs to allocate these flight traffic to different air routes
according to impedance value. The lower-bound model
objective function is set as theminimum sumof logistics UAV
air route network impedance value. Considering the safety
and efficiency factors, the total impedance function of the
logistics UAV air route network waij is constructed.

MinZ =

∑
a∈Aij

waijq
a
ij, ∀i ∈ I , ∀j ∈ J (6)

where, qaij is the flight flow between the origin node i to the
destination node j; The sum of the air route flight flows is
equal to the flight flows between the OD pairs, as shown in
formula (7).

fij =

∑
a∈Aij

qaij, ∀i ∈ I , ∀j ∈ J (7)

waij is the impedance value of the air route a, which is summed
by the impedance value of segment k , the calculation formula
is as follows.

waij =

∑
a∈Aij

wk , ∀i ∈ I , ∀j ∈ J , ∀k ∈ a (8)

where, wk is the impedance value of the segment k , which
is a combination of safety factors and efficiency factors, the
calculation formula is as follows.

wk = σ rk + (1 − σ )tk , ∀k ∈ K (9)

where, rk is the safety sub-impedance function, which is cal-
culated from formula (11). tk is the efficiency sub-impedance
function, which is calculated from formula (15).

σ is the weighting parameter.
Due to the value range difference between these two sub-

impedance functions, the min-max normalization method
was used to standardize the data, the calculation formula is
as follows.

f ′(x) =
f (x) − f (x)min

f (x)max − f (x)min
(10)

where, f ′(x) is the sub-impedance normalized value. f (x) is
the original sub-impedance value. f (x)min and f (x)max are
the minimum and maximum values of the sub-impedance
function respectively.
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a: SAFETY SUB-IMPEDANCE FUNCTION
The logistics UAV crash causing injuries to ground personnel
is considered as the main factor of the logistics UAV air route
network safety sub-impedance function rk .

rk = PuavNpeopleFdie (11)

where, rk is the safety impedance of the segment k . Puav is
the probability that logistics UAVs break down and crash
on the ground. Npeople is the number of fatalities after the
logistics UAV crash. Fdie is logistics UAV crash fatality
rate [20], [21].

In formula (11), the number of fatalities after a logis-
tics UAV crash on the ground Npeople is calculated as
follows:

Npeople = Aρpeople (12)

where, A is the area where logistics UAV crash on the ground;
ρpeople is the population density on the ground in the seg-
ment k .

In formula (11), the logistics UAV crash fatality rate Fdie
is related to the logistics UAV state and ground environ-
ment. According to reference [20], Fdie is calculated as
follows:

Fdie =
1

1 +

√
λ
µ
(µ
E )

1
4S

(13)

In formula (13), S is sheltering parameter, S ∈ (0, 1],
namely, exposure of ground personnel in the logistics UAV
air route area. λ is the energy required that the logistics
UAV crash fatality rate reaches 50% when S = 50. µ is
the energy threshold required for ground personnel to be
injured when the sheltering parameter S approaches 0. E is
the impact of kinetic energy, the calculation formula is as
follows:

E =
m2g

[
1 − exp(−hqAρA/m)

]
qAρA

(14)

In formula (14), m is the mass of logistics UAV and parcels;
q is drag coefficient; ρA is air density; h is the logistics UAV
flight altitude.

b: EFFICIENCY SUB-IMPEDANCE FUNCTION
The efficiency impedance tk is related to the segment length
and the logistics UAV flight speed the calculation formula is
as follows:

tk =
Lk
V

, ∀k ∈ K (15)

where, Lk is the length of the segment k; V is the speed of the
logistics UAV.

2) CONSTRAINT CONDITIONS
The segment is the basic unit of the logistics UAV air route
network, and the air routes have shared segments. Therefore,

the flight flow assigned to the segment must be non-negative
and less than or equal to its capacity.

0 ≤ xk ≤ Ck , ∀k ∈ K (16)

where, Ck is the capacity of the segment k , the calculation
method is shown in formula (5). xk is the flow assigned to the
segment k , an air route consists of one or more segments, K
is the set of segments, k ∈ K .

xk =


x1
x2
...

xkk

 ∈ Rk (17)

The segment k flight flow is the flight flow between the
origin node i to destination node jmultiplied by the segment-
air route relationship matrix, the calculation formula is as
follows:

xk = qaijδ
k
ij, ∀i ∈ I , ∀j ∈ J , ∀a ∈ Aij (18)

where, xk is the flight flow of segment k , qaij is the flight flow
of air route a, δkij is the segment-air route relationship matrix,
which is a 0-1 matrix.

δkij =


k1 k2 · · · kn

a1 1 0 · · · 0
a2 0 1 · · · 0
... 0 0 · · · 1
ak 1 1 · · · 1

 (19)

where, 1 represents the air route a contains the corresponding
segment k , 0 represents the air route a is not contains the
corresponding segment k .

D. A BI-LEVEL LOGISTICS UAV AIR ROUTE NETWORK
CAPACITY EVALUATION OPTIMIZATION MODEL
In this paper, logistics UAV air route network capacity is
defined as the maximum number of UAV sorties that the
air route network can serve, namely, the maximum flow of
the logistics UAV air route network. There are many OD
delivery pairs in the logistics UAV air route network, in other
words, there are many air routes between the origin node i and
the destination node j. The maximum flow of the air route
network is the upper-bound model objective, namely, the
maximum flow between the origin node i and the destination
node j. Considering the safety and efficiency factors, the total
impedance function is constructed. According to theWardrop
system optimization (SO) principle, the minimize the sum of
logistics UAV air route network impedance value is lower-
bound model objective. The bi-level logistics UAV air route
network capacity evaluation optimization model proposed in
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this paper is shown as follows:

MaxQ =

∑
i

∑
j

fij

s.t. 0 ≤ fij ≤ Cij, ∀i ∈ I , ∀j ∈ J

and MinZ =

∑
a∈Aij

waijq
a
ij

s.t. fij =

∑
a∈Aij

qaij, ∀i ∈ I , ∀j ∈ J

waij =

∑
a∈Aij

wk , ∀i ∈ I , ∀j ∈ J , ∀k ∈ a

xk = qaijδ
k
ij, ∀i ∈ I , ∀j ∈ J , ∀a ∈ Aij

xk ≤ Ck , ∀k ∈ K
wk = σ rk + (1 − σ )tk , ∀k ∈ K
rk = PuavNpeopleFdie, ∀k ∈ K

tk =
Lk
V

, ∀k ∈ K

(20)

E. ALGORITHM SOLUTION
To solve the bi-level logistics UAV air route network capacity
assessment optimization model, the modified particle swarm
optimization technique is paired with the successive algo-
rithmmethod (MSA). The particle swarm optimization (PSO)
algorithm originated from research on the birds’ foraging
behavior. The core idea is to establish an effective individ-
ual information sharing and cooperation mechanism in the
group and to find the optimal solution by iteratively updating
the particles’ velocity and position [24]. PSO algorithm has
become a typical swarm intelligence algorithm, which is
widely used in optimization model solving [25]. The method
of the successive algorithm is a typical method for traffic
flow allocation. The main idea is to average a series of
auxiliary points in the iterative process, where each iteration
is obtained by solving the auxiliary planning problem, which
in turn is based on the auxiliary points in the previous iterative
process. The advantage ofMSA in comparisonwith the Frank
Wolf algorithm is that the iteration steps obtained by solving
the linear search problem are not required in each iteration.
The basic idea is to solve the probability of route selection
by the Logit function, and continuously update the flow
allocated iteratively to each segment until it is close to the
balanced flow allocation result in the route network. In this
paper, the PSO algorithm is used to solve the upper-bound
model, and the method of the successive algorithm is used to
solve the lower-bound model.

The specific steps are as follows:
Step 0: Algorithm initialization. In the PSO algorithm

based on linear decreasing inertia weight, a particle rep-
resents a set of solutions of the upper-bound model, and
the dimension of the particle is the number of independent
variables of the upper-bound model, namely, the number
of OD delivery pairs. The fitness value corresponds to the
upper-bound model value Q. In the initialization of the algo-
rithm, the number of particles, the number of iterations, and
other parameters should be set. The linear decreasing inertia

weight calculation formula is as follows:

ωm = (ωstart − ωend ) ×
(Tmax − Tm)

Tmax
+ ωend (21)

where, ωm is the inertia weight at the mth iteration; ωstart
is the initial inertia weight, it is usually set to 0.9; ωend is
the final inertia weight, it is usually set to 0.4; Tmax is the
maximum iterations; Tm is the current iterations. Setting the
inertia weight can be conducive to getting out of the local
optimal solution.
Step 1: The initial velocity and position of each particle are

randomly generated according to the constraint conditions of
formula (2).
Step 2:Update particles’ velocity and position. The update

formula is shown as follows:

Vm+1
nd = wmvmnd + c1rand1(Pmnd,pbest

− Lmnd ) + c2rand2(Pmnd,gbest − Lmnd ) (22)

Lm+1
nd = Lmnd + Vm+1

nd (23)

where, Vm+1
nd is the update speed of d-dimensional particle n

at the (m+ 1)th iteration; wm is the inertia weight at the mth
iteration; vmnd is the update speed of n at the mth iteration; c1
is the particle’s individual acceleration coefficient; rand1 and
rand2 are random numbers in the range (0,1); Pmnd,pbest is the
best individual position of n at the mth iteration; Lmnd is the
position of n at the mth iteration; Lm+1

nd is the position of n at
the (m+ 1)th iteration, c2 is the particle’s group acceleration
coefficient; Pmnd,gbest is the best group position of n at the mth
iteration; At the first iteration. Pmnd,pbest and P

m
nd,gbest are set

to 0. Acceleration coefficients also named learning factors,
which are critical to the PSO algorithm’s ability to search.
The acceleration coefficients will be related to the speed of
particle motion and algorithm convergence.
Step 3-1: Start the MSA algorithm. Bring Lm+1

nd into
the lower-bound model. The dimension of the particle
corresponds to the OD delivery pair, namely, Lm+1

nd =(
f11, f12, f13, · · · , fij

)
. According to formula (7), the initial air

route flight flow qaij is generated.
Step 3-2: Calculate air route impedance value waij, the

calculation method is shown in formula (8).
Step 3-3: Logit function was used to calculate the iteration

direction of the lower-bound model d ij(I )a, the calculation
formula is as follows:

d ij(I )a = Paij × qaij (24)

where, Paij is the probability that the logistics UAV chooses
air route a. Logit function is used to solve the probability of
air route selection, the calculation formula is as follows:

Paij =
exp(−θwaij)∑

a∈Aij
exp(−θwaij)

(25)

where, θ is the Grumbel distribution, θ is set to 0.1 in this
paper.

63706 VOLUME 11, 2023



J. Yi et al.: Logistics UAV Air Route Network Capacity Evaluation Method Based on Traffic Flow Allocation

FIGURE 2. PSO-MSA algorithm flow chart.

Step 3-4: Update flight flow qij(I+1)a, the calculation for-
mula is as follows:

qa(I+1)ij = qa(I )ij +
1
I
(da(I )ij − qa(I )ij) (26)

Step 3-5: If the difference between qa(I+1)ij and qa(I )ij is
less than the threshold ε, as shown in formula (27), the
iteration will be stopped, and Step 4 is entered. If the differ-
ence between qa(I+1)ij and q

a
(I )ij is not reached ε, Step 3-3 is

returned.

qa(I+1)ij − qa(I )ij ≤ ε (27)

Step 4: Calculate the fitness value of each particle, namely,
the upper-bound objective function Q. Then, calculate the
flight flow xk assigned to the segment according to formulas
(17) - (19). If xk > Ck , set Q to a negative number, indicates
this result is invalid.
Step 5: Update the best individual position Pmnd,pbest .
Step 6: Update the best group position Pmnd,gbest .

FIGURE 3. Logistics UAV air route network.

Step 7: If the upper limit of iterations set in Step 0 is
reached, the result will be output; if not, Step 2 will be
returned.

The specific PSO-MSA algorithm flow is shown in
Figure 2.

III. EXAMPLE ANALYSIS
A. PARAMETER SETTINGS
Python was used as an experimental tool to verify the effec-
tiveness of the proposed model and algorithm. The logistics
UAV air route network as shown in Figure 3 is adopted, which
includes 9 nodes, 16 OD delivery pairs, 16 segments, and
24 air routes. Each segment has only one flight direction,
and two-way flight is not allowed. P0 is the express station,
d1 ∼ d8 are the receipt station. The logistics UAVwill deliver
the parcels from P0 to different receipt stations, and return
according to the prescribed air route. The air route parameters
are shown in Table 2, and the segment parameters are shown
in Table 1.
EHang Falcon B logistics UAV is selected for parcel deliv-

ery in this paper. Basic parameter settings are shown in
Table 3 [21], [27].

B. RESULT ANALYSIS
1) CAPACITY ANALYSIS
Based on the parameter settings, the POS-MSA algorithm
is used to solve the bi-level logistics UAV air route net-
work capacity evaluation optimization model. The simulation
experiment was repeated 50 times, and the result with the
largest fitness value was used to draw the algorithm iteration
curve, as shown in Figure 4. The algorithm iteration curve
rose quickly at the beginning and reached the optimal result
after 26 iterations, which means the algorithm has a strong
searchability. The fitness value, namely, the proposed logis-
tics UAV air route network capacity value, is 211 sorties. The
flows of 16 OD pairs from a1 to a24 are 10, 27, 3, 20, 11, 20,
4, 25, 17, 11, 25, 5, 4, 5, 19, 5.

The logistics UAV air route network capacity evaluation
method proposed in this paper is to assign OD pair flow to
air routes, then, assigned air routes flow to segments through
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TABLE 1. Air routes parameters.

TABLE 2. Segments parameters.

the segment-air route relationship matrix. Whether the flow
assigned to each segment exceeds its capacity is an important
constraint of this method. The segment flow under the opti-
mal experimental results is shown in Table 5. The segment
capacity utilization ratio was calculated according to the
formula (28).

kutilization =
kflow

kcapacity
× 100% (28)

TABLE 3. Model basic parameters [21], [27].

TABLE 4. Algorithm basic parameters.

FIGURE 4. Algorithm iteration curve.

FIGURE 5. The flow assigned to segments.

where, kutilization is the segment capacity utilization ratio;
kflow is the flow assigned to segments; kcapacity is segments
capacity. The calculation results are shown in Figure 5 and
Table 5. Most segments’ capacity utilization is more than
70%, among them, the segment capacity utilization ratio of
the segment k1, k2, k3, k7, k10, k11, k12 exceeds 90%, the
lowest is segment k16, only 34.53%.

2) PARAMETER ANALYSIS
a: SAFE SEPARATION
The safe separation proposed in this paper refers to the
minimum space that must be maintained between the front
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TABLE 5. Algorithm basic parameter Segment capacity utilization ratio.

and rear logistics UAVs in the air route network. Accord-
ing to formula (5), the safe separation is directly related to
the segment capacity, and then affects the capacity level of
the entire logistics UAV air route network capacity. Some
scholars have studied the UAV safe separation demarcation
method [26], but no unified standard has been formed. In this
paper, the safe separation is the most important parameter,
the calculation of the segment capacity is based on the safety
separation, which is a highly significant constraint in the
model, and the safety separation has the most direct impact
on the capacity. In order to explore the influence of safe
separation on logistics UAV air route network capacity, set
the safe separation to 5m, 10m, 15m, 20m, 25m, and 30m
respectively Adopting the experimental results before when
ds = 20m, the other safe separations are carried out 50 times,
and the optimal value was used to draw the iteration curve.
The results are shown in Figure 6.

According to Figure 6, ds = 5m, C = 763 sorties; ds =

10m, C = 406 sorties, ds = 15m,C = 276 sorties; ds =

20m,C = 211 sorties, ds = 25m,C = 164 sorties; ds = 30m,
C = 146 sorties. With the increase in safe separation ds, the
capacity of the logistics UAV air route network C gradually
decreases. The capacity decreases rate is calculated, and the
results are shown in Table 4. According to Table 4, with
the increase of safe separation, the sensitivity of capacity to
safe separation decreases gradually, when safe separation ds
increase from 5m to 10m, the decrease rate is 46.79%. When
safe separation ds increase from 25m to 30m, the decrease
rate is 10.98%.

The computation times of the 6 optimal solutions are
44.89s, 44.31s, 43.57s, 43.38s, 43.72s, 43.29s. It can be
seen that the computation time for different safe separation

TABLE 6. The capacity decreases rate.

does not show large differences, and as the safe separation
increases, there is a very slight but not significant downward
trend in the computation time.

In order to study the relationship between safe separations
and air route capacity of logistics UAV, the following experi-
ment is designed: the safe separation was gradually increased
from 5m to 30m according to the step size of every 0.5m. The
experiment was repeated 20 times for each safe separations
and the average value was taken. The results are shown in
the following figure 7. According to the figure 7, there is
an obvious linear relationship between safe separations and
logistics UAV air route capacity. The least square method
was used to perform univariate linear fitting, binary linear
fitting and ternary linear fitting respectively, and the resulting
functional equations are shown in figure 7.

b: ALGORITHM POPULATION SIZE
The algorithm population size is one of the most important
parameters in PSO algorithm. If the population size is set
too small, it is likely to result in a local optimal solution,
and if the population size is too large, the algorithm com-
plexity will increase. In this paper, algorithm population size
selection and safety separation are integrated. Safe separation
is an important parameter affecting the logistics UAV air
route network capacity. On this basis, the effect of algorithm
population size on logistics UAV air route network capacity is
considered. Except for the safe separation and algorithm pop-
ulation size, other parameters in Table 3 and Table 4 remain
unchanged. Under different safe separations, the population
size of the PSO-MSA algorithm was successively increased
from 25 to 300. Each experiment was repeated 20 times and
the average value is obtained, and the results were shown in
figure 8.

According to Figure 8, with the increase of algorithm
population size, the logistics UAV air route network capacity
also increases and tends to be stable. Therefore, expanding the
algorithm population size is an effective method to improve
the logistics UAV air route capacity and the optimal algorithm
population size corresponding to various safe separations is
also different. The consumption time also shows a significant
linear increasing trend. When the particle quantity increases
from 25 to 300, the computation time increases by a factor
of 5 accordingly. Considering the performance and complex-
ity of the algorithm, the optimal algorithm population size
Nbest is obtained under different safe separations: ds = 5m,
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FIGURE 6. Logistics UAV air route network capacity at different safe separations.

FIGURE 7. Relationship between safe separations and Logistics UAV air
route network capacity.

Nbest = 225, ds = 10m, Nbest = 125, ds = 15m, Nbest =

200, ds = 20m, Nbest = 150; ds = 25m, Nbest = 175,
ds = 30m, Nbest = 175.

C. REAL SCENARIO
A preliminary attempt is made to evaluate the efficacy of
the suggested model and algorithm based on the geographic
information data in accordance with the analysis presented
above. Nanyang Technological University has proposed three
types of urban air route networks include AirMatrix, Over-
buildings, and Over-roads [14]. Over-roads air route network
refers to the urban road as the basis, 45m and 60m above
the ground road. One of the advantages of the Over-roads air
route network is that it can avoid interference from the ground
building distribution. The geographic information data of a
region in Nanjing, China were collected, air route nodes
were adjusted according to the location of buildings, and a
logistics UAV air route network based on real geographic
information data was built, as shown in Figure 9. The logistics
UAV air route network is divided into four communities,
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FIGURE 8. Logistics UAV air route network capacity at different population sizes.

and 4 logistics express stations and 42 receipt stations are
randomly selected. Determine the air routes to ensure that the
logistics UAVs can reach any receipt stations in its commu-
nity, and return to express stations after completing delivery,
as shown in Figure 10. This logistics UAV air route network
has 46 nodes, 86 OD pairs, 64 segments, and 102 air routes.

Considering logistics UAV air route network is larger than
the example in Section III-A, the algorithm population size
is set to 200, and the iterations number is set to 200. Exper-
iments are repeated for 20 times with different safe separa-
tions, and the result with the largest fitness value was used
to draw the algorithm iteration curve, as shown in Figure.
11. According to Figure. 11, ds = 5m, C = 900 sorties,

ds = 10m, C = 498 sorties, ds = 15m, C = 350 sorties,
ds = 20m, C = 261 sorties, ds = 25m, C = 204 sorties,
ds = 30m, C = 175 sorties. With the increase in safe
separation, the algorithm reaches stability faster, the sensi-
tivity of capacity to safe separation decreases gradually. The
computation times of the 6 optimal solutions are 1513.29s,
1465.52s, 1422.23s, 1368.88s, 1387.49s, 1432.84s. As the
logistics UAV air route network size increases, the compu-
tation time increases accordingly. The computation time for
real scenario is almost 30 times longer than the example
network, and the models and algorithms proposed in this
paper can be applied to different sizes of logistics UAV air
route networks.
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FIGURE 9. Logistics UAV air route network in an area of Nanjing, China.

FIGURE 10. Topology of logistics UAV air route network in Nanjing, China.

FIGURE 11. Algorithm iteration curve at different safe separations.

IV. CONCLUSION
To address the practical requirements of the large-scale oper-
ation of logistics UAVs, a technique for evaluating the air
route network capacity of logistics UAVs is provided. The
following are the key contributions:

1) The capacity of the logistics UAV route network is
defined as the maximum number of UAV sorties that
the air route network can serve, namely, the maxi-
mum flow of the logistics UAV air route network, and
then bi-level logistics UAV air route network capac-
ity evaluation optimization model is established. The
Upper-bound model objective function is set as the

maximum sum of the logistics UAV air route network
flow. According to the Wardrop system optimization
(SO) principle, the minimize the sum of logistics UAV
air route network impedance value is lower-bound
model objective.

2) The improved particle swarm optimization algorithm
is combined with the method of the successive algo-
rithm(MSA) to solve the bi-level logistics UAV air
route network capacity evaluation optimization model.
In order to verify the effectiveness of the proposed
model and algorithm, a logistics UAV air route net-
work consisting of 9 nodes, 16 OD pairs, 16 flight
segments, and 24 air routes was built. The results show
that the proposed algorithm achieves stable results after
26 iterations, and the capacity utilization rate of most
segments is more than 70%.

3) Several groups of comparative experiments were
designed respectively for safe separation and algorithm
population size. With the increase in safe separation,
the capacity of the logistics UAV air route network
gradually decreases. and the sensitivity of capacity to
safe separation decreases also gradually. The optimal
algorithm population size corresponding to various safe
separations is also different, and the corresponding
algorithm population size should be selected according
to the safe separation to reach the utility of the proposed
model and algorithm.

4) The logistics UAV air route network based on real
geographic information data was attempted to build,
including 46 nodes, 86 OD pairs, 64 segments, and
102 air routes. The model parameters can be adjusted
according to the real scene data, and according to the
experimental results, the model and algorithm pro-
posed in this paper can be applied to the capacity
evaluation of logistics UAV air route network in real
scenarios.

This paper follows the development trend of the scale and
normalization of logistics UAVs and focuses on the eval-
uation method of the capacity of logistics UAV air route
network for the complex and changing airspace operation
environment at low altitude. The validity of the proposed
model and algorithm is verified through experiments. This
method applies traffic flow allocation theory to low-altitude
airspace capacity evaluation, complementing current related
research. In the future, the dynamic influencing factors will be
considered, and the simulation verification of logistics UAV
air route network capacity will be realized by establishing a
3D low-altitude airspace simulation operating environment.
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