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ABSTRACT The channel estimation algorithm based on sparse Bayesian learning proposed in recent
years shows better performance than the traditional channel estimation algorithm by effectively reducing
the convergence error in the channel estimation process. However, the sparse Bayesian learning algorithm
based on expectation maximization (EM-SBL) is difficult to meet the practical applications with low
complexity and power consumption. In order to guarantee the long-term stable communication of underwater
devices, this paper proposes the fast sparse Bayesian learning algorithm based on Fast Marginal Likelihood
Maximization (FM-SBL) to estimate underwater acoustic channels with low power consumption and high
performance. Simulation and sea trial results show the output BER after channel estimation of FM-SBL is
similar to that of EM-SBL, better than LS, MP and OMP, and it has good robustness in fast and slow time-
varying channels. In terms of running speed, the FM-SBL algorithm is 16.7% of EM-SBL algorithm, which

greatly reduces the estimation time.

INDEX TERMS Time-varying UWA channels, sparse Bayesian learning, channel estimation, robustness,

complexity.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM), as a
multicarrier modulation technique, has a wide range of
applications in underwater acoustic (UWA) communication
[1], [2], [3]. Due to high utilization of the frequency band,
it is sensitive to symbol interference and subcarrier interfer-
ence. Therefore, estimating the channel with an efficient and
accurate way is very important.

To begin with, the least square (LS) method for channel
estimation was first widely used [4]. In recent years, along
with the sparsity of UWA channels being exploited, Com-
pressed Sensing (CS) algorithm has been studied and applied
as a common channel estimation method [5], [6], [7], [8].
Paper [9], [10], [11] achieved better channel estimation per-
formance by Orthogonal Matching Pursuit (OMP) and Basis
Pursuit (BP) algorithms to estimate both path delay and
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path Doppler scale, but the calculation is higher than LS
algorithm. The paper [12] proposed a bidirectional channel
estimation scheme with low computational complexity, while
the number of pilot symbols required is very large. With
the development of artificial intelligence techniques, channel
estimation algorithms based on neural network have also
emerged [13], [14], [15]. The paper [16] formulated channel
estimation as a sparse signal recovery problem and imple-
mented through classical iterative algorithms approximate
message passing (AMP), however, these existing schemes do
not achieve satisfactory estimation accuracy. In recent years,
some channel estimation schemes based on sparse Bayesian
learning have been proposed. The paper [17], [18], [19], [20]
investigated channel estimation based on a sparse Bayesian
learning framework, which has the desirable property of pre-
venting convergence errors by exploiting the sparsity of the
channel in the time delay and Doppler direction, resulting in
more accurate channel estimation and making the output BER
lower compared to the CS approach. However, because the
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FIGURE 1. The structure of one frame OFDM signal.

algorithm is based on the expectation-maximization iterative
algorithm with high complexity, it consumes long time and
large power consumption to obtain better performance. Espe-
cially in OFDM communication, there are multiple blocks
to estimate in one frame, which is completely unable to
meet the practical application of underwater communication
devices. Therefore, it is necessary to obtain an algorithm with
relatively high computational accuracy and low complexity to
guarantee the large-scale long-time communication applica-
tions [21], [22].

In OFDM communication, a frame signal contains multiple
OFDM blocks. Each block needs to be estimated and demod-
ulated individually. The cycle prefixes are in the front of the
blocks to prevent symbol interference. Pilots are inserted into
each block at equal intervals. The specific frame structure is
shown in FIGURE 1. Due to the high band frequency utiliza-
tion and fast communication efficiency of OFDM, the time
interval between blocks is very short. In order to fully save
the time of OFDM communication and keep the reception
normal, the hardware is required to complete a series of pro-
cessing operations such as channel estimation and decoding
algorithm of the last signal block synchronously within the
time of receiving a signal block. Otherwise, if the processing
time exceeds the time to receive a signal block, it will lead to a
continuous accumulation of signals, which not only occupies
the chip memory, but also does not guarantee the timeli-
ness of OFDM communication and wastes the advantages of
high-speed transmission of OFDM communication. Because
OFDM uses LDPC decoding, in order to improve the correct
rate of decoding, the decoding algorithm generally requires
multiple iterations, thus taking up most of the back-end pro-
cessing time. In previous applications, high performance and
low complexity cannot be achieved at the same time, and in
order to leave sufficient time for the decoding algorithm, the
LS algorithm with lower estimation performance is often used
for channel estimation.

The FMLM is first given in [23]. The paper [24] uses
FMLM to update the definition set, which is feasible to
handle large-scale data in an inductive manner. In order
to obtain an algorithm with relatively high computational
accuracy and low complexity to guarantee the large-scale
long-term communication capability of underwater devices,
this paper uses FMLM and Woodbury decomposition of the
cost function to obtain a low-complexity parametric update
algorithm [25], [26].

This paper focuses on a low-complexity and efficient
channel estimation algorithm for UWA OFDM communica-
tion. In Section II, the OFDM system and channel model
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are introduced. In Section III, The EM-SBL algorithm and
the FM-SBL channel estimation algorithm are introduced in
detail, respectively. Then algorithmic complexity is analyzed
and compared. Section IV gives the parameter settings and
verifies the channel estimation results comparison of different
algorithms in the simulation and experiment. The conclusions
are shown in Section V.

Il. SYSTEM MODEL
In this section, we present the OFDM system and UWA
channel model.

A. OFDM SYSTEM

Assuming that the number of subcarriers of the OFDM sys-
tem is K, the bandwidth is B, and the lowest subcarrier fre-
quency is f;. The subcarrier frequency interval is Af = B/K,
and the frequency of the k#h subcarrier can be expressed as

fe=fi+kAf k=0,---K—1. (1)
The time domain signal x(¢) can be expressed as

K/2—1

> dkeﬂ”f“] telf0,T]. )
k=—K/2

x(t) = 2Re |

where Re{-} is taking the real part and dk is the symbol after
QPSK modulation. T = 1/Af is denoted as the period of
an OFDM symbol. After adding the cyclic prefix, x(¢) then
passes through the channel.

Suppose there are M multipath UWA channels, N pilots in
one OFDM block, and the N x 1 received signal Y function
is

Yivi = XwaHv 1+ Ew.a
= XnNvFivH iy g+ En
= Oy Hm 1+ En - 3)

where X is the N x Ntransmitted signal stored in a diagonal
matrix, F is a N x MFourier transform matrix, and their
product is denoted as ®. H represents the channel function in
frequency domain, while H represents the channel impulse
response in time domain. E is additive noise, which obeys
Gaussian distribution with the mean of zero and variance
o2, which can be obtained from the square of the empty
carrier. For the sake of description, subscripts that indicate
the dimension of matrix are omitted below.

The method of self-correlators for CP is adopted to esti-
mate the Doppler scales block-by-block. Then the received
data is resampled with estimated Doppler factor. The domi-
nating Doppler effects are considered to be compensated and
the residual are considered as additive noise.

B. CHANNEL MODEL

The H is divided into M segments as show in (4). The length
of the mth segment channel &, which obeys a Gaussian dis-
tribution with a mean of 0 and variance y,,,. When y, is small
enough, the amplitude of this channel segment is almost 0.
Therefore, it is most likely to be a noise. Overall, the channel
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is relatively sparse because most channel segments are noise.
FIGURE 7 in section IV can also show this phenomenon.

Hz[hlv 7h1”hdM] (4)

h1 hy

chay,

The distribution of Hcan be as follows.
p(H) ~ CN(0,T) 5)

where I is the diagonal matrix of y,, that controls the variance
of the channel, which is one of the parameters of the request.

T=diag([y1 - VYm - Ym)) 6)

lll. CHANNEL ESTIMATION ALGORITHM

In this section, the EM-SBL and FM-SBL algorithms for
channel estimation are investigated, which are fundamentally
two different calculating methods of the cost function.

A. EM-SBL
The EM-SBL algorithm is based on expectation maximiza-
tion, where the hyperparameters are updated alternately by
expectation and maximization during the iterative process.
These hyperparameters can be estimated using a type II
maximum likelihood function, which maximizes the poste-
rior probability distribution function p(H|Y; T') because it is
difficult to find T in p(H; I').

For the pilot signal Yreceived after passing through the
channel, it obeys the following probability density distribu-
tion.

p(Y|H) ~ CN(®H, 1)

N Y—®H)Y(Y—®H
= Qwo?I)" T exp (—( 2)02(1 )) 7

Combined with Bayesian equations and Gaussian constant
equations in Appendix D of P. R. Mahler’s book [27](the
proof in Bar-Shalom’s book [28]). We get

p(Y H)p(H;T) =p(H|Y; T)p(Y). 3
And the distribution of p(H|Y; '), p(Y; I')are

p(H|Y;T) ~ CN(M, X)

p(Y;T) ~ CN(O, O). &)
where the parameters corresponding to (9) are
M =’z oty
T =T !'+o%0Hp)!
C =02+ orot (10)

The EM algorithm consists of two steps, step E and step M.
The step E is

rj+1 = arg mI?XEH/Y,Ff [lnp(H, r)]
2
= H/Y,r-iH (in
=MM" + 3.
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Bring M, ¥ in (10) into (11). The parameters I' are con-
stantly updated to be stable during iteration [29].

The estimated channel H is M, ie., H = M. The flow of
EM-SBL algorithm is shown in Algorithm 1.

Algorithm 1 EM-SBL Channel Estimation Procedure
Initialization:

Set 02=E(Yemp)*, Y, ®, T =1, iterMax, th
While (i <iterMax &|F(,‘+1) -F(,‘)|/F(,‘) >th) do
T =T, +o’ee)!
M = o’z oty
Calculatel' ;) = MM" + ¥

Calculate

End while

Output M, I';11)

B. FM-SBL
Unlike the EM algorithm, the FM-SBL algorithm uses p(Y)
as the cost function.

I(T) = —2Inp(Y)

1 1
= —ZIn[—Cl/zexp ——yHcly
V2 2

=In|C|+ Y C7'Y +n27. (12)

Ignore the constant term. Now use Woodbury decomposi-
tion [23] to further analyze C in (10). Since the T is diagonal
matrix, rewrite C as

C =01+ oro"
=0+ ) &T;o" + &T;o!
J#
=C_;+ <I>,-F,»i<I>IH.
= C_i+y®®) (13)

where the N x 1 vector ®; is the ith column of ®. C_; =
o2 + D erjyd>;'l isa N x N matrix. T';; = y; is the ith
row and ith column of I'. The Matrix Inversion Lemma also
called Sherman-Morrison-Woodbury theory is used to get |C|
and C~! [23].
ICl = [1 +siyil IC—il
C'=C -yl +sy)7'Cj@@]'CT (14
1 1 1 1
Define 5; = ®/'C~/®;, ¢; = ®C]Y. The s; and ¢;
are both two numbers. According to (14), splitting the cost
function, we get

L=MW|C_|+YICTIY +In|1 + yisil — ¢y + 57!
= L(—i) + L(). (15)

where L&) = In|l + yisi| — qriz()/f1 + 571, the rest is
L(—1i). Because L£(—i) does not contain the information of
y;. Therefore, d.L(i)/9y; = 0 is solved to get y;. Then y; is
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restored to a diagonal array I'. M and X are easily calculated
by (10).

I=diag(y;) = diag(s; '(¢?s; ' — 1) i=1---M (16)

In practice, for most of the cases, the UWA channel exhibits
strong temporal correlation over a time scale less than the
channel coherence time. Therefore, to accelerate convergence
speed, the I of the previous block can be used when initial-
izing the second block.

The procedure of FM-SBL is given below.

Algorithm 2 FM-SBL Channel Estimation Procedure
Initialization:
Set 02=E(Yemp)?, Y, @, T =1, iterMax, th

While(k <iterMax &|A 1) -A)|/Ak) >th) do

For (i=1,i <=M, i+ +)
C_i=071+3 &T;@!

Mo J#i
Calculate i = ®,C_; ®;
g = ®/'C_jY
S D S |
Yi=S; (%Si -1
End For

T yn=diag(y;) i=1---M
End While

_ -1 2a&H —1
T =T,y +o’e"e)
M =2y oty
Outputﬁ =M, T

Calculate

C. ALGORITHM COMPLEXITY ANALYSIS

The computational complexity of each iteration between the
EM-SBL algorithm and FM-SBL proposed in this paper are
discussed.

For EM-SBL algorithm, the main calculation quantities
are estimating X,M and updating I'.Where, the complexity
of X is O(M?), the complexity of M is O(M?N), and the
complexity of I' is O(M). In summary, because M < N,
the complexity of the EM-SBL algorithm is O(M*N') in each
iteration.

While for FM-SBL algorithm, owing to Woodbury decom-
position and FMLM optimization methods, its computa-
tional efficiency can be greatly improved. Choose the ith
column, the complexity of solving C_; is O(M). Since
I'=diag(y; - - - ¥ - - - Ym), the properties of diagonal matrices
can be utilized to reduce the calculation. It is sufficient to
converge I' to a stable value. The complexity of solving I'
in each iteration is O(M?).
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IV. EXPERIMENTS AND ANALYSIS

The process of an UWA OFDM communication system is
shown in FIGURE 2. The performance of the algorithm is
demonstrated and analyzed by simulation and sea trial data
respectively. The robustness of the algorithm is simulated by
fast time-varying channel and slow time-varying channel, and
the performance evaluation indexes include the bit error rate
(BER) and channel mean square error (MSE), the time and
power consumption and so on.

A. NUMERICAL SIMULATION AND ANALYSIS

The simulated signal contains 4 OFDM blocks per frame,
each OFDM block has N = 256 subcarriers, of which,
Ny = 192 data subcarriers and N, = 64pilot subcarriers, and
the coding method is LDPC coding with code rate of 1/2, and
the modulation method is QPSK modulation. The sampling
frequency is f; = 12kHz, the inserted pilot interval is 4, the
center frequency after up conversion is f, = 2.25kHz, and the
bandwidth is B = 1.5kHz.

The analog UWA channels simulate the main character-
istics of oceanic channels on slow time-varying channels
and fast time-varying channels respectively. The simulation
randomly generates 10 channels with delay variation of
[0,0.5]ms and gain amplitude variation of [0.5,1.5] for the fast
time-varying channel. For the slow time-varying channel, the
delay variation is randomly selected in [0,0.1]ms and the gain
amplitude variation range is randomly selected in [0.8,1.2].
The Doppler factor ranges from -2e-4 to le-4, the amplitude
obeys Rayleigh distribution, and the average power decreases
exponentially at any time delay. Algorithms simulated in
FIGURE 3 are single-tap channel estimation algorithms
(LS-line, LS-spline) and CS based algorithms (MP, OMP,
EM-SBL, FM-SBL).

The performance evaluation metrics are the simulation
results of the output BER, channel mean square error and the
time consumption with SNR and pilot numbers. Where, the
runtime is obtained by tic-toc command of MATLAB.

The theoretical value and several channel estimation curves
are studied and their performance is compared, where the
theoretical value curves are affected only by the SNR and
rather than the Doppler channel. From FIGURE 3 (a) and (b),
it can be seen that all BER and channel MSE keep decreasing
with the increase of SNR. Among them, LS algorithm has
the worst performance, MP and OMP algorithms are the
next best, and EM-SBL and FM-SBL algorithms have the
best results and are closest to the theoretical values. Since
the EM-SBL algorithm uses an iterative algorithm based on
expectation maximization, the optimal channel estimation
results can be obtained. However, under the condition of
almost the same BER, the calculation speed of the FM-SBL
algorithm is significantly faster than that of the EM-SBL
algorithm.

The simulation performance in FIGURE 4 has an over-
all similar trend to FIGURE 3. The comparison between
FIGURE 3 and FIGURE 4 reveals that the BER and MSE
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FIGURE 3. The simulation performance comparison in slow time-varying
channel.

performance of channel estimation algorithms under fast
time-varying channels is slightly less desirable than under
slow time-varying channels. However, the performance of
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the SBL algorithm is still the best. The effectiveness and
robustness of the algorithm is further verified by both slow
and fast time-varying channel.

FIGURE 5 shows that the FM-SBL algorithm has a
very high operational efficiency, and the average results
of 1000 MATLAB simulations under the same condition
settings are 1.27s for EM-SBL, while only 0.12s for FM-
SBL. Secondly, by comparing the upper and lower horizontal
variables, it is found that the time consumption required
for channel estimation is insensitive to the change of SNR.
As the SNR decreases, the time consumption is basically
smooth and does not change much overall. While as the
number of pilot N, increases, the time consumption of each
algorithm increases significantly. It is further found that the
more the number of leads, the more obvious is the advantage
of FM-SBL algorithm, which reflects the superiority of this
algorithm in large-scale UWA communication applications.

B. SEA TRIAL EXPERIMENT AND ANALYSIS

The sea trial data were collected on November 24, 2021,
in Qingdao sea, a water depth of 16.7 m. The sea trial tested
the self-developed motherboard, as shown in FIGURE 6. The
transmitter point was anchored with a depth of 5 m. The
receiver sensor depth was 7 m. The transmitter and receiver
points were separated by 3-5 nautical miles in increasing
order. The sea wind was 3~4 degrees. The wave height
was 1~1.5 m.

The transmission interval per frame is 1 second,
with 8 OFDM blocks per frame. The channel is estimated
block-by-block of OFDM in single frame. The parameters of
the sea trial OFDM system are set differently from the simu-
lation parameters, and some of them are shown in Table 1.

The channel is judged to be a fast or slow time-varying
channel based on the different performance of each frame
signal in terms of delay and gain. The evaluation metrics such
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as channel impulse response (CIR), channel delay offsets of
blocks, bit error rate (BER) and hardware power consumption
evaluation of the algorithm are given below.

7834

FIGURE 6. Hardware of UWA communication system.

TABLE 1. Parameters of OFDM UWA communication system.

Bandwidth Subcarrler Modulation Signal length
spacing mode
6kHz 5.8594Hz QPSK 256ms
Carrier Sampling Pilot interval Cyclic prefix
frequency frequency
11kHz 48kHz 3 42.67ms

FIGURE 7 shows the channel impulse response of 8 con-
secutive blocks in one frame. The channel impulse response
estimated by each algorithm shows a relatively sparse char-
acteristic with basically a number of stable and obvious mul-
tipaths from O to 7 ms, and the energy of multipaths is weaker
and tends to 0 after 8 ms.

Define the delay offset between the I/th block and the
(I + 1)th block in kth frame data as

Toserk, D=t + D) —t(D k, I =1---7. a7

The calculation results for the delay offsets of 7 frames are
shown as FIGURE 8.

It can be seen from FIGURE 8 that in the fourth frame of
sea trial data, the channel delay offsets between blocks are
the largest, exceeding 0.4 ms. The channel delay offsets in
the second frame and the seventh frame are next, and the rest
are relatively small. Some points can be summarized that for
frames (2, 4 and 7), the channels can be considered to be fast
time-varying according to FIGURE 8, while the others can be
inferred as slow time-varying channel.

FIGURE 9 is the BER performance comparison of three
algorithms for seven frame sea trial data. The BER of EM-
SBL and FM-SBL algorithm are almost close. Further analy-
sis has been conducted on the data collected from the sea trial
in Qingdao. No matter the fast or slow time-varying channel,
the BER of EM-SBL and FM-SBL are both robust and better
than that of OMP.

The hardware of the algorithm is implemented on a DSP
by Code Composer Studio. Performance evaluation indica-
tors include the clock cycle, the average power of hardware
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operation, and the total power consumption. The clock period
is recorded by the Time Samp Counter (TSC) on Code
Composer Studio, the power of the hardware operation is
measured by a DC regulated power supply and a digital
multimeter, from which the total power consumption is cal-
culated. The hardware utilization and power consumption are
shown in Table 2. It can be seen that the FM-SBL algorithm
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EM-SBL

delay/ms

15

FM-SBL

20 25
delay/ms

TABLE 2. Hardware evaluation indicators.

Algorithm  Clock cycle Power /mW Total energy
consumption /mJ
EM-SBL 75240000 199 0.33
FM-SBL 12541570 200 0.055

requires less time and consumes only 16.67% of the time
and power consumption of the SBL algorithm with similar
average power.

V. CONCLUSION

This paper discusses the performance and efficiency of chan-
nel estimation, and proposes a fast sparse Bayesian learning
algorithm for underwater communication channel estimation.
The FM-SBL algorithm improves the operation efficiency
by 16.7% compared with EM-SBL algorithm. Meanwhile,
it has more accurate channel estimation performance than
LS, MP, OMP algorithms and the similar performance to
that of EM-SBL. Simulation results show that the algorithm
has good performance and strong robustness in time-varying
channel estimation. In addition, experiment verifies hardware
resources and chip power consumption are greatly reduced.
The computational efficiency can be greatly improved, which
is very suitable for energy-saving and large-scale underwater
acoustic communication.
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