
Received 20 December 2022, accepted 8 January 2023, date of publication 19 January 2023, date of current version 2 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3238326

Evaluation of Visual Notations as a Basis for ICS
Security Design Decisions
SARAH FLUCHS 1,3, RAINER DRATH 2, AND ALEXANDER FAY 3, (Senior Member, IEEE)
1admeritia GmbH, 40764 Langenfeld, Germany
2School of Engineering, Pforzheim University, 75175 Pforzheim, Germany
3Department of Automation, Helmut Schmidt University, 22043 Hamburg, Germany

Corresponding author: Sarah Fluchs (sarah.fluchs@admeritia.de)

This work was supported by the German Federal Ministry of Education and Research (BMBF) under Grant 16KIS1269K.

ABSTRACT For making informed security decisions during the design of industrial control systems (ICS),
engineers need to process large amounts of security-relevant information outside their area of expertise. This
problemmoves the presentation of the security-relevant information into focus: security-relevant engineering
information must be presented to security decision-makers in a way that enables them to decide upon
security measures to build a defensible system. Visual representations have the potential to effectively convey
suchlike information, thus saving the engineers’ brain capacity for the security decision-making. However,
research shows that this potential is only realized if the visualizations are carefully constructed for cognitive
effectiveness. As a prerequisite for constructing a visual language for security engineering in the future,
this paper explores two scientific questions: 1) what are the requirements for visualizing security-relevant
engineering information in a way that enables engineers tomake security decisions during ICS design? and 2)
which existing visual languages meet (parts of) these requirements? The evaluation of existing visualizations
reveals that there is a need for an improved, specialized visual language for security engineering that builds
upon established engineering visualizations like piping and instrumentation diagrams and network maps,
represents all security-relevant information as icons to achieve semantic transparency, and includes filtering
mechanisms to reduce the complexity of each single diagram. The paper finishes with defining the main
pillars of a future visual language that should allow ICS engineers to quickly capture security-relevant
information and guide them through the process of selecting the right securitymeasures to design a defensible
ICS.

INDEX TERMS Automation engineering, industrial control system security, security by design, visual
language.

I. INTRODUCTION
During the engineering of industrial control systems (ICS),
many cybersecurity decisions are inevitably being made,
because many of the architecture and configuration choices
made during design also affect the system’s cybersecurity.
The sum of these decisions determines if and how the control
system, once operational, will be defensible against cyber-
security threats. However, security decisions during design
are often not made consciously, let alone systematically. This
leads to security decisions being overlooked until it’s too late

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

to make them (at a reasonable cost) [1], [2] and consequently,
insecure ICS.

Perhaps the biggest challenge in making security design
decisions – to be more precise, selecting appropriate secu-
rity measures – lies in distinguishing the security-relevant
information from the irrelevant in a large pool of engineering
information [2], [4].

Existing approaches identify relevant information about
the system to be protected for the identification of
vulnerabilities, attack paths, or risk. For the identification of
vulnerabilities, a simple list of products used in the system
under consideration suffices to assign applicable vulnera-
bilities from a database [7]. For the identification of attack

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 9967

https://orcid.org/0000-0003-4730-0126
https://orcid.org/0000-0003-1238-2571
https://orcid.org/0000-0002-1922-654X
https://orcid.org/0000-0002-7565-5963


S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

paths or risks, a model of the system’s components and
their relations is required. This information is then com-
bined with knowledge about known vulnerabilities, soft-
ware weaknesses, attack techniques, and assumptions about
attackers’ goals and / or skills, to identify attack paths or
risks [8], [9], [10], [11], [12]. Notably, all these approaches
terminate at vulnerability, risk, or attack path identification.
They do not identify, let alone process, relevant informa-
tion to decide upon security measures. Some of the authors
even explicitly state that they regard supporting systematic
identification of security measures using their approaches a
challenge [4], [12].

If security-relevant information for supporting the actual
decision-making is identified, measures are assumed to be
selected only based on compliance with regulation. In this
case, the relevant system information is reduced to basic
system type information to clarify if a security measure from
a specific standard or regulation is or isn’t applicable to the
system [13]. But in reality, decisions about secure design need
to consider additional factors besides compliance: Security
measures also need to be technically feasible, prevent the
most critical attack scenarios, not restrict functional require-
ments, and fit the project’s budget.

In [14], the authors have proposed four concepts represent-
ing the security-relevant information that should be extracted
from engineering data to support security design decision-
making: (1) unwanted events that security design needs to
prevent, (2) a system’s functions (including architecture and
data flow) that could contribute to these unwanted events, (3)
security parameters that contain design decisions potentially
affecting security, and (4) attack indicators flagging critical
security parameter values that may be used in a cybersecurity
attack. Also, security decision-making paths are described
and how each decision-making path uses the security-relevant
information for identifying security measures.

From the four concepts named above, it becomes clear
that the security-relevant information for decision-making
has two challenging characteristics: It is numerous, and
it spans across a wide range of knowledge domains.
Understanding system functions and unwanted events
requires system-specific engineering knowledge from differ-
ent domains of the highly interdisciplinary automation engi-
neering workflow [5], [6], e.g. the physical process, safety,
I/O, PLC’s, the control system, the HMI, or networking.
Understanding attack indicators requires security knowledge.
Finally, identifying and deciding about security parameters –
and thus, the security measures – requires knowledge from
both security and ICS engineering.

This results in a problem relevant in industrial practice:
Security design decision-making requires understanding and
processing large amounts of information [2], [4], most of
which will be outside the area of expertise of any security
decision maker, regardless of their profession. This problem
moves the presentation of the security-relevant information
into focus: Just like security operations information must be

presented to security operators sitting in front of a security
operations center (SOC)monitor in away that enables them to
decide how to react to a security incident, security engineer-
ing information must be presented to security engineers in a
way that enables them to decide how to design a defensible
system.

Visualizations are well suited for the problem at hand for
two reasons: They have unique advantages in presenting com-
plex information to non-experts because of the way human
cognition works [20] and they are already being used during
ICS engineering.

Therefore, as a prerequisite for constructing a visual
language for security engineering in the future, this
paper explores two scientific questions: 1) what are the
requirements for visualizing security-relevant engineering
information in a way that enables engineers to make security
decisions during ICS design? and 2) which existing visual
languages meet (parts of) these requirements?

The remainder of this paper is organized as follows: Chap-
ter II introduces a security design decision-making work-
flow. In chapter III, a visual language for security design
decision-making is motivated by outlining how it could sup-
port the decision-making workflow. In chapter IV, require-
ments are defined that the visual language needs to fulfill,
including requirements for semantics in the form of a concept
dictionary and requirements for the visual syntax, more pre-
cisely, for its cognitive effectiveness. In chapter V, existing
visual notations are portrayed and evaluated against these
requirements. In chapter VI, the key findings of the evaluation
are summarized. Chapter VII turns these key findings into
four basic pillars for a future visual language for ICS security
design decision-making. Lastly, chapter VIII contains the
conclusion and outlook.

II. BACKGROUND: SECURITY DESIGN DECISION-MAKING
To understand the motivation for a visual language for ICS
security engineering, it is described how security design deci-
sions can be made and where the challenges are.

A. SECURITY DESIGN VS. SECURITY OPERATIONS
In this work, decisions in security design are in focus, not
those in security operations. The terms ‘‘security design’’ and
‘‘security engineering’’ are used interchangeably.

In security design, the main goal is build a defensible sys-
tem, while in security operations, the main goal is to defend
this system during operations. While security operations is
about reacting dynamically to upcoming security challenges
like newly found vulnerabilities or actual attacks on the sys-
tem, security design is about creating the readiness to react
dynamically during operations.

While differentiating between security design and secu-
rity operations is worthwhile, the two have touching points.
Security design and security operations decisions are often
tied to the respective lifecycle phases (design and operations)
but making security design decisions can also be necessary

9968 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

during operations if a system is changed or re-engineered.
To take this even further: Because many legacy systems were
not built with cybersecurity inmind, security design decisions
may affect existing systems to retrospectively improve their
security posture even though they are otherwise not being
re-engineered. Also, security design decisions, if made and
documented systematically, are essential to inform security
operations decisions: During operations, it should be trace-
able at any time why a specific security design decision
has been made and if (and how) it may be revised if new
information becomes available.

The basic steps are the same for making decisions in both
security design and security operations:

1) INFORMATION COLLECTION
From a large amount of information the security-relevant
pieces need to be found,

2) DECISION PREPARATION
the security-relevant information needs to be presented in a
way that informs decision-making,

3) DECISION MAKING
finally, the actual decision needs to made and documented.

In security operations, there are many examples where
security decision-making is well established:

For information collection, established concepts to iden-
tify security-relevant information are indicators of compro-
mise, vulnerabilities, signatures or rules to identify known
malware, or anomalies compared to a baseline.

For decision preparation, available tools to process this
information and prepare for decision-making are antivirus
tools, security monitoring and detection tools, intrusion
detection and prevention tools.

For decision-making there are established organizational
structures for making operations decisions. Simple decisions
like quarantining and removing malware are made by the sys-
tems’ users or even automatically. For more complex cases,
such as the decision to evaluate and react to a security inci-
dent, security operations centers (SOCs) are formed, where
SOC operators look at the information provided by tools and
make the necessary decisions.

B. SECURITY DESIGN DECISION-MAKING
For security design, none of the three basic steps for decision-
making is as well established as for operations.

Information collection: Because in security design, there
is not yet an operational system, security-relevant information
needs to be drawn from engineering information. In [14], the
authors have first identified four types of security-relevant
information that can be found in engineering information:
unwanted event indicators, system functions, security param-
eters, and attack indicators.

Unwanted event indicators mark information that pro-
vides hints to unwanted events – events that should be

prevented by the security engineering efforts. Suchlike events
are mostly unwanted because they result in high conse-
quences for the organization, which is why they are some-
times called high consequence events [71]. Examples are the
explosion of a chemical reactor, injury of humans colliding
with a robot arm, or a coal excavator falling over. Exam-
ples for unwanted event indicators are alarms, redundancies,
safety functions, explosion protection requirements, operat-
ing limits of machinery or tight set points or response times.

The system’s functions that, if misused, could contribute
to the unwanted events. Functions represent the purposes
the system has been designed for, including the required
components, data flow, and human interactions. If misused,
the system’s functions can contribute to the unwanted events.

Security parameters mark information that, when
changed, can influence the security of the system under con-
sideration – or to be more precise, the system’s defensibility
and / or its readiness to react to security incidents. Some
security parameters are obviously in the security domain,
e.g. authentication or encryption mechanisms or integrity
protection mechanisms for PLC logic. Others are in the
control engineering domain and may not be identified as
security-relevant at first sight, e.g. the mechanism to change
the PLC’s operating modes, the decision whether PLC logic
updates during operations are allowed, or the construction
(mechanical? electronic?) of a safety shutdown.

Attack indicators are security parameters values that can
potentially be used in an attack. As an example, for the
integrity protection of PLC logic parameter, no integrity pro-
tection or integrity checking through a checksum yield the
potential to manipulate PLC logic without anyone noticing.

Decision preparation and decision-making: Because the
concepts for relevant information for security design are not
well-established yet, neither are the methods to process them.
Consequently, there are also no ‘‘security design tools’’ that
are as ubiquitous as the equivalent security operations tools
like antivirus, security monitoring or intrusion detection.

Therefore, at this point, security decision-making in
design based on the security-relevant design information
identified above can only be described as a workflow.
In [14], the authors have analyzed potential security design
decision-making workflows from software engineering, sys-
tems engineering, and requirements engineering and identi-
fied three security design decision-making paths: goal-driven,
risk-driven and compliance-driven. These three paths can
be condensed into one security engineering decision-making
workflow if some variants are provided within the workflow
steps. The workflow steps, along with the guiding questions
for each step, are summarized in Table 1.

In Table 1, the concepts that are needed for the security
design decision-making workflow are in bold. They will be
defined in more detail later.

C. ICS SECURITY DECISION-MAKING CHALLENGES
Regardless of who is charged with making security design
decisions (a person called security engineer in this paper),

VOLUME 11, 2023 9969



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 1. Security design decision-making workflow and guiding questions.

they will have to digest large amounts of information - for
which they are no experts - in limited time.

It must be noted that these are three separate challenges:
(1) The sheer amount of information that a decision-maker

has to consider as potentially security-relevant,
(2) the fact that some of this information will inevitably be

outside their area of expertise and
(3) all this needs to be done in a limited amount of time.
While the reasons for the third challenge are obvious, the

first two call for further explanation.
The first challenge – the large number of potentially

security-relevant information – is due to the fact that security
attacks could stem from any part of the system, no matter
how unassuming or even irrelevant to the designing engi-
neers it may be (‘‘a system is only as secure as its weakest
link’’). As described in [14] and [15], security parameters are
often seemingly small configuration details that do not look
security-relevant at first sight. The security parameters are
a long list of hundreds of parameters, each with a handful
of possible values – and that is not considering variants
for different ICS manufacturers. What’s more, the security-
relevant information is likely to change over time, as new
threats or vulnerabilities emerge.

The second challenge is due to the fact that ICS security
decision-making requires knowledge in at least two domains:
the domain of the ICS to be secured (plant and process,
ICS entities, relations, and functions, as well as unwanted
events) and the domain of security (security goals, attack
indicators, attack scenarios etc.). To make it worse, decision-
making requires combining knowledge from both domains: to
decide upon a security parameter’s values, both the security
implications and the potential impact on the system under
consideration need to be taken into account.

This alone would suffice to argue that regardless if the
security design decision-maker is an expert in the ICS or in
the security domain, they will lack some required knowledge.

But the challenge is even greater: In the ICS knowledge
domain, it would be a mistake to assume every control engi-
neers is an expert for all required information, because the

engineering of a plant and its automation systems is highly
interdisciplinary [5], [6]. Thus, understanding the system
to be secured means understanding the characteristics of a
system that, for a large part, (many) others have designed.
Also, security decision-making calls for gaining an overview
of the system-as-a-whole that none of the involved disciplines
has been needing to gain.

III. MOTIVATION FOR A VISUAL LANGUAGE FOR ICS
SECURITY DECISION-MAKING
In this chapter, it is investigated if and how visualizations can
address the identified challenges in security design decision-
making (digesting large amounts of information outside one’s
area of expertise in limited time). Also, the terminology to
analyze visual languages is introduced.

A. HOW VISUALIZATION CAN SUPPORT SECURITY
DESIGN DECISION-MAKING
There is evidence that diagrams, containing graphical nota-
tions, have a big advantage in scenarios where non-experts
need to quickly process information [16], [17], [18], [19] –
which is an exact description of the challenges in security-
decision-making identified earlier. This advantage is due to
the way the human brain processes diagrams: visual per-
ception takes place before cognition [20]. Also, these per-
ceptual processes are sub-conscious (‘‘pre-attentive’’) and
much faster than the conscious cognitive processes [20], [21].
Consequently, whenever a human can consume information
via diagrams, the information is not only digested faster, but
also cognitive resources are freed up for other tasks [20], [22].

More specifically, visualizations can help in each step of
the security design decision making workflow introduced
earlier – by helping to understand required input as well as to
decide and document decisions. In the following, the benefit
of visualizations in the workflow is analyzed step by step:

1) Identify unwanted events:
Understand: Unwanted events in ICS systems tend
to originate from the process, so plant and process
information is relevant input to digest when identifying

9970 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

unwanted events. Plant and process information is often
represented visually in the form of technical drawings
like piping and instrumentation diagrams (P&IDs).
Control engineers use P&IDs to identify where control
loops need to be placed and for what reason.
Decide: Security engineers may use P&IDs to identify
where unwanted events may happen.
Document: To document their findings, a representa-
tion of unwanted event indicators and unwanted events
can be put on top of a technical drawing.

2) Identify the essential entities, relations and func-
tions of the system under consideration:
Understand: This step basically encompasses under-
standing the system under consideration’s structure
and use, the system under consideration being selected
from the ICS and the surrounding IT infrastructure.
The required information is not security-specific except
that the level of detail needed for security engineering
is lower than for the design of the system: security
engineers only need to understand how the system
works, while system designers need to build the sys-
tem so it will work. The most important goal for the
security engineer is to have a good overview of the
entire system (since the system is ‘‘only as secure as
its weakest link’’) while the most important goal for
the system designer is to display all relevant details for
building the system. Therefore, network drawings and
data flow drawings which are used to design the ICS
serve as a good basis for system understanding to secu-
rity engineers, but may need more abstraction. Also, a
system’s intended use, including the humans who use
it, is important information that security engineers need
to understand [70].
Decide: Based on their system understanding, secu-
rity engineers need to decide which parts of the
system could contribute to an unwanted event,
or more generally, what is in scope for security
engineering.
Document: To document their findings, elements in
scope may be highlighted or those out of scope
eliminated.

3) Identify variable security parameters:
Understand: It must be understood which parts and
configurations of the system under consideration can
influence the system’s security – these are the security
parameters. Because security parameters are dependent
on the system that was chosen to be in scope, they
are merely an additional piece of information to add
to the visualization used for system understanding.
This also has the advantage of seeing how the sys-
tem is structured and what contributes to its security
at the same time. Thus, like for the unwanted event
indicators, a representation of security parameters that
can be put on top of a technical drawing, in this
case a network map or data flow diagram, would be
helpful.

Decide:Which of the security parameters can actually
be considered as variable and which are fixed because
of non-security requirements.
Document: Security parameters must look different if
variable or fixed.

4) Identify attack indicators and attack scenarios
to determine how system functions and security
parameters can contribute to unwanted events:
Understand:To understand how the system under con-
sideration (or parts of it) can contribute to unwanted
events, it is interesting to know which system entities
provide opportunities for attack (attack indicators).
Decide & document: Seeing system structure and
attack indicators at the same time is a good basis
for identifying attack scenarios, which are pathways
through the system using attack indicators as stepping
stones. For this reason, visualizations are already com-
mon for attack paths.

5) Identify security goals to prevent unwanted events
and

6) Set security parameters’ values to meet security
goals:
Understand: This is where the information from the
previous workflow comes together: The unwanted
events from the plant or process, the system under
consideration with its functions and variable security
parameters, the attack indicators and attack scenarios
are all relevant information that needs to be digested
to make the final security design decisions. Therefore,
ideally, they can all be displayed at the same time.
Decide & document: This final security design deci-
sions consists of defining security goals to prevent the
unwanted events, and then setting a set of security
parameters to specific values to achieve a specific secu-
rity goal.

From the step-by-step analysis, a pattern can be observed:
Each decision can only be made through the understanding
of a context for which a visualization already exists, and then
changing something in this context.
The understanding mostly focuses on overviewing the

architecture of a (technical) system: plant, process, control
system network, etc., which is common to be represented
visually: the technical drawing or P&ID for step 1 (iden-
tifying unwanted events), abstract network maps and data
flow diagrams for steps 2 to 6, and additionally attack graph
diagrams for step 4 (identifying attack scenarios).
The decisions and documentation are then manifested in

picking, highlighting, or changing certain aspects within this
technical system.
The prevalence of diagrams in technical design is of course

no coincidence. The defining characteristic of diagrams is
that they represent information spatially, setting represented
elements into relation [20]. This makes them well-suited to
document complex, interconnected systems – like process
plants or IT networks.

VOLUME 11, 2023 9971



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

To summarize, there are two motivations to use visualiza-
tion in security design decision-making. First, the decision-
making requires humans to quickly digest large amounts of
information for which there are no experts – a situation for
which visualizations have proven advantages due to how
human cognition works. Second, many (non-security) design
decisions are being made using visualizations anyway, so it
is easier for engineers to build upon these for security engi-
neering as well.

B. COGNITIVE EFFECTIVENESS
The authors’ primary reason for using visualizations for secu-
rity decision-making is to make information easier to process
for non-expert, human decision-makers.

But although it is often assumed (there is even the pop-
ular adage ‘‘a picture says more than thousand words’’),
not all visualizations make information easier to compre-
hend. As emphasized by Larkin and Simon [18] and later by
Moody [20], this is only the case if they are carefully designed
for that purpose. There is a term for the ‘‘speed, ease, and
accuracy with which a representation can be processed by the
human mind’’ [20]: cognitive effectiveness. Therefore, the
foundational requirement is to design visualizations for all
security concepts that achieve a high cognitive effectiveness.

C. VISUAL LANGUAGE TERMINOLOGY
Moving forward, basic terms regarding (visual) languages
need to be defined.

For any language, it’s important to differentiate between
abstract syntax, concrete syntax, and semantics. For this
paper, the definitions provided in [23] are being used: The
abstract syntax defines the constructs or notation that a
language is made up of, and the rules to use it. For a nat-
ural language, this would be types of words (nouns, verbs,
adjectives. . . ) and the grammar rules specifying how to build
a correct sentence. The concrete syntax defines how the
language’s constructs are expressed. For a written natural
language, this could be letters of the latin alphabet, but also
braille symbols, as well as compositional rules to build words
and sentences from letters. The semantics define what each
construct in a language means. For a natural language, they
make sure everyone understands what a person refers to when
they for example say ‘‘house’’ or ‘‘ball’’. Visual language
defines a concrete (visual) syntax.

A visual language according to [20] consists of a visual
vocabulary (graphical symbols representing the constructs)
and a visual grammar (compositional rules for these sym-
bols) that form the concrete syntax. A visual sentence or
diagram is a valid expression using the concrete syntax.
Visual semantics define the meaning of each graphical sym-
bol by mapping them to the construct they represent. Ulrich
Frank [24] suggests to build a concept dictionary as a def-
inition of all constructs to be covered by a visual language.
This recommendation is followed in the next chapter of this
paper.

IV. REQUIREMENT ANALYSIS
In the following, the authors formulate requirements for a
visual language for ICS security decision-making. On the top
level, there are only two requirements:

R1 Semantics: Coverage of security engineering con-
cepts.The language should be able to accompany the entire
security design decision-making workflow introduced in
chapter II.

R2 Visual syntax: Cognitive effectiveness for human
non-security experts. The visual vocabulary and gram-
mar should facilitate humans (automation engineers, non-
security experts) to quickly understand the concepts from the
dictionary.

A. SEMANTICS: CONCEPT DICTIONARY
To concretize requirement R1, the concept dictionary is used
that was derived in [14]. Table 2 provides a detailed descrip-
tion of and examples for all eight concepts that are used in
the security design decision-making workflow introduced in
chapters II and III.

Consequently, requirement R1 may be detailed into eight
subordinate requirements R1.1-R1.8. These requirements
demand the visual security decision-making language to rep-
resent all eight concepts from the concept dictionary [14]:
entity and relation, function, security parameter, security
goal, unwanted event indicator, unwanted event, attack
indicator, and attack scenario.

B. VISUAL SYNTAX: COGNITIVE EFFECTIVENESS
Requirement R2 needs further specification as well. In his
seminal work ‘‘The Physics of Notations’’ [20] and its prede-
cessor ‘‘What Makes a Good Diagram?’’ [22], Daniel Moody
defines criteria for constructing diagrams with a high cogni-
tive effectiveness. A variation of these criteria is proposed
by Frank in [24]. A selection from these criteria is used
as the requirements R2.1-R2.7 for cognitive effectiveness.
To make the following chapters (which will reference the
requirements that will be stated now) easier to read, they are
described as concrete as possible and without the technical
terms for the cognitive effectiveness principles introduced by
Moody. However, Moody’s more precise technical terms are
added in brackets in each requirement title.

R2.1 One symbol per concept, one concept per symbol
(semiotic clarity): For each concept in the concept dictio-
nary, there should be exactly one graphical symbol. The
graphical symbol should only be used for one concept, and
each concept should only be represented by one symbol.
These requirements are summarized as the ‘‘principle of
semiotic clarity’’ in [20].

R2.2 Limited (<10) number of different symbols
(graphic economy): If the reader must learn too many differ-
ent symbols, diagrams become hard to read. This is because
in that case, the viewer begins to consciously think about the
diagram (‘‘what did this shape mean again?’’), which leads to
the visualization losing its advantage of being perceived with

9972 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 2. Semantic requirements: concepts that need to be represented visually to support security design decision-making [14].

fast, efficient, sub-conscious mechanisms. A rule of thumb
for the number of different graphics that is manageable is
seven plus / minus two. The reason is believed to be limits in
human working memory capacity, which is limited to about
seven concepts at a time [22].

R2.3 Use of unique icons plus additional visual vari-
ables for discrimination (perceptual discriminability,
visual expressiveness, semantic transparency): Different
symbols should be clearly distinguishable from each other
(‘‘principle of perceptual discriminability’’). They become
better distinguishable if they differ asmany visual variables as
possible (‘‘principle of visual expressiveness’’). Visual vari-
ables, as defined in [16] and [20] are shape, color, brightness,
texture, size, orientation and the horizontal and vertical posi-
tion. According to [24], however, shape is the most effective
differentiator, and both [20] and [24] describe the outstanding
effectiveness of icons. Icons are symbols which do not need
to be ‘‘learned’’, since their meaning is intuitively conveyed
through their shape (‘‘principle of semantic transparency’’).
On top of that, according to [20], visual elements can be
recognized sub-consciously if they have unique values for at
least one visual variable. Hence, not only the use of icons, but
the use of unique icons per concept is required.

R2.4 Use of text for additional information or as an
interpretation reminder, but not for discrimination (dual
coding): Text should not be used as the only means to dis-
tinguish between concepts. However, it can be effective for
providing additional information that is not well suited to be
represented graphically. Also, text can serve as an interpreta-
tion reminder if the concepts themselves are lacking semantic
transparency, i.e. are not completely intuitive on their own
(dual coding) [20].

R2.5 Collision avoidance with common visual concepts
from automation engineering (cognitive fit):The principle
of cognitive fit says that different diagram dialects may be

necessary for different target groups [20]. The target group
of the security decision-making diagrams, automation engi-
neers, is used to working with diagrams in their engineering
workflow. This implies both chances and risks. If a concept is
popular among the target group, they are likely to recognize
similar concepts more easily. On the other hand, visual nota-
tions too similar to existing ones are at risk for being confused
and thus misinterpreted.

R2.6 Modularized diagrams with limited number of
elements (complexity management):Too much information
in a diagram causes cognitive overload, making the diagram
hard to comprehend. Again, working memory capacity sets
limits at about seven elements to process at a time [22]. Obvi-
ously, most problems consist ofmore than seven elements that
would need graphical representation, so diagrams need to be
broken down into modules to stay comprehensible.

R2.7 Cognitive integration mechanism between dia-
grams:The requirement for modularized diagrams obvi-
ously leads to multiple diagrams from which the viewer
needs to integrate information to comprehend the full prob-
lem [20], [22]. This calls for a mechanism to help the viewer
to quickly ‘‘anchor’’ a new diagram’s content in the informa-
tion they’ve already taken in from other diagrams.

There is a common denominator in all the cognitive effec-
tiveness requirements defined above. In his popular book for
intuitive web design [25], Steve Krug introduces the principle
‘‘don’t make me think’’. This means that intuitively designed
web applications can be navigated by users without thinking
about how to navigate them, letting users focus all their atten-
tion on the task at hand. In a similar fashion, good security
engineering diagrams should notmake engineers think (about
the diagrams) either. Instead, they should help engineers think
clearly to make security decisions. They must clarify, not
complicate security decision-making. If the viewer needs to
learn a visual vocabulary and think hard about what he’s

VOLUME 11, 2023 9973



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 1. Example for a P&I diagram from ISO 10628-1 [27].

FIGURE 2. Visual representation of PCE requests in a P&I diagram according to
IEC 62424:2016 [29].

seeing while looking at a diagram, it does not reduce but
increase cognitive workload. To summarize, a test question
for a good diagram is ‘‘does it help me think (and not make
me think)’’?

C. COMMON VISUAL CONCEPTS FROM PROCESS
AUTOMATION ENGINEERING
Notations from process automation engineering are relevant
to evaluate requirement R2.5 (collision avoidance with com-
mon visual concepts from automation engineering). This
section gives a brief overview over the most popular notations
found in practical engineering projects. This is based on two
sources: Research of automation engineering workflows in
literature [5], [6], [26] and the review of automation engi-
neering workflows at a chemicals producer (INEOS) and a

component manufacturer (HIMA). The goal of this section
is not to explain or evaluate the notations, but to be aware
of them so it can be explained where they collide with the
security notations introduced in chapter V.

One of the most popular diagrams in process automa-
tion engineering projects is the piping & instrumentation
diagram (P&ID). It consists of visual representations of
the process equipment (containers, pipes, pumps, valves,
motors, heaters. . . ). P&ID diagrams and symbols are different
for different industries. For the chemical and petrochem-
ical industry, they are standardized in ISO 10628-1:2014
(diagrams) [27] and 10628-2:2012 (graphical symbols) [28].
An example P&ID is shown in Fig. 1.

Automation engineers add information about sensors, actu-
ators, and control loops using a notation called process

9974 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 3. UML class diagram (top left), deployment diagram (bottom left) and activity diagram (right) including UMLsec stereotypes ≪secure
dependency≫, ≪secure links≫, and ≪fair exchange≫ [36].

FIGURE 4. Abuse case / misuse case diagrams introduced by McDermott and Fox [38] (left) and Sindre and Opdahl [39] (right).

control engineering (PCE) requests, standardized in IEC
62424:2016 [29]. PCE requests are represented by ellipses
for sensors and actuators and hexagons for control functions,
which contain standardized letter codes to indicate details
about the nature of the measured or controlled values (Fig. 2):
What is measured (temperature, flow. . . )? How is it measured

(in discrete or continuous values)? Are there thresholds for
alarms or shutdowns? Which measurements and actuators
form a control function?

Apart from P&IDs, visual notations are common for
programming PLC or control system logic. There are
five programming languages for PLCs defined in IEC

VOLUME 11, 2023 9975



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 3. Cognitive effectiveness of UML-based visual languages.

61131-3:2013 [30]. Three of those are visual: Ladder dia-
grams (LD), function block diagrams (FBD), and sequential
function charts (SFC). The visual notation is not standardized
in IEC 61131-3, but for all three languages, it usually consists
of shapes, mostly rectangles and connecting lines, with no
color or texture. These visual notations are so unspecific that
they are not at risk for being mixed up with newly defined
security engineering diagrams.

V. EVALUATION OF EXISTING VISUAL NOTATIONS FOR
SECURITY DECISION-MAKING
In this section, the visual languages that have been proposed
for security decision-making so far are introduced. Also, it is
evaluated to what extent these languages meet the cognitive
effectiveness requirements defined above (R2.x). The goal
for the visual language is to build upon visual notations that
are established and effective, while avoiding the mistakes that
may be designed into some of them.

Covered are only visual languages that are meant to be
interpreted by humans for making security decisions directly
based on these diagrams. There are some approaches that
use e.g. UML class diagrams to model security concepts, but
for other purposes: a) for documenting security requirements
that need to be built into a software or b) for automatically
transforming modeled requirements into software (in model-
driven software engineering) or c) to feed security-relevant
information into a software tool in order to make security
decisions (e.g. CySeMoL [31]).

Also, diagrams are not discussed here if the visualization
is only a small portion within an otherwise formalized, tex-
tual environment, such as the security problem frame con-
cept [32], [33].

A. UML SECURITY EXTENSIONS
UML is the most popular visual language in object oriented
software engineering. It is published and maintained by the
Object Management Group (OMG) [34]. UML consists of
several diagram types which can be understood as different

views on a system. The variety in diagrams means there is
often more than one possibility to represent a concept, e.g.
interfaces or package relationships [20].

Because UML is so popular in software engineering, there
have been multiple proposals for UML extensions to repre-
sent security concepts as well. Most prominently, Jürjens has
developed UMLsec [35], [36], which adds security-relevant
information like security properties and security requirements
to be used in various UML diagram types (Fig. 3). In the
concept dictionary, the added information is mainly on the
level of security requirements, hence security parameters
set to certain values or new introduced security functions.
UMLsec defines the security-relevant information as UML
stereotypes like≪secrecy≫,≪integrity≫,≪secure links≫
or ≪fair exchange ≫. In some cases, stereotypes pose addi-
tional requirements (UML constraints) to the diagrams for
them to remain valid. For example, for ≪secure links ≫,
the secrecy of all communication must be ensured. Con-
straints like these can only be implemented effectively with
tool support. The fact that UML does include tool support
provides indications that the visual language and diagrams
in UML were not primarily designed to be read by humans.
Also, although UML provides the possibility to define new
visual notations for stereotypes, the stereotypes are only
added as textual labels, enclosed by guillemets (≪), to the
respective diagrams. No new visual notations are introduced.
This is the second indication for UMLsec not primarily
being designed to be read by humans, but to be used by
tools.

UMLsec is not to be confused with the UML extension
called SecureUML [37], which has a very narrow scope
and only adds concepts related to role-based access control
(RBAC): permission, resource, role, user, and authorization
constraint. Like for UMLsec, UML stereotypes are defined,
but no new visual notations.

Besides the general UML extensions for all diagrams,
there are multiple approaches that use the behavioral UML

9976 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 5. Diagram types added by SysML: parametric diagram, requirement diagram [45].

FIGURE 6. MBSEsec threat and risk definition diagram as an extension of an UML class diagram [47].

FIGURE 7. Visual notations for the fundamental concepts of i∗ /
Tropos [49].

FIGURE 8. Visual notations for security-specific concepts in Secure
Tropos [50].

diagrams (use case and sequence diagrams) for security engi-
neering purposes.

McDermott andFoxfirst introduce the idea of abuse cases
that model malicious behavior (the equivalent in the concept

FIGURE 9. Malicious versions of the actor, goal and task concepts
distinguished by their black background [55].

dictionary being attack scenarios) [38]. Just like use cases
are an easy way for non-technical people to elicit functional
requirements, abuse cases are suggested to be an easy way
for non-security professionals to elicit security requirements.
McDermott and Fox use the normal UML use case diagrams
for their abuse cases, only labeling them as malicious through
annotations (e.g. ‘‘malicious actor’’, see Fig. 4).

Sindre and Opdahl use the same concept, but call it
‘‘misuse cases’’ in [39]. They visually distinguish misuse

VOLUME 11, 2023 9977



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 10. Example for an actor diagram in Secure Tropos, containing actors (circles), dependencies
(relationsI, (soft) goal (ellipses), and security constraints (clouds) [50].

TABLE 4. Cognitive effectiveness of i∗/Tropos-based visual languages.

cases from normal use cases by way of color: They have black
backgrounds in all shapes, where normal use cases are white
(Fig. 4).

Raspotnig et al. suggest a methodology called CHAS-
SIS [72] (Combined HarmAssessment of Safety and Security
for Information Systems). CHASSIS applies the misuse case
concept introduced by Sindre and Opdahl to elicit security
and safety requirements in the same workflow. The misuse
cases and visualization do not differ from Sindre and Opdahl,
so no new insights can be gained from the concept regarding
visual notations.

Popp et al. propose security extensions of use cases
[40]. Instead of modeling malicious behavior by way

of use cases, they modify normal use cases to ful-
fill security requirements that were specified before. The
security requirements specification happens textually, and
the use case modifications are realized using stereo-
types on top of conventional UML use case notations,
so no security-specific visual notations are introduced. This
work is closely related to UMLsec, which was discussed
earlier.

A similar approach is followed by Vasilevskaya, who
also proposes to model security enhancements into UML
diagrams, but mainly uses UML activity diagrams for visu-
alization [41]. Since the scope is embedded systems, the
diagrams model the internal behavior of suchlike systems

9978 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

very specifically. Again, standard UML notations are used
with no additions.

Mellado et al. combine the ideas of misuse cases represent-
ing attack scenarios (‘‘invade privacy’’) and security use cases
representing security requirements (‘‘ensure privacy’’) [42].
They use standard UML use case notations, but different
colors for normal use cases, misuse cases, and security use
cases.

Vivas et al. build their security engineering approach
on modeling business processes in UML sequence dia-
grams [43]. Since only the business processes (entity, relation
and function in the concept dictionary), but not their security
analysis ismodeled, again no security-specific visual notation
is needed.

The security concept dictionary coverage (requirements
R1.x) is summarized in Table 10 as part of the chapter evalua-
tion summary. UML-based languages can represent the func-
tion concept with use cases, activity diagrams, or sequence
diagrams, and modified versions of use cases represent
security-enhanced functions. Security stereotypes represent-
ing security requirements and properties reflect the security
parameters concept. Unwanted events and attack scenarios
are represented via abuse ormisuse cases – their level of detail
determines if it reflects an unwanted event representing the
impact of an attack or a attack scenario modeling the detailed
course of attack.

All approaches to integrate security concepts into UML
have in common that they use the existing UML language,
sometimes extended textually, but do not introduce new
visual notations. Therefore, the cognitive effectiveness for
UML security extensions is the same as for UML in general.
The fulfillment of the cognitive effectiveness requirements
(R2.x) is listed in Table 3. An X means the requirement is
fullymet, (x)marks a partiallymet requirement, and an empty
cell means the requirement is not met.

B. SYSML SECURITY EXTENSIONS
The System Modeling Language(SysML), like UML, is
maintained and published by OMG [44]. It builds upon UML,
but was extended to be used in systems engineering, thus
representing not only software, but also physical systems.
SysML redefines theUML class diagram as a block definition
diagram to reflect the need to model physical structures,
and adds two diagram types: the parametric diagram and the
requirement diagram (Fig. 5) [45].
Like for UML, there are security extensions for SysML:

Apvrille and Roudier propose a SysML security extension
called SysML-Sec [46]. Like UMLsec, the extension makes
use of the extensibility mechanisms provided by UML, which
means defining security-specific stereotypes like ≪security
requirement≫ or ≪attack≫, which can be mapped to the
modeled architecture across all diagram types. Again, the
security stereotypes are added to diagrams as textual labels,
the only visual representation being specific coloring of the
blocks the stereotypes are attached to, and just like UMLsec,

SysML-Sec is meant to be used with tools which interpret the
diagrams.

Mažeika and Butleris have developed MBSEsec, a secu-
rity extension for a Model-Based Systems Engineering
method that uses SysML for its models [47]. It is similar
to SysML-Sec, but defines a larger number of stereotypes.
Also, MBSEsec specifies a method which includes guidance
on which diagram type is to be used for what purpose in
the MBSEsec security engineering process. For example,
requirements and use cases diagrams are recommended for
security requirement identification.WhileMBSEsec does not
define new visual notations, it does define new diagrams
types as extensions of existing UML or SysML diagrams that
are better suitable for certain security engineering activities.
Examples are the misuse diagram as proposed by Sindre
and Opdahl (Fig. 4) or a threat and risk definition diagram,
extending the UML class diagram, for modeling threats and
risks (Fig. 6).
Lemaire et al. propose a SysML extension specifi-

cally designed for the security analysis for Industrial Con-
trol Systems (ICS) [7]. Their method includes creating a
human-readable system model, represented with a SysML
internal block diagram, and it does not contain any security
extensions. Its purpose is to be fed to a tool that automati-
cally presents security vulnerabilities and suggested security
requirements to the user. The SysML extension addresses the
formal reasoning carried out by the tool to derive vulnerabil-
ities and security requirements from the block diagram it is
fed. Since these extensions are not meant to be human read-
able, no new visual notations are introduced. Thus, in terms of
the concept dictionary, only the entity, relation and function
part is visually represented by Lemaire et al.

The IEEE Power and Energy Society is currently working
on a standard P2808 to diagram security-relevant infor-
mation for power systems. The working group creating the
standard (it is still under development) currently considers
designing their drawings based on SysML. Using internal
block diagrams to represent components (e.g. a relay) in a
power plant or substation network, the idea is to introduce
acronyms for categories that mark security-relevant infor-
mation and display the information values in the respective
fields. Examples for this security-relevant information are
logging, LAN, cyber alarms, electronic access, block and
allow listings, certificate management etc,

The overall coverage of the concept dictionary by SysML-
based visual languages is again shown in Table 10: When
use cases diagrams are used, SysML can represent the func-
tion concept like UML. The SysML block diagrams are
additionally used to represent entities and relations (i.e. sys-
tem hardware and network connections). Security parameters
are given in requirement stereotypes or in more detail in
the P2808 configuration listings. Attack scenarios are rep-
resented by the threat, and risk stereotypes in MBSEsec or
the attack stereotype in SysML-Sec, and attack indicators are
represented by the vulnerability stereotype in MBSEsec.

VOLUME 11, 2023 9979



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 11. Secure Tropos for cloud environments, with additional coloring in visual notations as well as new concepts ’’vulnerability’’ and
’’attack method’’ [53].

FIGURE 12. Secure Tropos diagram containing ’’delegation of permission’’ dependencies between actors
(circles) and resources (rectangles) [54].

Because UML and SysML are so similar, use the same
diagram types and visual vocabularies, their cognitive
effectiveness is the same. Therefore, the evaluation of the
cognitive effectiveness requirements for UML (Table 3 ) also
applies to SysML.

C. TROPOS AND I∗ SECURITY EXTENSIONS
The i∗ framework (pronounced eye star) was developed by
Eric S. Yu as an attempt to include social aspects – humans
and their intentions – into information system engineering
methods [48]. The central concepts of the i∗ framework are
actors, goals, tasks, resources, and dependencies. Actors have
intentions, represented by their goals. Theymay be dependent
on others helping them achieve their goals, carrying out a task
or providing a resource. There are also softgoals in i∗, which
represent qualities – for example ‘‘secure’’.

Because actors and their intentions are the core concept of
i∗, it is called ‘‘agent-oriented’’. There is an agent-oriented
software engineering method called Tropos [49], which was
inspired by i∗ and uses it as its modeling framework. The
visual notations for the central i∗ concepts are shown in Fig. 7.
Although not developed specifically for that purpose, the

inclusion of humans in the modeling is an important precon-
dition to accurately model security aspects of systems as well,

since attackers are humans. On top of that, human interactions
make up a big portion of systems’ vulnerabilities, but also
security countermeasures. Consequently, security extensions
of the Tropos methodology, called Secure Tropos, have been
proposed.

Mouratidis’ and Giorgini’s Secure Tropos [50] adds
security constraints, ‘‘secure’’ versions of actor, task and
resource, and the new concepts security feature, protection
objective, security mechanism, and threat (Fig. 8, Fig. 10).
If compared to the original Tropos / i∗ visual language, only
the threat is a newly introduced shape. The others use existing
shapes, which gain an additional meaning.

Asnar et al. structure the Tropos methodology in layers in
a ‘‘goal risk model’’ [51]: In the first layer, goals are defined,
in the second, events (risks) are introduced and in the third,
treatments to prevent or mitigate these events are defined. The
visual notations are consistent with the Secure Tropos nota-
tions: ellipses for goals, pentagons (like the ‘‘threat shape’’ in
Secure Tropos) for events, and hexagons for treatments.

Mayer et al. also add visual notations for threats and
vulnerabilities, but they use diamond shapes for threats and
the same with a black corner for vulnerabilities [52].

Later,Mouratidis et al. extended their Secure Tropos lan-
guage for application to cloud environments [53]. Not only do

9980 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 5. Cognitive effectiveness of CORAS.

TABLE 6. Cognitive effectiveness of SecVDSL.

they add color as an additional visual variable to distinguish
between visual notations, but they also add multiple new
concepts like vulnerability and attack method (Fig. 11).
Massacci’s and Zannone’s additions to Secure Tro-

pos [54] consist in mapping security-relevant concepts to
dependencies: ownership, trust and delegation. The new
visual notations to represent these concepts are labels with
letters - T for trust, S for distrust, O for ownership, D for
delegation-, extended by an additional letter e for execution
and p for permission (Fig. 12). For example, a ‘‘Dp’’ depen-
dency stands for delegation of permission, which means the
transfer of certain rights from one entity to another.

Another approach to add security concepts to Tropos is
proposed by Elahi and Yu [55]: They add malicious versions
to existing concepts, visually distinguishable by black back-
grounds (Fig. 9). The counterpart for an actor is a malicious
actor, and a threat or attack is composed of malicious versions
of goals and tasks. Additionally, a black dot is specified to
represent vulnerabilities.

The concept dictionary coverage for i∗/Tropos-based
visual languages is summarized in Table 10 as part of the

evaluation summary. Parts of the function concept may be
represented using dependencies. Security parameters are rep-
resented by treatments, constraints, or security mechanisms,
as well as the ‘‘security’’ versions of tasks and resources.
For access control security parameters, the ownership, trust
and delegation dependencies can be used. Security goals are
covered via security goals or soft goals, attack scenarios via
events, threats, attacks, attackers, malicious actors and attack
methods, and attack indicators via vulnerability (points).

In Table 4, the cognitive effectiveness requirements are
evaluated for the i∗/Tropos-based visual languages intro-
duced in this section.

D. CORAS
Next to the approaches that extend existing visual languages
to alsomodel security, there are some approaches that develop
completely new visual languages for security. One of those is
CORAS, published by Lund et al. [56]. CORAS introduces
a set of symbols (Fig. 13) and diagrams for security risk
analyses. All semantics are covered by the icons, the rela-
tions between icons are represented by simple arrows without

VOLUME 11, 2023 9981



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 7. Cognitive effectiveness of the discussed network diagrams.

FIGURE 13. Symbols defined in CORAS (top) and example CORAS diagram including asset, unwanted
incident, risk, vulnerability, threat, and treatments (bottom) [56].

specific semantics (see example diagram in Fig. 13). On top,
UML activity diagrams are used.

Like for the other evaluated evaluations, the concept dic-
tionary coverage of CORAS is given in Table 10. CORAS
only displays the system under consideration as assets, which
could give indications for entities and relations. Security
parameters are represented as treatments, unwanted events as
unwanted incidents, attack indicators as vulnerabilities, and

attack scenarios as a combination of threat, threat scenario,
and risk.

Table 5 summarizes the evaluation of the cognitive effec-
tiveness requirements for the CORAS visual language.

E. SECDSVL
Almorsy and Grundy propose a Domain-Specific Visual
Language for Security, called SecDSVL [57]. Like CORAS,

9982 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 8. Cognitive effectiveness of the discussed data flow diagrams.

the language includes icons for all ten concepts it represents
(Fig. 14): asset, security objective, threat, threat agent, vulner-
ability, attack, security requirement, security zone, security
service, and security control. No diagram types are explicitly
defined, but examples for diagrams based on the defined icons
are given. Based on the examples, most diagrams include only
one icon category (Fig. 15).

The concept dictionary coverage of SecDSVL is again
summarized in Table 10. Like CORAS, SecDSVL at most
give hints towards entities and relations in the form of
interconnected asset symbols. Security parameters are repre-
sented by the icons for security requirements, zones, services
and controls. Security goals are called security objectives
in SecDSVL. Attack indicators are represented by security
vulnerabilities, and attack scenarios by a combination of
security attacks, threat agents, and security threats.

Almorsy and Grundy have taken into account Moody’s
principles of cognitive effectiveness, that were the basis for
the cognitive effectiveness requirements as well, for creating
their visual language. Therefore, it comes at no surprise that
many of the cognitive effectivess requirements are met at
notation level. However, SecVDSL has weaknesses at dia-
gram level. An overview of the language’s fulfillment of
cognitive effectiveness requirements is given in Table 6.

F. NETWORK DIAGRAMS
So far, those visual languages for security were discussed
that address the entire security decision-making process:
understanding the system to be protected, risks, goals and
requirements, and solutions.

However, there are also visual languages that cover only
parts of security decision-making. Diagrams that aid under-
standing of the system under consideration are network dia-
grams and data flow diagrams. They are covered in this and
the following section.

The architecture (entities and relations in the concept
dictionary) of the system under consideration is often rep-
resented in network diagrams. These are non-standardized

drawings using icons to represent the technical components
in a network (router, switch, workstation, server, . . . ). Fig. 16
shows an example screenshot [58] from the Cybersecurity
Evaluation Tool (CSET) [13] provided by the US cyber-
security and infrastructure security agency (CISA) to aid
critical infrastructures identifying security requirements. The
sample diagram is simple, but depending on network size,
these diagrams can grow considerably large and complex.

If network diagrams are used for security purposes, their
elements are sometimes grouped in security zones, mark-
ing assets with similar properties leading to a similar crit-
icality. The concepts of zones and conduits (which are the
communication channels between zones) stems from IEC
62443-3-2 [59].

The concept dictionary coverage of network diagrams is
narrow, as remarked in the introduction: Solely the entities
and relations are represented (Table 10). The cognitive effec-
tiveness requirements for the discussed network diagrams are
evaluated in Table 7.

G. DATA FLOW DIAGRAMS
Data flow diagrams (DFDs) are common, and like network
diagrams, not always in a standardized notation. In the con-
cept dictionary, they represent function.

Sometimes, DFDs simply consist in adding data flows
to network diagrams as discussed in the last section.
Some DFDs resemble or build upon UML notations, like
the deployment diagram including communication interac-
tions shown in Lipner’s and Howard’s description of the
Microsoft Security Development Lifecycle (SDL) [60].

There are also attempts to define specific notations for data
flow diagrams, presented byKozar [61] or Drewry [62].The
notations as well as an example data flow diagram are given
in Fig. 17.

Like for network diagrams, the concept dictionary cov-
erage of data flow diagrams is narrow: Solely the function
concept is represented (Table 10). The presented data flow
diagrams’ cognitive effectiveness requirements are evaluated
in Table 8.

VOLUME 11, 2023 9983



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 14. Icons defined in SecDSVL [57].

FIGURE 15. Diagram examples from SecVDSL [57]: Security control diagram (left), security objective diagram (center),
security requirements diagram (right).

TABLE 9. Cognitive effectiveness of the discussed attack tree diagrams.

TABLE 10. Evaluation summary for the semantic requirements (security concept dictionary coverage, R1.x).

H. ATTACK TREE DIAGRAMS
Like network diagrams and data flow diagrams for the system
under consideration, there are also diagrams that only help

with modeling and understanding security problems, more
concisely, security attacks. They are usually graph diagrams,
called attack graphs or attack trees. Not all attack tree dia-

9984 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 11. Evaluation summary for the visual syntax requirements (cognitive effectiveness, R2.x).

grams are intended to be read by humans. Some are part of a
formal notation that is meant to be interpreted and analyzed
by an algorithm. In this section, only those attack graphs are
introduced that are to be interpreted by humans.

Attack trees were first introduced by Schneier in 1999 [63],
and first adopted for ICS by Byres et al. five years later [64].
The principle is simple: For every attack goal, there is a
separate attack tree. The tree consists of all possible attacks to
achieve the attack goal and thus helps so systematically think
through all attack possibilities. Within the concept dictionary,
attack graph diagrams represent unwanted events (as attack
goals) and attack scenarios (a path through the attack tree);
sometimes also attack indicators. An example from Byres
et al. is shown in Fig. 18. All attack goals have the same shape,
however, their severity is epressented by different coloring.
Hoff [65] uses a similar principle by representing different
MITRE ATT&CK for ICS [66] tactics (from initial attacks to
final impact on target) using a color gradient.

The ‘‘obstacle trees’’ in the anti-goal model introduced
by van Lamsweerde [67] look similar. Rhomboid-shaped
‘‘Anti-goals’’ are negative impacts on the system under con-
sideration. Obstacle trees add an additional shape for ‘‘vul-
nerability’’ though: a pentagon.

LeMay et al. introduce even more different concepts in
their ‘‘attack execution graphs’’ [8]: For each attack step
(rectangle) the goals are displayed in ellipses, and needed
access, skills, and knowledge in squares, circles, and trian-
gles. All concepts are additionally differentiated by color
(Fig. 19).

Kordy et al. [68] make two additions to the basic attack
tree concept in their ‘‘attack defense trees’’. Both are also
visually represented (Fig. 20): First, they distinguish between

disjunctive and conjunctive refinements of objectives in their
attack trees. Disjunctive refinements are alternatives to reach
the parent objective, conjunctive refinements are both needed
to achieve the parent objective, marked by a connecting line
between their edges. Second, they introduce defense nodes,
whichmark possible defenses against the attack nodes they’re
connected to. That way, they also include the security require-
ments (e.g. security parameters set to certain values) from the
concept dictionary.

Again, the concept dictionary coverage of attack tree
or graph diagrams in their basic version is relatively nar-
row, as summarized in Table 10: Depending on their level
abstraction, they cover unwanted events (i.e. impacts on
the system) or attack scenarios (single attack steps leading
to these impacts). Concept coverage is extended depending
on the attack tree diagram variant: Attack defense trees by
Kordy et al. [68] additionally represent security parameters
through their countermeasures. Attack execution graphs by
LeMay et al. [8] additionally represent security goals. Obsta-
cle trees by van Lamsweerde [67] additionally represent
attack indicators through their vulnerabilities.

The evaluation of the cognitive effectiveness requirements
for the discussed attack trees or graphs is given in Table 9.
Like network and data flow diagrams, attack graphs only
represent a small portion of the concepts needed for a security
engineering visual language, so differentiating between these
concepts is not too hard.

VI. EVALUATION SUMMARY
Table 10 and Table 11 summarize the evaluation across all
requirements and all reviewed visual notations. In both tables,
X means the requirement is fully met, (x) marks a partially

VOLUME 11, 2023 9985



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

TABLE 12. Visual notations for the concepts in the concept dictionary (images from sources evaluated in chapter).

FIGURE 16. Exemplary network drawing in the CSET tool [13] (screenshot from [58]).

met requirement, and an empty cell means the requirement
is not met. The key findings are briefly touched upon in
the following, beginning with the evaluation of the seman-
tic requirements – more precisely, the concept dictionary
coverage.

A key finding of the authors’ evaluation is presented in
Table 10: no visual notation covers all concepts. The lack of
notations mostly pertains to the concepts at the intersection
of system and security domain knowledge – unwanted event
indicators and security parameters.

9986 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 17. Data flow diagram notation as specified by Drewry [62].

FIGURE 18. Attack tree for ICS by Byres et al. [64]. The colors represent the severity of impact.

Unwanted event indicators are not visualized in any of
the reviewed diagrams. This does not come as a surprise,
because the unwanted event indicator is a concept that marks
security-relevant aspects in information about the system
under consideration developed by other domains. This is
rarely covered by existing languages.

The same applies to security parameters. The only reason
some of the reviewed notations are evaluated to visualize
security parameters is that a broad definition of security
parameters has been applied, also covering security require-
ments and measures.

Concepts that are purely in the security domain (attack
indicator, attack scenario) are covered in more approaches
than concepts that are rather in the domain of the system
under consideration (unwanted event, function). This is not
surprising since most visual languages in the context of secu-
rity aim at collecting primarily security domain knowledge.
However, it is striking that the security goal, a relatively
common concept, is only represented in two of the visual
languages.

This can be summarized as key finding a): Concepts
at the intersection of system and security knowledge
(security parameters, unwanted events, unwanted event

indicators) are not well represented in existing languages.
For these concepts, improved notations need to be developed.
For all other concepts, there are existing notations which may
be adopted.

Table 12 shows an overview of notations for those concepts
which were covered by the reviewed languages (the unwanted
event indicator wasn’t at all). Also, the entity, relation and
function concepts are excluded since they are similar across
all languages, represented by use-case-like diagrams, and
these cannot be condensed into one symbol. For the same
reason, the network and data flow diagrams are not included
in Table 12.

Table 12 serves as an illustration for the findings
from the cognitive effectiveness evaluation summarized in
Table 11. Already at first sight, Table 11 conveys the impres-
sion that the specialized notations (CORAS, SecDSVL,
attack tree diagrams) have a better cognitive effectiveness
than those that adopt more general visual notations like
UML, SysML or i∗/Tropos for security, and this is under-
lined by the fact that the specialized notations address
almost all visual syntax requirements from Table 11, while
the general language extensions barely address any of
them.

VOLUME 11, 2023 9987



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 19. Attack execution graph by LeMay et al. [8] including
representation of access, knowledge and skill next to attack steps and
their goals.

This is because despite their popularity, these general lan-
guages already have a rather weak cognitive effectiveness in
their fundamental notations, as analyzed in [69] for UML:
They rely exclusively on shape to distinguish between con-
cepts, and the shapes they use are plain geometric shapes
which have to be learned like vocabularies to be under-
stood. The extensions for UML and SysML are even worse,
since they rely only on text added in guillemets (see first
two columns in Table 12). I∗/Tropos (third column) is only
slightly better. It uses different geometric shapes and some-
times adds color, and extensions introduce new shapes – but
again geometric ones.

This makes for key finding b): general-purpose visual
languages like UML, SysML, or i∗/Tropos are not an
effective basis for a visual language for ICS security
decision-making because their cognitive effectiveness is
weak. Extending UML, SysML or i∗/Tropos can be a good
compromise despite their weak cognitive effectiveness if the
target group of the visual language is very familiar with these
languages. However, the target group being ICS engineers
and not software engineers, this advantage is non-existent
in this work. Therefore, based on the evaluation, developing
a specialized visual language for ICS security engineering
seems more reasonable.

Taking a closer look at specialized notations, they are either
complete languages specifically created for security (CORAS
and SecDSVL) or specialized diagrams which only visualize
one of the required concepts (network, data flow, and attack
tree diagrams).

The specialized notations overall have a good cov-
erage of requirements affecting the individual notations
(R2.1 – R2.5). This is mostly due to the fact that they
have a limited set of symbols – the main advantage of the
specialization – and make use of icons which are more
intuitively understood because they have ‘‘semantic trans-
parency’’, to use Moody’s wording [20]. Some of the icons
have a thematic overlap, which gives hints to symbols that

FIGURE 20. Attack Defense Tree by Kordy et al., including defense nodes
(green rectangles) representing countermeasures against attack nodes
(red circles).

FIGURE 21. Icons of the proposed visual language for security design
decision-making. Coloring is used to group icons by diagram type:
unwanted event diagram (violet), security decision diagram (white / grey),
attack diagram (red).

could be chosen in an improved visual language: ‘‘some-
thing to adjust’’ (wrench, cogwheels) for security parame-
ters, ‘‘something explosion-related’’ (explosion, bomb) for
the unwanted event, ‘‘something to be wary of’’ (warning
sign, red ‘‘x’’, evil-looking figure) for attack scenario. This
can be summarized as key finding c): Use of icons is a
main driver for cognitive effectiveness because of their
intuitiveness (‘‘semantic transparency’’). There are no
established icons, but for some concepts, thematic pref-
erences can be observed.

However, the specialized notations do not excel at the
requirements at diagram level: R2.6 (modularized diagrams
with limited number of elements) and R2.7 (cognitive inte-
gration mechanism between diagrams).

This means the visual notations sacrifice their otherwise
good cognitive effectiveness of their individual notations
once they are turned into diagrams: They either overwhelm
viewers with diagrams growing to unlimited size and com-
plexity by not having any built-in modularization options,

9988 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

FIGURE 22. Diagram types of the envisioned visual language for security design decision-making: Unwanted event diagram, function diagram, security
decision diagram, attack diagram.

or they leave viewers with information scattered overmultiple
diagrams with no built-in guidance to integrate all this to a
greater whole.

This leads to key finding d): a good visual language
needs to include rules on diagram level: built-in guidance
on both effectivemodularization of diagrams and integra-
tion mechanisms for the resulting ‘‘diagram network’’.

VII. TOWARD A VISUAL LANGUAGE FOR SECURITY
DESIGN DECISION-MAKING
The conclusion of the evaluation can be summarized as fol-
lows:

• There is a need for a better visual language for secu-
rity decision-making during the design of ICS. This
visual language should not be the extension of a general-
purpose language, but a specialized language for secu-
rity (key finding b).

• To achieve good cognitive effectiveness on diagram
level, the language needs to provide built-in ‘‘fil-
ters’’ to reduce diagram complexity: rules to mod-
ularize diagrams containing and mechanisms for the
easy integration of the resulting ’’diagram network’’
(key finding d).

• To achieve a good cognitive effectiveness on visual
vocabulary level, the language should include icons for
each represented concept. For security-related concepts,
thematic preferences from existing visual notations
should be adhered to (key finding c).

• For concepts at the intersection of system knowledge
and security knowledge (security parameters, unwanted
events, unwanted event indicators), new icons need to be
created (key finding a).

Equipped with these findings, the main pillars for an
improved visual language for security engineering can be
defined. Additionally, the fulfillment of the semantic require-
ments (R1.x) and cognitive effectiveness requirements (R2.x)
defined in chapter IV is indicated.

Pillar one: Consistent basic diagrams as an integra-
tion mechanism. All diagrams represent the system under
consideration using established entity-relation diagrams like
network maps and P&IDs. This covers the concepts entity
and relation (R1.1) and serves as an integration mechanism
between modularized diagrams (R2.7), because it means all
diagrams have the same basic structure (see Fig. 22).

Pillar two: Functions as a modularization mechanism.
Functions (R1.2) are visualized by highlighting relevant parts
of the basic entity-relation diagrams and adding security-
relevant elements from data flow diagrams and use cases:
communication protocols and human interactions (see func-
tion diagram in Fig. 22) [70]. They are used as one mech-
anism to modularize diagrams (R2.6): For each function,
a different part of the entity-relation diagram is highlighted.
This not only makes diagrams less complex (R2.2) but also
aids security decision-making because attack scenarios and
security parameters can be looked at function by function,
asking how manipulating or disabling the function can lead
to an unwanted event.

VOLUME 11, 2023 9989



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

Pillar three: Icons for semantic transparency. All other
concepts (R1.3 -R1.8) are represented as icons (R2.1, R2.3),
taking into account the thematic preferences found in the
visual language evaluation: The security parameters (the-
matic preference: ‘‘something to adjust’’) are represented by
cogwheels. Security goals, for which no thematic preference
was observed in existing visual languages, are represented by
a (finishing) flag. Attack indicators, which mark critical val-
ues of the security indicators are represented by the cogwheel
enhanced by ‘‘something to be wary of’’ – an exclamation
mark. Attack scenarios build upon these attack indicators.
Unwanted events and unwanted event indicators make use of
the ‘‘something explosion-related’’ theme: Unwanted event
indicators, which are pieces of information that could, but
don’t have to, point to a negative consequence, are rep-
resented by bombs (which could or could not explode).
Unwanted events however mark consequences that are def-
initely confirmed to be negative, so they are represented by
explosions. An overview of icons is given in Fig. 21. All icons
can be layered on top of the basic diagrams (see Fig. 22).

Pillar four: Diagram types as a modularization
mechanism. Not every icon is needed in every diagram.
In addition to the modularization by function, diagrams are
modularized (R2.6) by how they can be used in the security
design decision-making workflow. Each diagram is designed
to assist during one (or more) steps in workflow, and only
the relevant icons for this step are displayed. Thus, four dia-
gram types are proposed (Fig. 22): Unwanted event diagrams,
function diagrams, security decision diagrams, and attack
diagrams. As a second visual differentiator, color is used to
group related icons. Icons that belong onto the same diagram
type (Fig. 21) have the same color: unwanted event diagram
(violet), security decision diagram (white / grey), or attack
diagram (red).

The visual language is designed to support the security
decision-making workflow during the design of an ICS.
Table 13 provides an overview which steps in the security
design decision-making workflow are supported by which of
the diagram types. As analyzed in chapter III, for each work-
flow step, visualizations support understanding the relevant
input information, making the necessary decisions as well as
documenting them.

It is important to note that the visual language will not be
practical if the diagrams are drawn manually, using pen and
paper or a drawing software.

The modularization mechanisms (separate diagrams for
each function and diagram type), which are paramount for
ensuring the diagram’s cognitive effectiveness (R2.6, R2.7)
cause a lot of slightly different diagram variants. This is not
a problem if a software tool generates the multiple diagrams
from a single electronic data model - but for manually drawn
models, version management would be a nightmare.

Also, the icons layered on top of basic diagrams rely
on dynamic filtering mechanisms and on the ability to
provide additional information on demand. This is good
practice for electronically generated diagrams in software

TABLE 13. How diagrams support the security design decision-making
workflow.

tools, but again would not be feasible on manually created
diagrams.

Therefore, there is a fifth pillar for the proposed visual
language concept:

Pillar five: Electronic datamodel and software tool.The
visual language must include an electronic data model and a
software tool to guide through the diagram-supported security
decision-making workflow, and to generate and manipulate
the visualizations dynamically.

This also opens the possibility to include the diagrams
created during security design decision-making as part of the
control system HMI and / or SOC visualizations used for
system operations, making it easier to reference and update
security design diagrams throughout the systems’ life span.

VIII. CONCLUSION AND OUTLOOK
This paper motivates the need and investigates the require-
ments for a specialized visual language for security
decision-making during the design of ICS.

Just like security operations information must be presented
to security operators sitting in front of a security operations
center (SOC) monitor in a way that enables them to decide
how to react to a security incident, security engineering infor-
mation must be presented to security engineers in a way that
enables them to decide how to design a defensible system.

Therefore, as a prerequisite for constructing a visual
language for security engineering in the future, this paper
explores two scientific questions: 1) what are the require-
ments for visualizing security-relevant engineering infor-
mation in a way that enables engineers to make security
decisions during ICS design? and 2) which existing visual
languages meet (parts of) these requirements?

Visualizing information that is relevant for making security
design decisions – more precisely, selecting security mea-
sures – involves solving a practical problem: Security design
decision-making requires understanding and processing large
amounts of information, most of which will be outside the
area of expertise of any security decision maker, regardless

9990 VOLUME 11, 2023



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

of their profession. Visual representations have the potential
to effectively convey suchlike information, thus saving the
security engineers’ brain capacity for the decision-making.
However, visualizations only unleash this potential if they are
carefully constructed for cognitive effectiveness. Therefore,
cognitive effectiveness requirements for the visual syntax of a
future visual language for security engineering were defined.

The case for using visualizations was further substan-
tiated by outlining how each step in a security design
decision-making workflow could benefit from visualizations,
also revealing that fundamental portions of the relevant infor-
mation are commonly visualized anyway. As a result, require-
ments for the semantics of a future visual language were
defined in the form of a concept dictionary.

Next, existing visual notations intended to be read by
humans in the context of security decision-making were por-
trayed and evaluated against the defined requirements. The
evaluation led to four key findings:

(a) Concepts at the intersection of system and security
knowledge (security parameters, unwanted events, unwanted
event indicators) are not well represented in existing lan-
guages. (b) General-purpose visual languages like UML,
SysML, or i∗/Tropos are not an effective basis for a visual
language for ICS security decision-making because their
cognitive effectiveness is weak. (c) Use of icons is a main
driver for cognitive effectiveness because of their intuitive-
ness (‘‘semantic transparency’’). There are no established
icons, but for some concepts, thematic preferences can be
observed. (d) A good visual language needs to include rules
on diagram level: built-in guidance on both effective mod-
ularization of diagrams and integration mechanisms for the
resulting ‘‘diagram network’’.

Equippedwith these findings,five pillars for an improved
visual language for security design decision-making were
defined: (1) The visual language must include consistent
basic diagrams, which are commonly used technical draw-
ings (perhaps in more abstract form) representing the sys-
tem under consideration. The security-relevant engineering
information can then be layered onto these basic diagrams
either by (2) highlighting certain entities (for functions)
or by (3) adding icons (for all other concepts: unwanted
events, unwanted event indicators, security parameters, secu-
rity goals, attack indicators, and attack scenarios). Both the
functions and the other concepts can be used as modular-
ization mechanisms, i.e. as filters that reduce diagram com-
plexity. Thus, (4) four different diagram types can be defined
that are each tailored to support specific steps in the security
design decision-making workflow. To facilitate these filtering
mechanisms without the hassle of creating, versioning and
updating the multitude of different diagrams, (5) the visual
language must be supported by an electronic data model
and software tool which can dynamically generate the dia-
grams, display additional detail on demand, and document
the decisions that are made including the reasoning behind
each decision.

The vision for the future visual language is that it enables
security engineers (regardless of their technical background)
to consciously make security decisions during the design of
ICS. It should help distinguish the security-relevant from
the irrelevant in the haystack of engineering information. Its
diagrams should show at a glance not only which information
matters for security decision-making, but also why.

Additionally, the modularization mechanisms in the envi-
sioned visual language should provide guidance for slic-
ing the overwhelming problem of finding just the right
amount of security for large and complex ICS with their
functional requirements, financial constraints and regula-
tory obligations into digestible chunks. First, by looking at
the system under consideration function by function. Sec-
ond, by analyzing each function diagram type by diagram
type. As each diagram type should be designed to support
a specific step in the security decision-making workflow,
they are also intended to guide the decision-maker through
the decision-making even if she doesn’t memorize all the
required
steps.

One question that a visual language alone cannot answer
is from where it obtains the contents of the security-relevant
information it displays: Who defines all the functions, secu-
rity parameters, attack indicators, and unwanted event indi-
cators? Clearly, the security decision-maker will have neither
the time nor the expertise for that. The answer is outside the
scope of this paper, but because of its fundamental importance
for the effectiveness of the visual language it is given anyway:
For functions, security parameters, attack indicators, and
unwanted event indicators, libraries need to be provided that
the security engineer can choose from, as fits his system under
consideration. The definition of these libraries is subject of
the authors’ current research. Regarding the visual language,
the next steps are (1) to completely design the visual lan-
guage along the five pillars found in this paper, (2) to create
a software demonstrator and an electronic data model for
efficiently working with the visual language as demanded
in pillar five, (3) to validate the effectiveness of the visual
language in case studies, using the software demonstrator in
real-life engineering projects at a chemical producer and an
automation componentmanufacturer, and (4) to work towards
standardizing the electronic data model that undergirds the
visual language in UML, AutomationML, and as a submodel
of the asset administration shell (AAS).

When using the visual language as motivated in this paper
in combination with libraries, engineers designing an ICS do
not need to bring anything more to the security engineering
table than the engineering knowledge they possess anyway.
This knowledge is all they need for making informed security
decisions and documenting them so they’re still traceable
later, during operations of the system. The visual language
helps them to quickly grasp the security-relevant information
and guides them through the process of making the security
decisions to design a defensible ICS.

VOLUME 11, 2023 9991



S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

REFERENCES
[1] P. Kieseberg and E. Weippl, ‘‘Security challenges in cyber-physical pro-

duction systems,’’ in Software Quality: Methods and Tools for Better
Software and Systems, D. Winkler, S. Biffl, and J. Bergsmann, Eds. Cham,
Switzerland: Springer, 2018, pp. 3–16.

[2] M. Eckhart, A. Ekelhart, A. Luder, S. Biffl, and E. Weippl, ‘‘Secu-
rity development lifecycle for cyber-physical production systems,’’ in
Proc. IECON 45th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2019,
pp. 3004–3011.

[3] J. F. Ruiz, A. Maña, and C. Rudolph, ‘‘An integrated security and sys-
tems engineering process and modelling framework,’’ Comput. J., vol. 58,
no. 10, pp. 2328–2350, Oct. 2015, doi: 10.1093/comjnl/bxu152.

[4] M. Glawe, C. Tebbe, A. Fay, andK.-H. Niemann, ‘‘Knowledge-based engi-
neering of automation systems using ontologies and engineering data,’’ in
Proc. 7th Int. Joint Conf. Knowl. Discovery, Knowl. Eng. Knowl. Manage.,
2015, pp. 291–300.

[5] Engineering and Execution of PCT Projects in Process Industry, docu-
ment NA35, NAMUR e. V., 2019.

[6] M. Hollender, Collaborative Process Automation Systems. Durham, NC,
USA: Research Triangle Park, 2010.

[7] L. Lemaire, J. Lapon, B. D. Decker, and V. Naessens, ‘‘A SysML
extension for security analysis of industrial control systems,’’ in Proc.
Electron. Workshops Comput., Sep. 2014, pp. 1–9. [Online]. Available:
http://ewic.bcs.org/content/ConWebDoc/53223

[8] E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke,
‘‘Model-based security metrics using ADversary VIew security
evaluation (ADVISE),’’ in Proc. 8th Int. Conf. Quant. Eval. Syst.,
Sep. 2011, pp. 191–200. [Online]. Available: http://ieeexplore.
ieee.org/document/6042046/

[9] T. Sommestad, M. Ekstedt, and H. Holm, ‘‘The cyber security model-
ing language: A tool for assessing the vulnerability of enterprise system
architectures,’’ IEEE Syst. J., vol. 7, no. 3, pp. 363–373, Sep. 2013, doi:
10.1109/JSYST.2012.2221853.

[10] A. H. Vu, N. O. Tippenhauer, B. Chen, D. M. Nicol, and Z. Kalbar-Czyk,
‘‘CyberSAGE: A tool for automatic security assessment of cyber-
physical systems,’’ in Quantitative Evaluation of Systems, G.
Norman and W. Sanders, Eds. Cham, Switzerland: Springer, 2014,
pp. 384–387.

[11] M. Eckhart, A. Ekelhart, and E. Weippl, ‘‘Automated security risk iden-
tification using AutomationML-based engineering data,’’ IEEE Trans.
Depend. Secure Comput., vol. 19, no. 3, pp. 1655–1672, May 2022, doi:
10.1109/TDSC.2020.3033150.

[12] P. Dedousis, G. Stergiopoulos, G. Arampatzis, and D. Gritzalis,
‘‘Towards integrating security in industrial engineering design
practices,’’ in Proc. 18th Int. Conf. Secur. Cryptogr., 2021,
pp. 161–172.

[13] (2022). Department of Homeland Security, USA, Cyber Security Eval-
uation Tool (CSET). Accessed: Mar. 20, 2022. [Online]. Available:
https://github.com/cisagov/cset/releases

[14] S. Fluchs, R. Drath, and A. Fay, ‘‘A security decision base: How to prepare
security by design decisions for industrial control systems,’’ in Proc. 17th
EKA (Fachtagung Entwurf Komplexer Automatisierungssysteme), Magde-
burg, Germany, 2022, pp. 1–24.

[15] S. Fluchs, E. Tasten, M. Mertens, A. Horch, R. Drath, and A. Fay, ‘‘Secu-
rity by design integration mechanisms for industrial control systems,’’
in Proc. IECON 48th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2022,
pp. 1–6.

[16] J. Bertin, Semiology of Graphics. Madison, WI, USA: Univ. Wisconsin
Press, 1983.

[17] S. M. Kosslyn, ‘‘Graphics and human information processing: A review of
five books,’’ J. Amer. Stat. Assoc., vol. 80, no. 391, pp. 499–512, Sep. 1985,
doi: 10.1080/01621459.1985.10478147.

[18] J. H. Larkin and H. A. Simon, ‘‘Why a diagram is (sometimes) worth ten
thousand words,’’ Cognit. Sci., vol. 11, no. 1, pp. 65–100, Jan. 1987, doi:
10.1111/j.1551-6708.1987.tb00863.x.

[19] P. Goolkasian, ‘‘Pictures, words, and sounds: From which format are we
best able to reason?’’ J. Gen. Psychol., vol. 127, no. 4, pp. 439–459,
Oct. 2000, doi: 10.1080/00221300009598596.

[20] D. Moody, ‘‘The ‘physics’ of notations: Toward a scientific basis
for constructing visual notations in software engineering,’’ IEEE
Trans. Softw. Eng., vol. 35, no. 6, pp. 756–779, Nov./Dec. 2009, doi:
10.1109/TSE.2009.67.

[21] D. Kahneman, Thinking, Fast and Slow, 22nd ed. New York, NY, USA:
Farrar, Straus and Giroux, 2011.

[22] D. Moody, ‘‘What makes a good diagram? Improving the cognitive effec-
tiveness of diagrams in IS development,’’ in Advances in Information
Systems Development, W. Wojtkowski, W. G. Wojtkowski, J. Zupan-Cic,
G. Magyar, and G. Knapp, Eds. Boston, MA, USA: Springer, 2007,
pp. 481–492, doi: 10.1007/978-0-387-70802-7_40.

[23] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, and
T. M. Shortell, INCOSE Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities, 4th ed. Hoboken, NJ, USA:
Wiley, 2015.

[24] U. Frank, ‘‘Domain-specific modeling languages: Requirements analy-
sis and design guidelines,’’ in Domain Engineering. Cham, Switzerland:
Springer, 2013, pp. 133–157.

[25] S. Krug, Don’t Make Me Think, Revisited: A Common Sense Ap-Proach to
Web Usability, 3rd ed. Greenwich, CT, USA: New Riders, 2013.

[26] G. Rathwell, ‘‘PERA control and information systems lead engineer’s
guide industry sector: Oil & gas,’’ Purdue Enterprise Reference Archit.
(PERA), Tech. Rep., 2018. [Online]. Available: https://www.pera.net

[27] Diagrams for the Chemical and Petrochemical Industry—Part 1: Specifi-
cation of Diagrams, Standard ISO 10628-1, ISO, 2014.

[28] Diagrams for the Chemical and Petrochemical Industry—Part 2: Graphi-
cal Symbols, Standard ISO 10628-2, ISO, 2012.

[29] Representation of Process Control Engineering Requests in P&I Diagrams
and Data Exchange Between P&ID Tools and PCE-CAE Tools, Stan-
dard IEC 62424, IEC, 2016.

[30] Programmable Controllers—Part 3: Pro-Gramming Languages, Stan-
dard IEC 61131-3, IEC, 2013.

[31] H. Holm,M. Ekstedt, T. Sommestad, and L. NordstrM, ‘‘CySeMoL: A tool
for cyber security analysis of enterprises,’’ in Proc. 22nd Int. Conf. Exhib.
Electr. Distrib. (CIRED), 2013, p. 1109.

[32] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, ‘‘Security
requirements engineering: A framework for representation and analysis,’’
IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 133–153, Jan. 2008, doi:
10.1109/TSE.2007.70754.

[33] D. Hatebur, M. Heisel, and H. Schmidt, ‘‘A pattern system for
security requirements engineering,’’ in Proc. 2nd Int. Conf. Avail-
ability, Rel. Secur. (ARES), 2007, pp. 356–365. [Online]. Available:
http://ieeexplore.ieee.org/document/4159824/

[34] Object Management Group (OMG). Unified Modeling Language (UML)
Specification v2.5.1. Accessed: Aug. 30, 2022. [Online]. Available:
https://www.omg.org/spec/UML/2.5.1/About-UML/

[35] J. Jürjens, ‘‘UMLsec: Extending UML for secure systems development,’’
in Proc. UML Unified Modeling Lang., G. Goos, J. Hartmanis,
J. van Leeuwen, J.-M. Jézéquel, H. Hussmann, S. Cook, Eds.
Berlin, Germany: Springer, 2002, pp. 412–425. [Online]. Available:
http://link.springer.com/10.1007/3-540-45800-X_32

[36] J. Jürjens, Secure Systems Development With UML. Berlin, Germany:
Springer, 2005.

[37] T. Lodderstedt, D. Basin, and J. Doser, ‘‘SecureUML: A UML-
based modeling language for model-driven security,’’ in Proc. UML
Unified Modeling Lang., G. Goos, J. Hartmanis, J. van Leeuwen,
J.-M. Jézéquel, H. Hussmann, S. Cook, Eds. Berlin, Germany: Springer,
2002, pp. 426–441, doi: 10.1007/3-540-45800-X_33.

[38] J. McDermott and C. Fox, ‘‘Using abuse case models for security
requirements analysis,’’ in Proc. 15th Annu. Comput. Secur. Appl.
Conf. (ACSAC), 2022, pp. 55–64. [Online]. Available: http://ieeexplore.
ieee.org/document/816013/

[39] G. Sindre and A. L. Opdahl, ‘‘Eliciting security requirements with
misuse cases,’’ Requirements Eng., vol. 10, pp. 34–44, Jan. 2005, doi:
10.1007/s00766-004-0194-4.

[40] G. Popp, J. Jurjens, G. Wimmel, and R. Breu, ‘‘Security-critical
system development with extended use cases,’’ in Proc. 10th Asia–
Pacific Softw. Eng. Conf., 2022, pp. 478–487. [Online]. Available:
http://ieeexplore.ieee.org/document/1254403/

[41] M. Vasilevskaya, Designing Security-Enhanced Embedded
Systems: Bridging Two Islands of Expertise: Linköping. Cary,
NC, USA: Univ. Electronic Press, 2013. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-98213

[42] D. Mellado, E. Fernández-Medina, and M. Piattini, ‘‘Applying a security
requirements engineering process,’’ in Computer Security ESORICS 2006,
D. Hutchison, Ed. Berlin, Germany: Springer, 2006, pp. 192–206, doi:
10.1007/11863908_13.

9992 VOLUME 11, 2023

http://dx.doi.org/10.1093/comjnl/bxu152
http://dx.doi.org/10.1109/JSYST.2012.2221853
http://dx.doi.org/10.1109/TDSC.2020.3033150
http://dx.doi.org/10.1080/01621459.1985.10478147
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://dx.doi.org/10.1080/00221300009598596
http://dx.doi.org/10.1109/TSE.2009.67
http://dx.doi.org/10.1007/978-0-387-70802-7_40
http://dx.doi.org/10.1109/TSE.2007.70754
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1007/s00766-004-0194-4
http://dx.doi.org/10.1007/11863908_13


S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

[43] J. L. Vivas, J. A. Montenegro, and J. López, ‘‘Towards a business
process-driven framework for security engineering with the UML,’’ in
Information Security, G. Goos, J. Hartmanis, J. van Leeuwen, C. Boyd,
and W. Mao, Eds. Berlin, Germany: Springer, 2003, pp. 381–395, doi:
10.1007/10958513_29.

[44] Object Management Group (OMG), System Modeling Language (SysML)
Specification v1.6. Accessed: Aug. 31, 2022. [Online]. Available:
https://www.omg.org/spec/SysML/1.6/About-SysML/

[45] E. Crawley, B. Cameron, and D. Selva, System Architecture: Strategy and
Product Development for Complex Systems. Edinburgh, Scotland: Pearson,
2016.

[46] L. Apvrille and Y. Roudier, ‘‘SysML-Sec: A SysML environment for the
design and de-velopment of secure embedded systems,’’ in Proc. AP-
COSEC, Asia–Pacific Council Syst. Eng., 2013, pp. 8–11.

[47] D. Mažeika and R. Butleris, ‘‘MBSEsec: Model-based systems engineer-
ing method for creating secure systems,’’ Appl. Sci., vol. 10, no. 7, p. 2574,
Apr. 2020, doi: 10.3390/app10072574.

[48] E. S. Yu, ‘‘Social modeling and I,’’ in Conceptual Modeling: Foundations
and Applications, A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S. Yu,
Eds. Berlin, Germany: Springer, 2009, pp. 99–121, doi: 10.1007/978-3-
642-02463-4_7.

[49] J. Mylopoulos and J. Castro, ‘‘Tropos: A framework for requirements-
driven software development,’’ in Information Systems Engineering: State
of the Art and Research Themes (Lecture Notes in Computer Science).
Springer, 2000, pp. 261–273.

[50] H. Mouratidis and P. Giorgini, ‘‘Secure Tropos: A security-oriented exten-
sion of the tropos methodology,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 17,
no. 2, pp. 285–309, Apr. 2007, doi: 10.1142/S0218194007003240.

[51] Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone, ‘‘From trust to depend-
ability through risk analysis,’’ in Proc. 2nd Int. Conf. Availability, Rel.
Secur. (ARES), 2007, pp. 19–26.

[52] N. Mayer, A. Rifaut, and E. Dubois, ‘‘Towards a risk-based secu-
rity requirements engineering framework,’’ in Proc. REFSQ, 2005,
pp. 1–15.

[53] H.Mouratidis, N. Argyropoulos, and S. Shei, ‘‘Security requirements engi-
neering for cloud computing: The secure Tropos approach,’’ in Domain-
Specific ConceptualModeling, D. Karagiannis, H. C.Mayr, J.Mylopoulos,
Eds. Cham, Switzerland: Springer, 2016, pp. 357–380, doi: 10.1007/978-
3-319-39417-6_16.

[54] F. Massacci and N. Zannone, ‘‘Detecting conflicts between functional and
security requirements with secure Tropos: John Rusnak and the allied Irish
bank,’’ in Social Modeling for Requirements Engineering. Cambridge,
MA, USA: MIT Press, 2008.

[55] G. Elahi and E. Yu, ‘‘A goal oriented approach for modeling and ana-
lyzing security trade-offs,’’ in Conceptual Modeling ER 2007, C. Parent,
K.-D. Schewe, V. C. Storey, and B. Thalheim, Eds. Berlin, Germany:
Springer, 2007, pp. 375–390, doi: 10.1007/978-3-540-75563-0_26.

[56] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis.
Berlin, Germany: Springer, 2011, doi: 10.1007/978-3-642-12323-8.

[57] M. Almorsy and J. Grundy, ‘‘SecDSVL: A domain-specific isual
language to sup-port enterprise security modelling,’’ in Proc. 23rd
Austral. Softw. Eng. Conf., 2014, pp. 152–161. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6824120

[58] S. Geraldo and R. Woods. (Dec. 16, 2020). Virtual Expo: CISA’s
Cybersecurity Evaluation Tool (CSET). [Online]. Available:
https://www.cisa.gov/sites/default/files/publications/2020-seminars-
cset-508.pdf

[59] Security for Industrial Automation and Control Systems—Part 3–2: Secu-
rity Risk Assessment for System Design, Standard IEC 62443-3-2, IEC,
2020.

[60] S. Lipner and M. Howard, ‘‘The security development lifecycle,’’ in
SDL: A Process for Developing Demonstrably More Secure Software.
USA: Microsoft Press, 2006.

[61] K. A. Kozar. The Technique of Data Flow Diagramming. Accessed:
Aug. 31, 2022. [Online]. Available: https://spot.colorado.edu/~kozar/
DFDtechnique.html

[62] T. Drewry. Data Flow Diagrams. [Online]. Available:
http://www.cems.uwe.ac.uk/~kg-doyle/tdrewry/dfds.htm

[63] B. Schneier, ‘‘Attack trees,’’ Dr. Dobb’s J., vol. 24, no. 12, pp. 21–29,
1999. [Online]. Available: https://www.schneier.com/academic/
archives/1999/12/attack_trees.html

[64] E. J. Byres, M. Franz, and D. Miller, ‘‘The use of attack trees in assessing
vulnerabilities in SCADA systems,’’ in Proc. Int. Infrastruct. Survivability
Workshop, 2004, p. 9.

[65] J. Hoff, ‘‘Creating attack graphs for adversary emulation, simulation
and purple teaming in industrial control system (ICS) environments,’’
M.S. thesis, Dept. Math. Inform., FernUniversität, Hagen, Germany, 2021.
[Online]. Available: https://pull-the-plug.net/thesis/

[66] MITRE, ATT&CK for ICS. Accessed: May 29 2022. [Online]. Available:
https://attack.mitre.org/matrices/ics/

[67] A. van Lamsweerde, ‘‘Elaborating security requirements by
construction of intentional anti-models,’’ in Proc. 26th Int. Conf.
Softw. Eng., 2022, pp. 148–157. [Online]. Available: http://ieeexplore.
ieee.org/document/1317437/

[68] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer,
‘‘Foundations of attack-defense trees,’’ in Formal Aspects of
Security and Trust, P. Degano, S. Etalle, and J. Guttman, Eds.
Berlin, Germany: Springer, 2011, pp. 80–95. [Online]. Available:
https://www.researchgate.net/publication/221026894_Foundations_
of_Attack-Defense_Trees

[69] D. Moody and J. van Hillegersberg, ‘‘Evaluating the visual syntax of
UML: An analysis of the cognitive effectiveness of the UML fam-
ily of diagrams,’’ in Software Language Engineering, D. Gašević,
R. Lämmel, and E. van Wyk, Eds. Berlin, Germany: Springer, 2009,
pp. 16–34.

[70] S. Fluchs and H. Rudolph, ‘‘Making OT security engineering deserve
its name: A guide to security engineering for OT engineers,’’ 2019.
Accessed: Sep. 1, 2022. [Online]. Available: https://www.controlglobal.
com/articles/2019/making-ot-security-engineering-deserve-its-name

[71] A. A. Bochman and S. G. Freeman, Countering Cyber Sabotage. Intro-
ducing Consequence-Driven, Cyber-Informed Engineering (CCE), 1st ed.
Boca Raton, FL, USA: CRC Press, 2021.

[72] C. Raspotnig, V. Katta, P. Karpati, and A. L. Opdahl, ‘‘Enhancing CHAS-
SIS: A method for combining safety and security,’’ in Proc. Int. Conf.
Availability, Rel. Secur. Regensburg, Germany: IEEE, 2013, pp. 766–773,
doi: 10.1109/ARES.2013.102.

SARAH FLUCHS was born in 1990. She received
the B.Sc. degree in mechanical engineering and
the M.Sc. degree in automation engineering from
RWTH Aachen University, Germany, in 2015 and
2017, respectively. She is currently pursuing the
Ph.D. degree with Helmut Schmidt University,
Hamburg, Germany, supervised by Prof. Fay and
Prof. Drath.

After written her master’s thesis at the German
Federal Ministry for Information Security (BSI),

in 2017, she joined as a Security Consultant at admeritia, Langenfeld,
Germany, an OT security consulting company. She was the Head of Security
Engineering at admeritia, from 2018 to 2020 and the CTO, since 2020. Her
main research interests include security engineering for industrial control and
automation systems and critical infrastructures, security by design as part of
a broader resilience engineering approach, and the use of human-readable
diagrams and machine-readable models for security engineering.

Ms. Fluchs is a member of the International Society of Automation (ISA),
where she has been the Director of the Standards and Practices Board, since
2021, and an Expert at the International Electrotechnical Commission (IEC).

VOLUME 11, 2023 9993

http://dx.doi.org/10.1007/10958513_29
http://dx.doi.org/10.3390/app10072574
http://dx.doi.org/10.1007/978-3-642-02463-4_7
http://dx.doi.org/10.1007/978-3-642-02463-4_7
http://dx.doi.org/10.1142/S0218194007003240
http://dx.doi.org/10.1007/978-3-319-39417-6_16
http://dx.doi.org/10.1007/978-3-319-39417-6_16
http://dx.doi.org/10.1007/978-3-540-75563-0_26
http://dx.doi.org/10.1007/978-3-642-12323-8
http://dx.doi.org/10.1109/ARES.2013.102


S. Fluchs et al.: Evaluation of Visual Notations as a Basis for ICS Security Design Decisions

RAINER DRATH was born in 1970. He received
the Diploma and Ph.D. degrees in automa-
tion engineering from the Technical Univer-
sity of Ilmenau, Germany, in 1995 and 1999,
respectively.

Heworked for 17 years at theGermanABBCor-
porate Research Center. In 2017, he was appointed
as a Professor of mechatronic systems engineering
at PforzheimUniversity. He is the author of several
reference books, coauthor of several IEC stan-

dards, and Architect of AutomationML. His research interests include meth-
ods of improving automation engineering in factory and process automation,
especially in the area of data models and data integration along the engineer-
ing tool chains.

Prof. Drath was a Board Member of the AutomationML Society.
He received multiple IEEE best paper awards.

ALEXANDER FAY (Senior Member, IEEE) was
born in 1970. He received the Diploma and Ph.D.
degrees in electrical engineering from the Tech-
nical University of Braunschweig, Braunschweig,
Germany, in 1995 and 1999, respectively.

He had worked for five years at the ABB
Corporate Research Laboratories, Heidelberg and
Ladenburg. Before, he was appointed as a Full Pro-
fessor at the Institute of Automation Technology,
Helmut Schmidt University, Hamburg, Germany,

in 2004. His main research interests include models and methods for the
engineering of large automated systems, especially in the process and man-
ufacturing industries, and in buildings and transportation systems.

Prof. Fay has served as a member for the AdCom of the IEEE Industrial
Electronics Society. He was the Program Co-Chair of the IEEE International
Conference on Automation Science and Engineering (CASE), in 2018.
From 2011 to 2017, he has served as an Associate Editor for the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS.

9994 VOLUME 11, 2023


