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ABSTRACT The fifth-generation (5G) system utilizing millimeter wave is available in Japan, but more
bandwidth is demanded by the mobile phone operators to accommodate the demand for high data rate.
Allocation of the vacant spectrum is impossible due to the past spectrum allocation to other radio systems.
For example, 24.25-27.5 GHz has been allocated for the fixed wireless access (FWA) and license exempt
small power data communication system in Japan. Although Japanese government is considering to license a
part of the band for 5G under the spectrum sharing scheme, the coexistence design is quite challenging due to
unavailable operation data of such systems in a form of database for the coexistence study. For this purpose,
this paper introduces a maximum-likelihood estimator (MLE), which utilizes the angle-of-arrival (AoA) and
received power of the line-of-sight (LOS)/diffraction paths as well as the map database to simultaneously
estimate these unknown parameters via the spectrum sensing. It was applied to the measurement data
obtained from a sub-urban environment where a commercial fixed wireless access system with similar
operational parameters is under operation. Its performance was evaluated for a different number of receiver
(Rx) points. The results showed that the parameter estimation accuracy is proportional to the number of
receiver points. The distance and orientation errors of 45 m and 5 deg were achieved at 90th percentile
with 40 Rx points. Furthermore, the prediction performance of the effective isotropic radiated power (EIRP)
was decent, albeit a slight underestimation of the beamwidth.

INDEX TERMS Localization, maximum-likelihood estimator, millimeter wave, angle-of-arrival, spectrum
sharing.

I. INTRODUCTION
To accommodate the drastic increase of data traffic and
data-hungry wireless applications, the millimeter wave
(mmWave) bands with a massive number of antenna elements

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

and large available bandwidth are one of the key compo-
nents to realize the fifth generation (5G) communication
system [1], [2]. Although 24.25-27.5 GHz is allocated for
International Mobile Telecommunication (IMT) by Radio
Regulations (RR) to serve for 5G globally, these bands have
already been utilized by the incumbent fixed wireless sys-
tems such as fixed wireless access (FWA) [3], [4] and small
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power data communication system [5] in Japan. Nevertheless,
since the antennas used in these systems have a very high
gain and a narrow beamwidth, their coverage is concentrated
around the main beam. Thus, it is possible that 5G can share
the spectrum with those incumbents by installing 5G base
stations sufficiently away from their main beam regions.
To quantify this sufficiency, it is inevitable to estimate their
coverage area or spatial availability based on their position,
orientation, antenna pattern, and transmit power via the radio
propagation model [6]. Yet, these pieces of information are
sometimes not available or disclosed in the case of temporary
or license-exempt systems since they are not recorded in
the database. Hence, these parameters need to be estimated
before the evaluation of spatial availability.

A few studies have been published that propose a variety of
localization techniques for the purpose of spectrum sharing
scheme that make use of received signal strength (RSS) or
received signal strength indicator (RSSI) [7], [8], [9], [10],
[11], [12]. The advantages and disadvantages of these algo-
rithms are summarized in Table 1. Although the majority of
these methods were able to achieve good accuracy with low
computational complexity, they were only evaluated on sim-
ulated data. Thus, it is still an open question how they would
perform when using the real measurement data. Furthermore,
these studies used the assumption that the system operates in
the sub-6 GHz region and that the BS and MS antennas are
omni-directional. As a result, they should not be appropriate
for localization at mmWave bands because the antenna and
channel properties are widely different.

Recently, there have been several investigations of the
localization at mmWave bands due to its limited number
of significant specular paths, and wideband characteristics
which yield more precise angular and delay information
than that of lower frequency bands. Table 2 summarizes
the methods as well as their advantages and disadvantages
in mmWave bands. Some works examined the cooperative
localization in the ultra-dense-network and device-to-device
scenarios [13]. Still, many of them heavily focused on the
massive multiple-input and multiple-output (MIMO) local-
ization and orientation estimation, where the path parame-
ters such as the angle-of-arrival (AoA), angle-of-departure
(AoD), and time-of-arrival (ToA) could be accurately esti-
mated [14]. These path parameters and sometimes the
received signal strength indicator (RSSI) and environment
map were extracted and exploited for positioning in [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], and [29]. In contrast, the direct localization
using the channel properties was proposed in [30] and [31].
In other works, [32] and [33] estimated the vehicle location,
orientation, and environment using AoA, AoD, ToA, and
belief propagation method. In [34], [35], and [36], the loca-
tion of the mobile user, as well as the environment map, were
simultaneously estimated via the angle-difference-of-arrival,
imaging technique, and map-based channel model, respec-
tively. The re-configurable intelligent surface (RIS) was used

to enhance the localization accuracy in [37] and [38]. Ref-
erence [39] considered beamforming (BF) to improve the
positioning accuracy. Furthermore, machine learning tech-
niques such as neural networks were used for the localization
in [40], [41], and [42].

Although these past works provide effective localiza-
tion methods for different scenarios via a wide range of
techniques, they are difficult to be applied for the local-
ization of incumbent fixed systems for spectrum sharing
due to four main reasons. First, these terminals could be
installed anywhere and their location could be changed peri-
odically. Therefore, the fingerprinting or machine-learning-
based methods might not be usable as it is computationally
infeasible to conduct the training phase for all possible termi-
nal positions. Second, most algorithms assume that the ToA,
AoD, and channel matrix could be used for the localization by
exploiting the wideband and massive MIMO characteristics
of the transceivers. However, in the incumbent system, the
bandwidth is normally in the order of tens of MHz and it
is a single antenna [3], [4]. Thus, these variables could not
be utilized. Third, since some of these methods are derived
specifically for 5G scenarios, it may only be suitable in the
case where the base station is usually a few meters above
the ground and the coverage area is small. In contrast, the
fixed systems are usually installed at several meters above
the ground which causes the major propagation mechanisms
to be different. Thus, it is still an open question whether
these approaches could be successfully applied to the fixed
system case. Finally, although many of the massive MIMO
papers consider the position as well as the array orientation
estimation, these methods do not estimate both the antenna
pattern and the transmit power, which are unknown and thus
required for the availability estimation in the space domain.
To the best knowledge of the authors, the method that could
simultaneously estimate the location, orientation, transmit
power, and antenna pattern of the existing system for the
coexistence at mmWave bands have not been considered in
the open literature.

In light of these aforementioned issues of the previous
works’ applicability for fixed system localization, this paper
introduces the maximum-likelihood estimator (MLE), where
the location, antenna pattern, direction, and transmit power
are simultaneously estimated based on maximizing the joint
Gaussian probability density function of the azimuth of
arrival (AzoA), the elevation of arrival (EloA), and received
power of the paths. Since the over-roof top diffraction is
one of the major mechanisms when the transmitter (Tx) is
mounted at high elevation [43], [44], [45], [46], which is
normally the case of fixed systems, the diffraction paths are
considered as well as the line-of-sight (LOS) for the localiza-
tion. Similar to the conventional AoA-based MLE [47], [48],
the AzoA and EloA are calculated based on the geome-
try between Tx and receiver (Rx) positions, whereas the
received power is computed by using free space equation [49]
and uniform theory of diffraction (UTD) [50] for LOS and

VOLUME 11, 2023 6897



P. Hanpinitsak et al.: Maximum-Likelihood-Based Location, Orientation, Transmitted Power, and Antenna Beamwidth Estimator

TABLE 1. Advantages and disadvantages of localization methods in spectrum sharing scheme.

TABLE 2. Advantages and disadvantages of localization methods in mmWave bands.

diffraction paths, respectively. It is considered to be the
substantial extension of the authors’ work in [51]. How-
ever, in [51], only the LOS between Tx-Rx was assumed,
which is not realistic in the sub-urban or urban environment.

Furthermore, the antenna pattern estimation was not taken
into the account. The other contributions and enhancements
are divided into three points: First, from the angular power
spectrum of each Rx, two peaks with opposite direction
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FIGURE 1. Localization Model and Concept.

are estimated and their propagation mechanisms are distin-
guished using the KPowerMeans [52] clustering algorithm.
Second, not only the LOS power are computed, but also
the diffraction edge detection and calculation via UTD are
performed with the assistance of the map database. Finally,
the Jacobian matrix is derived, and the iterative Levenberg-
Marquardt (LM) [53] method is applied to optimize the joint
AzoA-EloA-received power likelihood function in a compu-
tationally efficient manner. The proposed method was eval-
uated and compared with the conventional MLE [47], [48]
using the outdoor sub-urban environment measurement. The
results implied that the performances normally increased as
the number of Rx points increased. Moreover, the proposed
MLEmostly improved the accuracy of the conventional MLE
in the vertical direction if there were steep diffraction paths
at some Rx points.

The rest of the paper is organized as follows. The proposed
localization model and algorithm are described in details in
Section II. The specifications of transmitter and receivers
as well as the measurement campaign and RT parameters
description are provided in Section III. In Section IV, the val-
idation of the proposed method and comparison with the con-
ventional MLE method were carried out. Finally, Section V
summarizes the key findings of this paper.

II. PROPOSED LOCALIZATION METHOD
A. MAXIMUM-LIKELIHOOD BASED LOCALIZATION AND
SIGNAL MODEL
Fig. 1 illustrates the localization model and concept where
the Tx or emitter is located at p =

[
px, py, pz

]T . Assuming
that it is mounted with the pencil-beam directional antenna
where its half-power beamwidth (HPBW) in the azimuth and
elevation plane are the same, the normalized antenna gain
envelope pattern in the dB scale adopted from the ITU-R
F.1336 model is expressed by [54]

GTx(φHPBW, φ, ψ) =

{
−12x2 , x < 1.152

−15 − 15 log10 x , 1.152 ≤ x,
(1)

where

x =
cos−1(cosφ cosψ)

φHPBW
, (2)

and φHPBW, φ, and ψ are the HPBW, azimuth and eleva-
tion angles, respectively. Its transmitted power is PT and
the direction of main beam is pointed at the azimuth and
elevation angles φTx and ψTx, respectively. The receiver is
placed at N different positions. The k-th receiver position is
depicted as rk =

[
rx,k , ry,k , rz,k

]T . Two types of receivers are
assumed: One utilizes the fan-beam antenna mounted on the
one-dimensional rotator [55]; the other exploits pencil-beam
antenna mounted on the two-dimensional rotator. These will
be called the first Rx system and second Rx system, respec-
tively. Two types of receivers are used for different purposes:
First Rx system is mainly used for the mobile sensor for
initial detection of Tx, while second Rx system is mainly
used for the fixed sensor for detail search of Tx direction.
The elevation gain pattern of the first system is GRx,1(ψ).
The maximum gain of the second system is GRx,2,max. The
number of positions for the respective receivers are N1 and
N2. System 1 records only the azimuth angle φ̃R,k , whereas
system 2 records both azimuth φ̃R,k and elevation angle ψ̃R,k .
P̃R,k denotes the peak received power. Two types of paths are
assumed: LOS and over-roof top diffraction. Define

q =

[
pT , φTx, ψTx,PT, φHPBW

]T
=
[
px, py, pz, φTx, ψTx,PT, φHPBW

]T (3)

as the vector of unknown Tx parameters to be estimated, the
signal models of the received angles at the k-th position can
be expressed by

φ̃R,k = φR,k (q)+ wϕ (4)

ψ̃R,k = ψR,k (q)+ wψ, (5)

where wϕ and wψ are the Gaussian distributed error with
zero mean and variance σ 2

ϕ and σ 2
ψ. φR,k (q) and ψR,k (q)

represent the calculated azimuth and elevation angle. In case
of LOS path, they are calculated from the geometry of p and
rk by [48]

φR,k (q) = tan−1
(
py − ry,k
px − rx,k

)
(6)

ψR,k (q) = sin−1
(
pz − rz,k
∥rk − p∥

)
(7)

In case of diffraction path, φR,k (q) calculation fol-
lows (6). However, ψR,k (q) has to be geometrically
obtained from rk and estimated edge location ek (q) =[
ex,k (q), ey,k (q), ez,k (q)

]T by

ψR,k (q) = sin−1
(
ez,k (q) − rz,k
∥rk − ek (q)∥

)
(8)

Similarly, the signal model of the received power in dB at
the k-th position can be written by

P̃R,k = PR,k (q)+ wP (9)
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where PR,k (q) is the calculated received power in dB to be
defined below. wP is the Gaussian error with zero mean and
variance σ 2

P . The received power PR,k in case of the first
system in dB is calculated by

PfR,k (q) = PT + GTx(φHPBW,

φT,k (q) − φTx, ψT,k (q) − ψTx)

− Lp,k (q) + GRx,1(ψR,k (q)), (10)

Similarly, for the second system, the received power in dB
is computed as

PsR,k (q) = PT + GTx(φHPBW,

φT,k (q) − φTx, ψT,k (q) − ψTx)

− Lp,k (q) + GRx,2,max, (11)

where φT,k (q) and ψT,k (q) are the azimuth of departure and
elevation of departure based on the Cartesian coordinate sys-
tem depicted in Fig. 1. In case of LOS, it is simply computed
by

φT,k (q) = φR,k (q) (12)

ψT,k (q) = −ψR,k (q). (13)

Note that since the xy coordinates of the Tx and Rx differ
by 180 degrees as shown in Fig. 1, the AzoA and azimuth of
departure of LOS paths are the same. In case of diffraction
paths, they are calculated from p and ek (q) by

φT,k (q) = tan−1
(
py − ey,k (q)
px − ex,k (q)

)
(14)

ψT,k (q) = sin−1
(
ez,k (q) − pz
∥ek − p∥

)
. (15)

From (10) and (11), Lp,k (q) is the loss due to propagation.
In case of LOS, it is computed based on free space path loss
in dB [49] by

Lp,k (q) = 10 log10

(
4π ∥p− rk∥

λ

)2

, (16)

where λ is the signal wavelength. In case of diffraction, it is
obtained from UTD [50] in dB by

Lp,k (q) = 10 log10

((
4πs′k (q)
λ

)2 sk (q)(s′k (q) + sk (q))

s′k (q)D
2
k (q)

)
(17)

where sk (q) = ∥ek (q) − rk∥ and s′k (q) = ∥p− ek (q)∥ are
the distance from edge to Rx and Tx, respectively. Dk (q) is
expressed by

Dk (q) =

∣∣∣F ( 4π
λ

s′k (q)sk (q)
s′k (q)+sk (q)

sin2
(
αk (q)
2

))∣∣∣
4π
√
λ
sin
(
αk (q)
2

) (18)

where

αk (q) = π − (βk (q) − β ′
k (q)) (19)

F(.) is the Fresnel integral. βk (q) and β ′
k (q) are the angle

between edge and Rx and Tx which is calculated by

βk (q) = 2π − cos−1
(
pz − ez,k (q)
∥ek (q) − rk∥

)
(20)

β ′
k (q) = cos−1

(
ez,k (q) − pz
∥ek (q) − p∥

)
(21)

From (4), (5), and (9), the vectorized model that include all
Rx points could be expressed by

φ̃R = φR (q)+ wϕ (22)

ψ̃R = ψR (q)+ wψ (23)

P̃R = PR (q)+ wP (24)

where φ̃R =

[
φ̃R,1, . . . , φ̃R,N

]T
, ψ̃R =

[
ψ̃R,1, . . . , ψ̃R,N2

]T
,

and P̃R =

[
P̃R,1, . . . , P̃R,N

]T
are the vectors of mea-

sured azimuth angle, elevation angle, and received power.
φR(q) =

[
φR,1(q), . . . , φR,N (q)

]T , ψR(q) =

[
ψR,1(q), . . . ,

ψR,N2 (q)
]T , and PR(q) =

[
PR,1(q), . . . ,PR,N (q)

]T are the
vectors of calculated azimuth angle in radian, elevation angle
in radian, and received power in dB. wϕ, wψ, and wP are the
vectors of Gaussian errors.

The total signal model could then be constructed by

z̃ = z(q) + w, (25)

where

z̃ =

[
φ̃R, ψ̃R, P̃R

]T
, (26)

z(q) =
[
φR(q),ψR(q),PR(q)

]T
, (27)

w =
[
wϕ,wψ,wP

]T
. (28)

The location of the Tx could be obtained by maximizing
the likelihood function as follows

q̂ = argmax
q
p(z̃; q), (29)

where

p(z̃; q) =
1√

(2π )M |K |
exp(

−
1
2
[z̃− z(q)]TK−1[z̃− z(q)]

)
(30)

where K = diag
(
σ 2
ϕ, .., σ

2
ϕ, σ

2
ψ, . . . , σ

2
ψ, σ

2
P , . . . , σ

2
P

)
.

Since the term in front of exponential is constant, the esti-
mator could be simplified by

AML,proposed(q) = [z̃− z(q)]TK−1[z̃− z(q)] (31)

q̂ = argmin
q

(
AML,proposed(q)

)
. (32)

In the subsequent sections, the procedure to obtain q̂ from
the angular power spectrum data will be explained in details.
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FIGURE 2. Illustration of two peak search.

B. PATH DETECTION AND PROPAGATION MECHANISM
IDENTIFICATION
Due to the narrow beamwidth of the Tx antenna which is
mounted several meters above the ground, it is thought that
there would be two major mechanisms observed at the Rx: 1.
LOS or diffraction, 2. Backscattering from the opposite build-
ing. Thus, in the first step, two peaks with opposite direction
are identified. Fig. 2 illustrates the two peak search method.
Assuming that the angular power spectrum of the first system
and second system at the k-th position are YR,1,k (φ) and
YR,2,k (φ,ψ), where φ and ψ are the azimuth and elevation
angle of the antenna, the first peak is found by

 φ̃R,1,k = argmax
φ

(
YR,1,k (φ)

)
System 1

[φ̃R,1,k , ψ̃R,1,k ] = argmax
φ,ψ

(
YR,2,k (φ,ψ)

)
System 2

(33)

Then, the first peak power is found by{
P̃R,1,k = YR,1,k (φ̃R,1,k ) System 1
P̃R,1,k = YR,2,k (φ̃R,1,k , ψ̃R,1,k ) System 2

(34)

To find the second peak with opposite direction, the
azimuth angle is limited by extending the angle range from
φ̃R,1,k − 90◦ to φ̃R,1,k + 90◦ as shown in Fig. 2. Then, the
second peak is searched outside this range, which is expressed
by φ̃R,2,k = argmax

φ∈B

(
YR,1,k (φ)

)
System 1

[φ̃R,2,k , ψ̃R,2,k ] = arg max
φ∈B,ψ

(
YR,2,k (φ,ψ)

)
System 2

(35)

where B is the set of angles outside the range [φ̃R,1,k −

90◦, φ̃R,1,k + 90◦].
Similar to the first peak, the second peak power is then

computed by{
P̃R,2,k = YR,1,k (φ̃R,2,k ) System 1
P̃R,2,k = YR,2,k (φ̃R,2,k , ψ̃R,2,k ) System 2

(36)

Inspired by [56] and [57], a more precise angle and peak
power could be found by interpolating themeasured data with
the normalized antenna gain pattern as shown in Fig. 2. This
is done by fitting the few angular bins around the peak in the
least square way [57]. To be exact, three points are consid-
ered for system 1: φR,max − 1φ, φR,max, and φR,max + 1φ,
where φR,max and 1φ are the peak value and angular steps
in azimuth domain. For system 2, in azimuth-elevation angle
pairs, five points are considered: (φR,max − 1φ,ψR,max),
(φR,max, ψR,max), (φR,max +1φ,ψR,max), (φR,max, ψR,max −

1ψ), and (φR,max, ψR,max+1ψ), where ψR,max and1ψ are
the peak value and angular steps in elevation domain.
In the next step, the LOS/diffraction peaks are distin-

guished from backscattering peaks using clustering. Fig. 3
shows the concept. If two opposite peaks from several Rx
points are clustered, two distinct groups should be observed
as the AoA of the peaks with the same mechanism should
be similar. To identify the group and separate them from
each other, clustering is needed. Similar to the authors’ work
in [58], the KPowerMeans clustering algorithm [52] with
deterministic initialization method [59] is adapted and uti-
lized. Firstly, the two peaks of all Rx points are stacked into
matrix X by

X =



cos φ̃R,1,1 sin φ̃R,1,1
...

...

cos φ̃R,1,N sin φ̃R,1,N
cos φ̃R,2,1 sin φ̃R,2,1

...
...

cos φ̃R,2,N sin φ̃R,2,N


(37)

Note that the directional cosine is used to avoid the
angular periodicity issues [60]. Let xk be the k-th row of
matrix X , which denotes the parameter vector, and Pk be
the corresponding peak power, KPowerMeans algorithm is
based on minimizing the total power-weighted intra-cluster
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FIGURE 3. Discrimination of propagation mechanisms using clustering.

distance D by

D = min
∑
k

Pk · ∥xk − ck∥ , (38)

where ck is the cluster centroid of k-th data which is the
power-weighted mean of the parameter vector that belongs
to that cluster. It should be noted that the Euclidean dis-
tance is used instead of the multipath component distance
used in [52]. Furthermore, the number of clusters is fixed
to two which corresponds to LOS/diffraction and backscat-
tering. Thus, the quality evaluation of the clustering results
at different cluster number by cluster validation indices
is not required. The rest of the algorithm implementation
is the same as [52]. After the clusters are obtained, the
LOS/diffraction cluster could be identified simply by choos-
ing the cluster with a higher total power.

C. COARSE SEARCH AND DIFFRACTION EDGE DETECTION
After the LOS/diffraction cluster is obtained, it is utilized
for the initialization, coarse search and diffraction edge
detection. However, this cluster may contain outliers that
correspond to the scattering in the horizontal plane. These
outliers may cause errors since the received power calcu-
lation does not consider the horizontal scattering. There-
fore, they should first be removed from the analysis by two
steps. Firstly, assuming that the KPowerMeans clustering
algorithm yields a LOS/diffraction cluster that correspond
to NL receiver positions r1, r2, . . . , rNL with the azimuth
angle φ̃R,1, φ̃R,2, . . . , φ̃R,NL and received power in dB scale
P̃R,1, P̃R,2, . . . , P̃R,NL , the initial Tx main beam azimuth
direction is estimated by

φ̂T,initial =

∑NL
k=1 10

P̃R,k · φ̃R,k∑NL
k=1 10

P̃R,k
. (39)

Secondly, the points where the azimuth angle is between
φ̂T,initial − δϕ and φ̂T,initial + δϕ are included in the next step,
where δϕ is the angle threshold.

For simplicity, the initial main beam direction in elevation
is set to zero.

ψ̂T,initial = 0. (40)

Next, the initial Tx position is attained by using conven-
tional MLE [47], [48] by

p̂initial,MLE = argmin
p
(AML(p)), (41)

where AML(p) is the conventional ML cost function [47],
[48], which is expressed by (57) in Appendix B. It should
also be noted that the iterative LM method [53] is used to
optimize this cost function in which pseudo-linear estimator
(PLE) [47], [48] (see Appendix A) is used as the initial value.

Subsequently, the coarse search with diffraction building
edge detection is performed to initialize the Tx parameters
in q for the fine search. The edge detection requires the
map database which will be explained in the next Section.
The flow chart of the coarse search and edge detection is
shown in Fig. 4. In the first step, the coarse search grid of
pz, PT, and φHPBW are created. Note that the coarse grids
of horizontal positions (px and py) are not created, rather
they are obtained from conventional MLE using (41) to save
simulation time. This is because it is found out that conven-
tional MLE had sufficient horizontal positions localization
accuracy. Secondly, a set of Tx parameters in q is created
from (39)-(41) and the values in the coarse search grids of
three parameters explained above. At each Rx point, all the
buildings that intersect with the straight line from Tx to Rx
are identified as shown by the orange buildings in Fig. 5.
If there is no building that intersects with this straight line,
only the LOS power is calculated using free space (16).
Otherwise, assuming that at the k-th Rx, there is Lk (q) number
of intersected building edges, and the l-th edge is at the
position el(q) = [ex,l(q), ey,l(q), ez,l(q)]T , one edge which
has the maximum height is chosen as illustrated by the orange
building with purple edge in Fig. 5.

l̂k (q) = argmaxl∈{1,2,...,Lk (q)}ez,l(q) (42)

êk (q) = el̂k (q)(q) (43)

The edge with the maximum height is chosen because the
diffraction loss should be dominated by that edge. Then, the
diffraction power (17) and elevation angle (8) is computed
from the estimated edge as well as the LOS power (16) and
elevation angle (7). Finally, either the diffraction or LOS path
is chosen based on the one that minimizes the power error
(system 1) or joint power and elevation angle error (system 2),
which is expressed by

εk (q) =


(
P̃R,k−PR,k (q)

)2
σ 2P

System 1(
P̃R,k−PR,k (q)

)2
σ 2P

+

(
ψ̃R,k−ψR,k (q)

)2
σ 2ψ

System 2,

(44)
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FIGURE 4. Flow chart of coarse search and edge detection.

FIGURE 5. Illustration of diffraction edge selection.

where PR,k (q) and ψR,k (q) are the received power and ele-
vation angle calculated from either diffraction path or LOS
path.

After these steps are calculated for all the Rx points, the
ML cost function AML,proposed(q) is calculated based on (31).
The above-mentioned steps are repeated for every possible

sets of Tx parameters. Finally, the Tx parameters and its cor-
responding building edges which minimizes AML,proposed(q)
are chosen by

q̂initial = argmin
q

(
AMLE,proposed(q)

)
(45)

êinitial,k = êk (q̂initial). (46)

D. ITERATIVE FINE SEARCH
After the coarse search with edge detection is performed, the
LM algorithm [53] is applied, where q is iteratively updated
from its previous position for the predetermined number of
times. The LM algorithm is expressed by

q̂i+1 = q̂i + γ
(
JT (q̂i)K

−1J(q̂i) + aI
)−1

× JT (q̂i)K
−1 (z̃− z(q̂i)

)
(47)

where i and γ are the iteration number and step size, respec-
tively. Therefore, q̂1 = q̂initial. J(q̂i) is the Jacobian matrix
evaluated at q̂i, which is depicted by

J(q) =



∂φR(q)
T

∂px
∂ψR(q)

T

∂px
∂PR(q)T
∂px

∂φR(q)
T

∂py
∂ψR(q)

T

∂py
∂PR(q)T
∂py

∂φR(q)
T

∂pz
∂ψR(q)

T

∂pz
∂PR(q)T
∂pz

∂φR(q)
T

∂φTx

∂ψR(q)
T

∂φTx

∂PR(q)T
∂φTx

∂φR(q)
T

∂ψTx

∂ψR(q)
T

∂ψTx

∂PR(q)T
∂ψTx

∂φR(q)
T

∂PT
∂ψR(q)

T

∂PT
∂PR(q)T
∂PT

∂φR(q)
T

∂φHPBW

∂ψR(q)
T

∂φHPBW

∂PR(q)T
∂φHPBW



T

(48)

The derivation of each element of the Jacobian matrix is
provided in the Appendix C. It is also to be noted that, for
the sake of simplicity, the estimated edge of each Rx position
êinitial,k is assumed to be unchanged for each iteration of the
fine search.

III. MEASUREMENT IN THE SUB-URBAN ENVIRONMENT
AND DATA ANALYSIS PARAMETERS
To validate the proposed localization method, the measure-
ment campaign was conducted in the sub-urban environ-
ment in the Kanto region of Japan. The specifications of
the transceivers are given in Table 3. The transmitter is a
commercial fixed wireless station operating at the center
frequency of 26 GHz. It is mounted at 40 m height above
the ground. Two receivers were utilized as shown in Fig. 6.
System 1 was the 16 × 2 fan-beam array antenna mounted
on the stepping motor. It has a HPBW of 4.5 and 30 degrees
in the horizontal and vertical plane, respectively. The motor
rotated the antenna from one position to the next in azimuth
direction with a precise 3.6 angular step. At each position,
the signal was measured by the hand-held spectrum analyzer
(R&S FPH26) with the resolution bandwidth of 1 MHz.
Furthermore, the 22 dBi gain low noise amplifier (LNA) was
connected to increase the received signal power. In the case
of system 2, 16×16 pencil-beam array antenna was mounted
on the 3D rotation system. It has a HPBW of 4.5 degrees.
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TABLE 3. Transceiver specifications.

FIGURE 6. Receiver systems ((a) System 1, (b) System 2).

The signal was measured continuously using the wideband
monitoring receiver (R&S ESME) and microwave converter
(R&S MC40) with the demodulation bandwidth of 120 kHz.
The azimuth stepwas approximately 2.8 degrees. In the eleva-
tion direction, the precise 4.5 degree stepwas used.Moreover,
the 40 dBi gain LNA was connected to amplify the received
power. Antennas of systems 1 and 2 were mounted at the
height of 2 and 1.5 m, respectively

Fig. 7 shows the Tx position, and Rx routes. The mea-
surement site was a sub-urban hilly terrain environment that
mostly contains 2 to 3 story residential houses. The Tx was
on the base station with a height of 40 m above ground and
its main was pointed toward the southeast direction. The Rx
was moved on the streets and the signal was measured with
50 m interval. The total number of measurements points were
235 and the measurement was repeated three times at each
Rx position. Note that the positions significantly outside the
main beam were not measured as the signal power was below
the noise level. Moreover, the environment map could not be

FIGURE 7. Tx position and Rx routes.

TABLE 4. Data analysis parameters.

shown as it is considered as the confidential information by
the operator.

In the data analysis, the proposed MLE and conventional
MLE [47], [48] (see Appendix B) were applied to the mea-
surement data. Table 4 provides the parameters. To ensure
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FIGURE 8. Peak identification and clustering results ((a) NRx = 40, (b) NRx = 30, (c) NRx = 20). The red and green arrows represent the two peaks
that are categorized into two different clusters.

FIGURE 9. Rx points after outlier removal and the estimated position ((a) NRx = 40, (b) NRx = 30, (c) NRx = 20).

sufficient accuracy, only the points where the maximum
received power was at least 10 dB above the noise floor
were included in the analysis, where there were roughly
50 points that satisfy this criteria. During the analysis, the
positions of building edges are determined from the Zenrin
map database [61]. In Zenrin map database, building heights
from sea level are determined from the topographical data
released by Geospatial Information Authority of Japan, and
their 3D shapes are constructed from their 2D shapes and
number of floors information. In other words, buildings are
modeled as irregular prisms with constant horizontal cross
sections. Furthermore, the localization was run for 500 trials
to statistically see the overall performance of the localization
methods. The randomness for each run or sample was gener-
ated by uniformly choosing NRx = {40, 30, 20} out of 50 Rx
points for the localization. For each Rx point, one out of three
measurement repetitions were also chosen randomly.

IV. RESULTS AND DISCUSSION
A. PATH DETECTION AND MECHANISM IDENTIFICATION
Fig. 8 illustrates the peak identification and KPowerMeans
clustering results on the map of the first sample for different
number of Rx points. The circle marker represents Rx points
in which its face color depicts the maximum path gain. The
red and green arrows represent the two peaks that are cat-
egorized into two different clusters. As expected, these two
peaks mostly correspond to LOS, diffraction, or backscatter-
ing. Thus, when applying the clustering algorithm using the
estimated angle, LOS/diffraction and backscattering clusters

could be clearly distinguished in both measurement and RT
cases regardless of the number of Rx points. Though, as seen
from the plot, some outliers remain, which are thought to be
due to the horizontal scattering rather than LOS/diffraction.
Thus, the outlier removal as explained in Section II-C has to
be applied.

B. VALIDATION OF LOCALIZATION ACCURACY AND
COMPARISON WITH THE CONVENTIONAL METHODS
Fig. 9 depicts the Rx points after the LOS/diffraction cluster
extraction and outlier removal, and the estimated position
using conventional MLE, and the proposed method. It could
be seen that the LOS/diffraction clusters were correctly
extracted irrespective of the number of Rx points. Further-
more, outliers that correspond to horizontal scattering could
be mostly removed. Figs. 10 (a) and (b) show the CDF plot
of the horizontal distance and height error for all 500 Monte-
Carlo trials. From these results, three important points could
be discussed. First of all, in terms of 90th percentile, the
horizontal distance error of MLE and the proposed method
was comparable for both cases with around 42 m error for the
case of NRx = 40, implying that the horizontal position had
reached convergence via the conventional MLE. In contrast,
the height error had significantly improved from more than
200 m for the conventional MLE, to 45 m for the proposed
method. The reason was that there were few Rx points from
the measured data where the steep diffraction with a large
elevation angle occurred from the houses with triangular roof
shapes. Since the conventional MLE interpreted them as LOS
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FIGURE 10. Distance error of the proposed and conventional MLE
((a) Horizontal distance error, (b) Height error (predicted value - actual
value)).

paths, the Tx height was estimated to bemuch larger as it tried
to compensate for the error caused by these steep diffraction
angles. On the contrary, these paths were correctly detected
as diffraction in the proposed method; thus, the Tx height
overestimation did not occur. Secondly, the standard devia-
tion of the height error of the conventionalMLEwas inversely
proportional to NRx. This is because those few Rx points
with steep diffraction could be better compensated by other
Rx points with small elevation angles when NRx was large.
However, in the case of the proposed method, the standard
deviation was relatively smaller and was almost independent
of NRx since the diffraction was taken into account. Finally,
the horizontal position detection accuracy was proportional
to NRx. This may be due to the few remaining Rx points with
horizontal scattering paths which are more likely to cause
erroneous results at small NRx.

C. VALIDATION OF TX DIRECTION AND ANTENNA
PATTERN ESTIMATION ACCURACY
Fig. 11 illustrates the CDF plot of the Tx orientation error of
the proposed method. Similar to the distance error case, the
angle was better predicted at larger NRx, where the absolute
azimuth and elevation errors at NRx = 40 was smaller
than 5 and 3 deg, respectively, for 90% of the time. This

FIGURE 11. Tx angle error of the proposed method ((a) Azimuth,
(b) Elevation (predicted value - actual value)).

indicated that the proposed method could estimate the Tx
direction accurately given that the number of receiver points
are sufficient.

Furthermore, Fig. 12 depicts the antenna pattern estimation
performance in terms of normalized equivalent isotropically
radiated power (EIRP) at different Monte-Carlo trials. The
normalized EIRP is defined as the ratio between the EIRP
estimated from the MLE and the maximum actual EIRP of
the Tx antenna. As expected, the results showed that the
antenna EIRP accuracy increased with the increase of NRx
as the fluctuation of the results over different Monte-Carlo
trials became smaller. Nevertheless, even at NRx = 40, the
HPBW was slightly smaller than the actual HPBW. These
inaccuracies might be caused by the received power dis-
crepancies between the calculated and measured values as
the actual measurement environment and the Zenrin map
database were different. In particular, the shadowing caused
by trees, electrical poles, and small objects were not included
in the calculation. Another reason is that actual buildings
have complex shapes, whereas the building shapes in Zenrin
are assumed to be irregular prisms. Moreover, the heights
of those buildings are determined from the floor number
information, rather than the actual heights, which may caused
height inaccuracies. Thus, it might be possible to improve
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FIGURE 12. EIRP of the Tx antenna ((a) NRx = 40, (b) NRx = 30, (c) NRx = 20, (d) Actual pattern and
modeled pattern using ITU-R F.1336 model).

the EIRP prediction accuracy via improving the details of the
map database.

V. CONCLUSION
In conclusion, the ML-based transmitter location, direction,
power, and antenna pattern estimation method for spectrum
sharing at the 26 GHz band had been introduced. This method
optimized the joint PDF of the received azimuth angle, eleva-
tion angle, and power, which was either calculated by the free
space for the LOS or UTD for the diffraction. It was applied
to the measured data and compared with the conventional
MLE. Three significant conclusions can be drawn. Firstly, the
proposed method mostly improved the localization accuracy
in the vertical direction in comparison to the conventional
MLE, whereas their performances in the horizontal direction
were indistinguishable. Secondly, the Tx direction could be
accurately estimated if the number of receiver points are
sufficient. Finally, the algorithm could roughly predict the
antenna envelope pattern with somewhat narrower HPBW
due to the difference between the Zenrin database and the
actual environment. Nevertheless, these analyses implied that
this algorithm should be applicable for localizing and estimat-
ing the sharable area of the fixed system operating at the high
place in the millimeter-wave bands.

APPENDIX
A. CONVENTIONAL PSEUDOLINEAR ESTIMATOR
In the PLE [47], [48], the 2D location of emitter could be
estimated from least squares by[

p̂x
p̂y

]
=

(
ATA

)−1
AT b (49)

where

A =

sin φ̃R,1 − cos φ̃R,1
...

...

sin φ̃R,N − cos φ̃R,N

 (50)

 rx(1) sin φ̃R,1 − ry(1) cos φ̃R,1
...

rx(N ) sin φ̃R,N − ry(N ) cos φ̃R,N

 (51)

Then, the z-coordinate of the emitter is found by

p̂z =
1
N2

N2∑
k=1

(
rz,k +

∥∥∥∥[px − rx,k
py − ry,k

]∥∥∥∥ tan ψ̃R,k

)
(52)

Notice that both system 1 and system 2 were used to calcu-
late (49), while only system 2were exploited to compute (52).

B. CONVENTIONAL MAXIMUM LIKELIHOOD ESTIMATOR
In the conventional MLE [47], [48], the total signal model is
constructed by

ỹ = y(p) + w2 (53)

ỹ =

[
φ̃R, ψ̃R

]T
(54)

y(p) =
[
φR(p),ψR(p)

]T (55)

w2 =
[
wϕ,wψ

]T (56)

Assuming that K2 = diag
(
σ 2
ϕ, .., σ

2
ϕ, σ

2
ψ, . . . , σ

2
ψ

)
, the

MLE could be derived by

AML(p) = [ỹ− y(p)]TK−1
2 [ỹ− y(p)] (57)

p̂MLE = argmin(AML(p)) (58)
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C. JACOBIAN MATRIX DERIVATION
The Jacobian matrix is calculated by

J(q) =



∂φR(q)
T

∂px
∂ψR(q)

T

∂px
∂PR(q)T
∂px

∂φR(q)
T

∂py
∂ψR(q)

T

∂py
∂PR(q)T
∂py

∂φR(q)
T

∂pz
∂ψR(q)

T

∂pz
∂PR(q)T
∂pz

∂φR(q)
T

∂φTx

∂ψR(q)
T

∂φTx

∂PR(q)T
∂φTx

∂φR(q)
T

∂ψTx

∂ψR(q)
T

∂ψTx

∂PR(q)T
∂ψTx

∂φR(q)
T

∂PT
∂ψR(q)

T

∂PT
∂PR(q)T
∂PT

∂φR(q)
T

∂φHPBW

∂ψR(q)
T

∂φHPBW

∂PR(q)T
∂φHPBW



T

(59)

Note that throughout this section, angles have the unit of
radian. Powers and antenna patterns have the unit of dB.
Based on the conventional method [47], [48], the derivative
of the azimuth and elevation angle of arrivals with respect to
position are expressed by

∂φR,k (q)
∂px

= −
sin
(
φR,k (q)

)√
(px − rx,k )2 + (py − ry,k )2

(60)

∂φR,k (q)
∂py

=
cos

(
φR,k (q)

)√
(px − rx,k )2 + (py − ry,k )2

(61)

∂φR,k (q)
∂pz

= 0 (62)

∂ψR,k (q)
∂px

= −
sinψR,k (q) cosφR,k (q)

∥p− rk∥
(63)

∂ψR,k (q)
∂py

= −
sinψR,k (q) sinφR,k (q)

∥p− rk∥
(64)

∂ψR,k (q)
∂pz

=
cos2 ψR,k (q)√

(px − rx,k )2 + (py − ry,k )2
(65)

Note that in case of diffraction, the derivative of ψR,k (q) is
zero as it is assumed that the edge position does not change
after the coarse search. In the case of φR,k (q), the derivative
follows the LOS case.

Then, the derivative of the azimuth and elevation angle
of arrivals with respect to Tx direction, HPBW and antenna
pattern slope are zero as they are independent of each other.

The derivative of the received power with respect to the
transmit power is one.

∂PR,k (q)
∂PT

= 1 (66)

The derivative of the received power with respect to
φHPBW, φTx, ψTx are as follows

∂PR,k (q)
∂φHPBW

=


24x

cos−1(cosφ′
k cosψ

′
k )

φ2HPBW
x < 1.152

15 log10(e)
x ·

cos−1(cosφ′
k cosψ

′
k )

φ2HPBW
x ≥ 1.152

(67)

∂PR,k (q)
∂φTx

=


24x√

1−cos2 φ′
k cos

2 ψ ′
k
sinφ′

k cosψ
′
k x < 1.152

15 log10(e)

x
√

1−cos2 φ′
k cos

2 ψ ′
k
sinφ′

k cosψ
′
k x ≥ 1.152

(68)

∂PR,k (q)
∂ψTx

=


24x√

1−cos2 φ′
k cos

2 ψ ′
k
cosφ′

k sinψ
′
k x < 1.152

15 log10(e)

x
√

1−cos2 φ′
k cos

2 ψ ′
k
cosφ′

k sinψ
′
k x ≥ 1.152

(69)

where φ′
k = φT,k (q) − φTx and ψ ′

k = ψT,k (q) − ψTx. x is
expressed by (2)

The derivative of received power with respect to px, py, and
pz of the first system is expressed by

∂PR,k (q)
∂px

=
∂GTx(φHPBW, φ′

k , ψ
′
k )

∂px
+
∂Lp,k (q)
∂px

+ G′

Rx,1(ψR,k (q))
∂ψR,k (q)
∂px

(70)

∂PR,k (q)
∂py

=
∂GTx(φHPBW, φ′

k , ψ
′
k )

∂py
+
∂Lp,k (q)
∂py

+ G′

Rx,1(ψR,k (q))
∂ψR,k (q)
∂py

(71)

∂PR,k (q)
∂pz

=
∂GTx(φHPBW, φ′

k , ψ
′
k )

∂pz
+
∂Lp,k (q)
∂pz

+ G′

Rx,1(ψR,k (q))
∂ψR,k (q)
∂pz

(72)

Note that for system 2, the last term of (70), (71), and (72)
are zero, since the antenna gain is assumed constant. For
the first system, the derivative of antenna pattern in dB with
respect to the elevation angle could be calculated by

G′

Rx,1(ψR,k (q)) =
GRx,1(ψR,k (q) +1ψ) − GRx,1(ψR,k (q))

1ψ

(73)

where 1ψ is a small angular step.
The partial derivative of the antenna pattern is expressed

by

∂GTx(φHPBW, φ′
k , ψ

′
k )

∂px
= −

∂PR,k (q)
∂φTx

∂φT,k (q)
∂px

−
∂PR,k (q)
∂ψTx

∂ψT,k (q)
∂px

(74)

∂GTx(φHPBW, φ′
k , ψ

′
k )

∂py
= −

∂PR,k (q)
∂φTx

∂φT,k (q)
∂py

−
∂PR,k (q)
∂ψTx

∂ψT,k (q)
∂py

(75)

∂GTx(φHPBW, φ′
k , ψ

′
k )

∂pz
= −

∂PR,k (q)
∂φTx

∂φT,k (q)
∂pz

−
∂PR,k (q)
∂ψTx

∂ψT,k (q)
∂pz

(76)

∂PR,k (q)
∂φTx

and ∂PR,k (q)
∂ψTx

could be found from (68) and (69).
In case of LOS, the derivative of φT,k (q) and ψT,k (q) could
simply be derived from (12) and (13) by

∂φT,k (q)
∂p

=
∂φR,k (q)
∂p

(77)

∂ψT,k (q)
∂p

= −
∂ψR,k (q)
∂p

(78)
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where p ∈
{
px, py, pz

}
. In case of diffraction, the derivative

is derived from (14) and (15) by

∂φT,k (q)
∂px

= −
sin
(
φT,k (q)

)√
(px − ex,k )2 + (py − ey,k )2

(79)

∂φT,k (q)
∂py

=
cos

(
φT,k (q)

)√
(px − ex,k )2 + (py − ey,k )2

(80)

∂φT,k (q)
∂pz

= 0 (81)

∂ψT,k (q)
∂px

= −
sinψT,k (q) cosφT,k (q)

∥p− ek∥
(82)

∂ψT,k (q)
∂py

= −
sinψT,k (q) sinφT,k (q)

∥p− ek∥
(83)

∂ψT,k (q)
∂pz

=
cos2 ψT,k (q)√

(px − ex,k )2 + (py − ey,k )2
(84)

The derivative of Lp,k (q) in case of LOS is derived from
the free space equation by

∂Lp,k (q)
∂px

=
20

∥p− rk∥2 ln10
(px − rx,k ) (85)

∂Lp,k (q)
∂py

=
20

∥p− rk∥2 ln10
(py − ry,k ) (86)

∂Lp,k (q)
∂pz

=
20

∥p− rk∥2 ln10
(pz − rz,k ) (87)

The UTD equation (17) could also be expressed by

Lp,k (q) = 10 log10 (Bk (q))+ 10 log10 (Ck (q)) , (88)

where

Bk (q) =
1(

s′2k (q) + s′k (q)sk (q)
)
sin2

(
αk (q)
2

) , (89)

and

Ck (q) =

∣∣∣∣F (4πλ s′k (q)sk (q)
s′k (q) + sk (q)

sin2
(
αk (q)
2

))∣∣∣∣2 . (90)

Thus, the derivative of (88) is expressed by

∂Lp,k (q)
∂p

=
10
ln10

(
B′
k (q)
Bk (q)

+
C ′
k (q)

Ck (q)

)
(91)

where p ∈
{
px, py, pz

}
. B′

k (q) and C
′
k (q) are the derivative of

Bk (q) and Ck (q), respectively. Therefore,

B′
k (q) = −

(
s′2k (q) + s′k (q)sk (q)

)−2
(2s′k (q) + sk (q))

×
∂s′k (q)
∂p

sin−2
(
αk (q)
2

)
−

1

(s′2k (q) + s′k (q)sk (q))

× sin−3(αk (q)/2) cos(αk (q)/2)
∂φ′

k (q)
∂p

, (92)

and

C ′
k (q) = 2

∣∣∣∣F (4πλ s′k (q)sk (q)
s′k (q) + sk (q)

sin2
(
αk (q)
2

))∣∣∣∣

·

∣∣∣∣F (4πλ s′k (q)sk (q)
s′k (q) + sk (q)

sin2
(
αk (q)
2

))∣∣∣∣′
·
4π
λ
sk (q)

[
∂s′k (q)
∂p

1
(s′k (q) + sk (q))

sin2
(
αk (q)
2

)
− s′k (q)(s

′
k (q) + sk (q))−2 ∂s

′
k (q)
∂p

sin2
(
αk (q)
2

)
+ s′k (q)(s

′
k (q) + sk (q))−1 sin

(
αk (q)
2

)
× cos

(
αk (q)
2

)
∂φ′

k (q)
∂p

]
. (93)

The derivative of Fresnel integral in (93) may be rigorously
derived. However, for simplicity, it is approximated using the
differential calculus principle.

|F(y)|′ =
|F(y+1y)| − |F(y)|

1y
(94)

where1y is a small step, which is set to 0.0001 in this paper.
The derivative of Tx to edge distance with respect to posi-

tion are

∂s′k (q)
∂px

=
px − ex,k (q)
∥p− ek (q)∥

(95)

∂s′k (q)
∂py

=
py − ey,k (q)
∥p− ek (q)∥

(96)

∂s′k (q)
∂pz

=
pz − ez,k (q)
∥p− ek (q)∥

(97)

The derivative of φ′
k (q) with respect to position are

∂φ′
k (q)
∂px

=
ez,k (q) − pz√
1 −

(
∂s′k (q)
∂pz

)2 ·
px − ex,k (q)

∥p− ek (q)∥3
(98)

∂φ′
k (q)
∂py

=
ez(k) − pz√
1 −

(
∂s′k (q)
∂pz

)2 ·
py − ey,k (q)

∥p− ek (q)∥3
(99)

∂φ′
k (q)
∂pz

=
1√

1 −

(
∂s′k (q)
∂pz

)2 ·

[
1

sk (q)

−
(ez,k (q) − pz)2

sk (q)3

]
(100)

Thus,C ′
k (q) can be found by substituting (94)-(100) to (93)
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