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ABSTRACT During the last decades, many studies have been dedicated to improving the performance of
neural networks, for example, the network architectures, initialization, and activation. However, investigating
the importance and effects of learnable paddingmethods in deep learning remains relatively open. Tomitigate
the gap, this paper proposes a novel trainable Padding Module that can be placed in a deep learning model.
The Padding Module can optimize itself without requiring or influencing the model’s entire loss function.
To train itself, the PaddingModule constructs a ground truth and a predictor from the inputs by leveraging the
underlying structure in the input data for supervision. As a result, thePaddingModule can learn automatically
to pad pixels to the border of its input images or feature maps. The padding contents are realistic extensions
to its input data and simultaneously facilitate the deep learning model’s downstream task. Experiments
have shown that the proposed Padding Module outperforms the state-of-the-art competitors and the baseline
methods. For example, the Padding Module has 1.49% and 0.44%more classification accuracy than the zero
padding when tested on the VGG16 and ResNet50.

INDEX TERMS Padding module, deep learning, neural networks, trainable padding.

I. INTRODUCTION
Deep Neural Networks (DNNs) have significantly improved
the performance of a wide range of computer vision tasks to
the extent of being comparable to or exceeding human-level
in many domains [1], such as image classification [2],
object recognition [3], and image segmentation [4]. DNNs
for computer vision have been iteratively improving in
different aspects such as network architecture [5], [6], [7],
[8], network initialization [9], [10], optimization [11], [12],
and activation [13], [14]. While it is intuitive that the salient
foreground of an input image can control the results of a deep
learning model [15], [16], researchers have also discovered
that the input’s borders and corners can dominate the model’s
performance recently [17], [18], [19]. The study on the
importance and effects of image borders remains relatively
open, and this paper focuses on a trainable padding method
that process image borders for deep learning models.

Padding refers to the technique of adding extra data to
the input’s borders so that the input’s width, height, or depth
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can be manipulated. Padding is widely used in Convolutional
Neural Networks (CNNs) to alter the output size of a
convolutional layer. Without padding, convolutional filters
will not process the input’s borders and the output size will be
reduced. The input size can be maintained with padding; we
add an extra border before the convolution so that the original
border can be processed [20].

Traditional padding techniques include zero padding,
replication padding, and reflection padding. The reflection
padding reflects the valid data over the borders; the replica-
tion padding uses the borders themselves as padding values;
the zero padding specifies the use of zeroes as padding values.
The replication and reflection padding methods extend the
input with duplicate contents that may not be realistic; hence,
they may destroy the original distribution [19]. The zero
padding may outweigh the replication and reflection padding
methods in terms of speed due to its computational simplicity.
The major drawback of the traditional methods is that they
are not dynamic. Thus, the padding values are always static
and not optimized during the model training in a way that
how they could be optimally predicted rationally to the input’s
borders.
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FIGURE 1. Five-pixel padding applied to a CIFAR-10 sampled image using
three different padding methods: A) the zero padding, B) the local mean
interpolation, and C) the proposed Padding Module.

More recently, padding methods have been studied aiming
at a more related and realistic extension of the original
input [18], [19]. For example, Liu et al. [18] proposed a
padding method using partial convolution. Nguyen et al. [19]
used a local mean of a slidingwindow over the input’s borders
so the local distributions at the borders before and after
the padding are consistent. These state-of-the-art padding
methods outperformed the traditional padding in several tasks
such as image classification, image segmentation, and image
style transfer. However, the major disadvantage of the state-
of-the-art padding methods is that they are not trainable: the
padding contents are still not optimized.

In this paper, we propose a trainable Padding Module that
can be inserted into selected positions of a deep learning
model to learn how to pad its inputs. The PaddingModule can
be trained simultaneously with a deep learning model, but,
it is a self-learner in a way that will not require or influence
the model’s entire loss function. During the training, the
Padding Module internally constructs a ground truth from the
input’s actual borders and trains a predictor considering the
neighboring areas. The trained Padding Module can produce
plausible results, as shown in Figure 1. The advantages of our
work can be summarized as three-fold:
• The proposed Padding Module introduces a trainable
method that automatically pads its inputs.

• The Padding Module extends its input with realistic new
data that are related to the original data.

• The Padding Module improves the performance of
a downstream task of a deep learning model and
outperforms the state-of-the-art competitors, e.g., clas-
sification.

The remainder of this paper is organized as follows.
In Section II, we review the related work that addressed
the padding effects on the neural networks performance and
discuss how the current study fills the gap in the related
work. Section III discusses our approach for the Padding
Module followed by evaluation results in Section IV. Finally,
Section V concludes with the discussion on evaluation and
highlights some of the future work in this sector.

II. LITERATURE REVIEW AND RELATED WORK
Many studies have tried to improve the performance of
CNNs models from network architecture [13], [14], [21],
[22], different variants of optimization [11], [12], [23],

activations [10], [24], [25], [26], regularization methods
[27], [28] and so no. However, little attention has been paid
to investigating the padding schemes during the convolution
operation. To assist a kernel, i.e., features extractor, in extract-
ing important features during image processing in CNNs,
padding layers can be added to visit pixels of the images
around the corners more times, and then increase accuracy.
The previous padding methods are presented as follows:
Section II-A presents the performance improvement of neural
networks; Section II-B introduces the improvement of space
design; and Section II-C describes our contributions.

A. PERFORMANCE IMPROVEMENT OF NEURAL
NETWORKS
Several studies have proposed padding methods to improve
the performance of the neural networks [17], [18], [19].

Innamorati et al. [17] addressed the importance of the
data at the borders of the input by proposing a convolution
layer that dealt with corners and borders separately from
the middle part of the image. They specifically designed
filters for each corner and border to handle the data at the
boundaries, including upper, lower, left, and right borders.
The boundary filters used in the convolution were jointly
learned with the filter used for the middle part of the image.
However, the main issue of this study is that the number of
filters used to deal with the boundaries increases linearly with
the size of the receptive field.

Also, Nguyen et al. [19] proposed a padding method that
could keep the local spatial distribution of the padded area
consistent with the original input. The proposed method
used the local means of the input at the borders to produce
the padding values; they proposed two different variants of
the paddingmethod:mean-interpolation andmean-reflection.
Both variants used filters with static values, based on the
receptive field, in the convolution operation that is supposed
to yield the padding valuesmaintaining the same distributions
as the original borders. However, the main issue with this
method is that they are not learnable.

Liu et al. [18] proposed a padding layer that uses a
partial convolution that mainly re-weighted the convolution
operation based on the ratio of the number of parameters in
the filter to the number of valid data in the sliding window.
In other words, they dealt with the padded area as hole areas
that need to be in-painted, while the data coming from the
original image were seen as non-hole areas. The main issue
of this study is that the padding process is not learnable.

B. IMPROVEMENT OF SPACES DESIGN
Also, some studies addressed the importance of the padding
and data at the boundaries in the semantic representation
learning and converting 360-degree space to 2-dimensional
(2-D) space respectively [29], [30], [31].

Cheng et al. [31] showed the importance of the padding
method when they converted the 360-degree video to
2-dimensional space. They converted the video to six faces.
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Then, they used the reflection padding to connect them
to form the 2-D space. The reflection padding naturally
connected the faces compared to the zero-padding, which
caused discontinuity.

Interesting works were provided by Islam et al. [29], [30]
in which they showed the importance of zero padding along
with the data at the borders in encoding the absolute position
information in the semantic representation learning. They
showed that the zero padding and the boundaries drove the
CNN models to encode the spatial information that helped
the filters where to look for a specific feature; the spatial
information was eventually propagated over the whole image.

C. OUR CONTRIBUTIONS
The padding methods and their effects on a CNN model’s
performance are still open areas for researchers to investigate;
hence, it is worth proposing new padding methods that could
improve the performance of the CNN models. We propose
a novel padding method, Padding Module, that could
realistically extend the input with related data. It learns how
to pad the input by using the inputs’ borders as a ground
truth and the neighboring areas of the borders as a predictor.
Then, it uses a local loss function such asMean Squared Error
(MSE) and updates the filters using the local differentiation
of the loss function with respect to the Padding Module’s
filters. The following section explains the implementation of
the Padding Module.

III. THE PROPOSED PADDING MODULE
This paper presents the Padding Module, a learnable padding
method that can pad the input with related and realistic
padding, as shown in Figure 1. The Padding Module
can be used as a substitute for other padding methods
in the convolution layer, such as the zero padding, the
replication padding, and the reflection padding. This section
shows how the padding procedure (Section III-A) and the
backpropagation (Section III-B) of thePaddingModulework.

A. PADDING PROCEDURE
Algorithms 1 and 2, respectively, give an overview of
the forward pass and the back-propagation of the Padding
Module. The Padding Module first constructs a ground truth
and a predictor from the input ( shown in step 1 to step 3 in
Algorithm 1 and explained in Sections III-A1 and III-A2).
Then, the Padding Module uses the filters being learned to
produce the actual padding values using the input’s borders
as a predictor ( shown in steps 4 to 13 in Algorithm 1 and
explained in Section III-A4). Finally, the Padding Module
uses the MSE as a loss function to compute the loss value
and updates the filters during the model’s back-propagation
( shown in steps 1 to 2 in Algorithm 2 and explained in
Sections III-A3 and III-B).
The Padding Module can pad the original input with any

padding size, (e.g., one-pixel, two-pixels, etc). Indeed, the
padding process in the Padding Module is iterative ( shown in
steps 4 to 13 in Algorithm 1). Assume the required padding

Algorithm 1 Forward Pass
Input: M r

c , size, where r and c are the dimensions of a
matrix, and size is the padding size.

Output: M r ′
c′ , where r

′
= r+2× size, and c′ = c+2× size.

1: T ← target(M r
c ) /* as in Eq.1 */

2: N ← neighbors(M r
c ) /* as in Eq.2 */

3: P← padz(padr (N )) /* as in Eq.3 */
4: M r ′

c′ ← M r
c /* initial state forM r ′

c′ */
5: while size ̸= 0 do
6: Nout ← borders(M r ′

c′ ) /* as in Eq.6 */
7: Pout ← padz(padr (Nout)) /* as in Eq.3 */
8: O← fθ (Pout) /* as in Eq.7 */
9: M r ′+2

c′+2 ← O0//padz(M r ′
c′ )//O

1

10: M r ′+2
c′+2 ← sides((O2)T ,M r ′+2

c′+2 , (O3)T ) /* as in Eq.8
*/

11: M r ′
c′ ← corners(M r ′+2

c′+2 ) /* as in Eq.9 */
12: size← size− 1
13: end while
14: returnM r ′

c′

Algorithm 2 Back Propagation

Input: Gr
′

c′ , where c
′ and r ′ are the same dimensions of the

output of the forward pass in Algorithm 1.
Output: Grc, where c and r are the same dimensions of the

input of the forward pass in Algorithm 1.
1: Compute the local gradients. /* as in Eq.5 */
2: Update the filter weights
3: Grc ← strip(Gr

′

c′ ) /* as in Eq.10 */
4: return Grc

size is three pixels, the padding process will iterate three times
as follows: (1) padding the original input with one-pixel along
all the four borders; (2) padding the output of the 1st iteration
with one-pixel along all the four borders; and (3) padding
the output of the 2nd iteration with one-pixel along all the
four borders. Here, to easily explain our method, a simple
case of padding process was presented here, e.g., one-pixel
padding. Also, the Padding Module is assigned filters as
many as the number of channels in the input as explained
in Section III-A3. Then, we explain the padding process
considering a single channel. Here, the same procedure
is separately applied to each channel in case of multiple
channels.

1) GROUND TRUTH T
The Padding Module structures the ground truth T by
extracting the input’s borders and stacking them upon
each other vertically to form a four-row matrix. However,
to stack the left and right borders vertically in T , they are
transposed from column vectors to row vectors. Formally,
given M r

c as an original input with r and c as the number
of rows and columns respectively; henceforth, superscripts
and subscripts represent the indexes in the row-wise traversal
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FIGURE 2. An example to illustrate the steps 1-3 in Algorithm 1. On the left: the input Mr
c with size of (6, 6) pixels; the superscripts are the

indexes in the row-wise traversal while the subscripts are the indexes in the column-wise traversal of the input. On the right: (A) the
ground truth T : a result of applying step 1 in Algorithm 1 which is a stack of the borders where the first row, second row, third row, and last
row are the upper, lower, left, and right borders in the input respectively; and (B) the predictor P: a result of applying steps 2 and 3 in
Algorithm 1 which is a stack of the neighbors where the first row, second row, third row, and last row are neighbors to the upper, lower,
left, and right borders in the input respectively, and the stack is padded at the left and right sides with reflection padding (pr ) and with
zero padding (pz ).

and the column-wise traversal of the input respectively. The
following is T ’s extracting function target of the inputM r

c :

T = target(M r
c ) =


M0

[:]
M r−1

[:]

(M [:]
0 )

T

(M [:]
c−1)

T

 , (1)

where M0
[:] is the entire row vector in M r

c at index 0, M r−1
[:]

is the entire row vector in M r
c at index r − 1, (M [:]

0 )
T
is the

transpose of the entire column vector in M r
c at index 0, and

(M [:]
c−1)

T
is the transpose of the entire column vector inM r

c at
index c− 1. Figure 2. (A) is an example to visually illustrate
how T is constructed where the first row represents the upper
border in M r

c , the second row represents the lower border in
M r
c , the third row represents the left border inM r

c , and the last
row represents the right border inM r

c .

2) PREDICTOR (P)
To structure the predictor from the original input M r

c ,
thePaddingModule extracts the row vectors that neighbor the
upper border and lower border inM r

c and the transpose of the
column vectors that neighbor the left border and right border
in M r

c . Then, the Padding Module stacks all the extracted
neighbors vertically to form a four-row matrix. Formally, the
predictor’s (denoted as P) extracting function of M r

c can be
expressed in the following way:

First, the neighbors inM r
c are selected and denoted as N as

follows:

N = neighbors(M r
c ) =


M1

[1:c−1]
M r−2

[1:c−1]

(M [1:r−1]
1 )

T

(M [1:r−1]
c−2 )

T

 . (2)

The slice [1 : c − 1] excludes the data in the row vectors at
the borders due to overlapping with the T , whereas the slice
[1 : r − 1] excludes the data in the column vectors at the
borders due to overlapping with T .
Then, the Padding Module pads the structure as follows:

P = padz(padr (N )). (3)

First, the padr (.) function pads the structure with one pixel of
the reflection padding horizontally (the left and right sides);
then, with one pixel of the zero padding horizontally using
the padz(.) function can get the final structure for P.
Each row in P will be used to predict the corresponding

row in T . For example, the first row in P will be used to
predict the first row in T representing the upper border in
the inputM r

c . Figure 2 (B) is an example to visually illustrate
how thePaddingModule constructs the stack of the neighbors
(as a predictor) where the right and left sides of the stack are
padded with the reflection padding (named as pr ), and the
zero padding (named as pz).

3) FILTERS AND THE LOSS FUNCTION
The Padding Module uses as many filters as the channels
in the input (i.e., filter per channel). Also, each filter will
be a row vector with a size of (1, 3) and a stride of (1, 1);
that is because of having each row in P as a predictor for
the corresponding row in T . Therefore, to predict T , the
Padding Module convolutes the filters over P; it uses its
own loss function to optimize the prediction through the
local differentiation of the loss function with respect to the
filters.

The loss function used by the Padding Module is the MSE
which computes the squared difference between the ground
truth and the predicted value. The following equation is the
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MSE’s mathematical expression for a single data point:

MSE(fθ (P),T ) =
4∑

a=1

n∑
j=1

(θT · Paj − T
a
j )

2, (4)

where f is the convolutional operation parameterized by θ , P
and T are the predictor and the ground truth extracted from
the original inputM r

c , a represents the indexes for rows in the
four-row matrices P and T , and j represents the indexes for
both the slide windows and columns in P and T respectively.
Hence, Paj is the jth slide window in the row indexed at a in
P, and T aj is the corresponding value in T indexed at the ath
row and jth column.

The local differentiation of the Padding Module’s loss
function and the filters’ updates are achieved during the
model’s back-propagation; these local gradients are not
propagated to the previous layer. Besides that, the Padding
Module facilities the back-propagation of the model’s loss
function going through it to the previous layer as explained in
Section III-B. The following is the mathematical expression
for the local gradients (Padding Module’s loss function
gradients with respect to a single filter for a single data
point):

ϕ

ϕθm
MSE(fθ (P),T ) = 2

4∑
a=1

n∑
j=1

(θT · Paj − T
a
j )xm, (5)

where xm is a single feature in the Paj slide windowwhich was
multiplied by the corresponding weight, namely θm, in the θ

during the convolution.

4) PADDING PROCESS
The procedures in Sections III-A1, III-A2, and III-A3 are
used to guide the Padding Module on learning how to
predict the borders of the original input, M r

c , based on
the neighboring areas to the borders, and then the Padding
Module can optimize its filters.
However, the padding process is shown in steps 4 to 13

in Algorithm 1; it uses the borders of the input, M r ′
c′ , as the

predictor. In detail, the padding process iterates until the
original input is padded with the required padding size.
Hence, the original input M r

c is assigned to M r ′
c′ as an initial

state in step 4 before the padding loop starts. Then, each
iteration pads the input, M r ′

c′ , with one-pixel, and outputs a
newM r ′

c′ which will be used for the next iteration and so forth.
The dimensions of an iteration’s output, M r ′

c′ in step 11, are
two-pixel larger than the dimensions of that iteration’s input,
M r ′
c′ in step 6.
Minutely, constructing the predictor in the padding process

is similar to the way that constructs P in Section III-A2 with
small modifications. To distinguish the notions of neighbors,
N , and P, in Section III-A2, borders, Nout , and Pout are
denoted for the extracting function, the function’s output, and
the predictor, respectively. The following is the mathematical

expression for the extracting function borders:

Nout = borders(M r ′
c′ ) =


M0

[:]
M r−1

[:]

(M [:]
0 )

T

(M [:]
c−1)

T

 , (6)

where M0
[:] and M

r−1
[:] mean extracting the entire upper and

lower borders respectively. Whereas, (M [:]
0 )T and (M [:]

c−1)
T

mean extracting the transpose of the entire left and right
borders respectively. Then, the Padding Module pads the
output Nout using Equation 3 to get the final structure for
Pout .

Consequently, convoluting the filters over the Pout will
produce the padding values for the iteration’s input. The
output can be expressed as follows:

O = fθ (Pout), (7)

where f is the convolutional operation parameterized by θ ,
Pout is the predictor, and the O is the output and comes
as a matrix of four rows. Each row represents the padding
values for the corresponding area in the iteration’s input,M r ′

c′ ,
as follows: the first row (O0), the second row (O1), the third
row (O2), and the last row (O3) represent the padding values
for the upper, the lower, the left, and the right areas in the
input respectively.

Then, the steps from 9 to 11 are how the produced padding
values stick around the input M r ′

c′ . First, in step 9, the
vertical concatenation operator // is used to concatenate the
first row (O0) with M r ′

c′ , and then concatenates the resulted
matrix with the second row (O1). However, the rows from
O are two-pixel wider than the rows of M r ′

c′ ; therefore,
to match the dimensions of these operands, the Padding
Module uses padz(.) to pad the M r ′

c′ horizontally with one
pixel of the zero padding before the concatenation process.
Hence, the output’s dimensions in step 9, denoted as M r ′+2

c′+2 ,
are two-pixel larger than the inputM r ′

c′ . Finally, the algorithm
uses sides function which can be formally expressed as the
following:

sides((O2)T ,M r ′+2
c′+2 , (O3)T ). (8)

This function does not change the dimensions; however,
it adds respectively the transpose of the third row (O2) and
last row (O3) to the left and right columns of M r ′+2

c′+2 , the
concatenated matrix with zero values at the left and right
columns unless the corners already assigned values from the
concatenation process. To resolve the double-count problem
at the corners, the Padding Module takes the average of
added values in the corners by dividing each corner by 2; this
averaging function is step 12 in Algorithm 1:

M r ′
c′ = corners(M r ′+2

c′+2 ). (9)

Lastly, as mentioned early in this section that the dimen-
sions of the iteration’s output are two-pixel larger than the
iteration’s input. Hence, the output M r ′

c′ , in Equation 9, has
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FIGURE 3. An example to illustrate the back propagation in Algorithm 2. On the top: the input to the Padding Module is of size (6, 6), the
Padding Module uses one-pixel padding and produces an output of size (8, 8) where the borders p is the computed padding values. On the
bottom: the back-propagation of the received gradients which is of size (8, 8) where the borders are gradients for the padding values gp;
the Padding Module strips out gp from the received gradients, and sends the remaining to the previous layer. The g stands for gradient; for
example g

M0
0

is the gradient for the pixel at index [0, 0] in the input of the Forward Pass.

dimensions r ′ and c′ that are updated with the dimensions of
M r ′+2
c′+2 , namely r ′ + 2 and c′ + 2 respectively.

B. BACK-PROPAGATION
As seen in Section III-A3, the Padding Module is not
optimized based on the model’s main loss function; therefore,
the model does not compute the gradients of its loss function
with respect to the filters of the Padding Module. However,
during the model’s backpropagation, the Padding Module
achieves two key points as follows:

1) As shown in step 1 in Algorithm 2, the Padding
Module optimizes its filters through computing the
local gradients for its loss function with respect to the
filters as explained in Section III-A3.

2) The process also receives Gr
′

c′ which are the gradients
of the model’s loss function with respect to the Padding
Module’s output, the original input M r

c after being
padded. Therefore, the Padding Module strips out the
gradients from Gr

′

c′ that represent the gradients for
the padded areas in the Padding Module’s output; the
stripping-out process is step 3 in Algorithm 2, and
formally expressed as follows:

Grc = strip(Gr
′

c′ ). (10)

Then, the Padding Module back-propagates to the
previous layer the Grc, representing the gradients for
the previous layer’s output. Figure 3 is an example to
visually illustrate how the back-propagation process in
the Padding Module is achieved.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This section shows the design of the training and testing
experiments on our Padding Module applied to a downstream
task, i.e., image classification. The experimental setup is
presented in Sections IV-A. The quantitative and qualitative
results are described in Section IV-B and IV-C respectively.

A. EXPERIMENT SETUP
The study used the premium service from Google Colabora-
tory where a GPU of Tesla T4 was assigned. The experiments
and comparisons were conducted on the CIFAR-10 dataset
for a classification task [32]. The CIFAR-10 dataset includes
a training dataset of 50,000 images and a test dataset
of 10,000 images. The images are of shape (32, 32, 3),
distributed equally to ten classes of airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. The
Padding Module was applied to different networks namely:
VGG16 [8] and ResNet50V2 [33]; to make the deeper layers
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FIGURE 4. The comparison of three different padding methods on the
test images: zero padding, mean interpolation padding, and the Padding
Module when applied to the VGG16 model.

FIGURE 5. The comparison of three different padding methods on the
test images: zero padding, mean interpolation padding, and the Padding
Module when applied to the ResNet50V2.

in these networks carry out a valid convolution, the images
were resized to (64, 64, 3) and (224, 224, 3) for the VGG16
and the ResNet50V2, respectively.

The VGG16 is a vanilla-based architecture where the
network shape is wider at the beginning of the network and
narrowed down as going deep in the network. The pre-trained
VGG16 was obtained from the keras1 without the top layers
(the last three dense layers including the original softmax
layer). Then, we added two fully-connected layers each with
512 neurons and followed by a dropout layer. On the other
hand, the ResNet50V2 is made up of blocks where each
block sends the block’s input through the block itself, and
also uses a skip connection to directly add the block’s input
to the output of the input’s flow coming through the block.
The process is known as the identity function that could help
deep layers to improve the model’s accuracy. ResNet50V2 is
a modified version of the ResNet50 [13]. The modification
mainly is in the arrangement of the block layers; batch
normalization [11] and ReLU activation [34] are applied to
the data flow before the convolutional layer in the block.
These changes enabled the ResNet50V2 to outperform the
ResNet50 on the image classification task. The ResNet50V2
was downloaded from the keras2 without the top layer (the
last dense layer which is the original softmax layer). Then,
two fully-connected layers with 1024 and 512 neurons were
added.

1VGG16 from the keras: https://keras.io/api/applications/vgg
2ResNet50V2 from the kera: https://keras.io/api/applications/resnet

FIGURE 6. MSEs for three Padding Modules placed at different positions
in the VGG16: 1) module 1: at the beginning, 2) module 2: at the middle,
and 3) module 3: at the end.

Moreover, we added a softmax layer with ten outputs for
both models of VGG16 and ResNet50V2, and then used
the Adam optimizer [12] for the back-propagation of the
gradients. Finally, the Padding Modulewas used before every
convolutional layer in the VGG16; whereas, we replaced
every zero padding layer in the ResNet50V2with thePadding
Module.

B. QUANTITATIVE RESULTS
Section IV-B1 compares the proposed Padding Module
and state-of-art padding solutions by performing the image
classification task, and then Section IV-B2 discusses an
ablation study based on our solution.

1) IMAGE CLASSIFICATION TASK
We considered the zero padding method as a baseline to
compare the Padding Module with. Moreover, we used the
mean interpolation padding method [19] as the state-of-
art since it outperformed the partial convolution padding
method [18] in the image classification task [19]. The main
goal of this study, which aligns with the literature, is to
investigate the padding effect on the accuracy of DNN
models. Therefore, the accuracy is used as a comparison
metric between the performance of the Padding Module and
the benchmark. The accuracy is the percentage of correctly
classified images over the total number of images in the
dataset.

Each model was trained with 100 epochs using the training
dataset, and tested in each epoch using the test dataset.
In Figure 4, the Padding Module outperforms both the
baseline method and the mean interpolation padding method
when using the VGG16; also, we found that the baseline
is comparable to the mean interpolation method. As for the
Resent50, the Padding Module also outperforms the other
two paddings as shown in Figure 5. We also noticed that
the baseline method is comparable to the mean interpolation
method. Moreover, Table 1 summarizes the average of the
last five epochs for the three different padding methods
and the margin between the highest and the second-highest
accuracies for the two models. Also, the Area Under the
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FIGURE 7. The selected positions in the VGG16 for the Padding Module: at the beginning, middle, and the end.

TABLE 1. The ACC is the average accuracy of the last five epochs for three
different padding methods used in VGG16 and ResNet50V2. The AUC is
the Area Under the Curve of the ROC considering the highest-accuracy
epoch for each padding method. The margin shows the difference
between the highest and second-highest values in both ACC and AUC for
the two models.

Curve, AUC, of the ROC is used as another perspective to
show the superiority of the Padding Module over the other
padding methods, as shown in Table 1.

As mentioned, the study investigated the effects of the
Padding Module on the accuracy of DNN models. Impor-
tantly, we showed that the related and realistic padding could
improve the accuracy of DNNmodels; therefore, the Padding
Module was able to produce such padding by minimizing the
MSE in Algorithms 1 and 2. Figure 6 illustrates MSEs for
three cases of the Padding Module applied in different places
(at the beginning, in themiddle, and at the end) in theVGG16;
it is evident that the MSEs significantly decreased after only
two epochs and then stayed flat till the end of the experiment
for the three cases.

One natural drawback of the current Padding Module
was the extra running time caused by constructing the
data structures and optimizing the filters. Table 2 shows
that VGG16 and ResNet50V2, on average, doubled the
epoch’s time when applying the Padding Module (i.e.,
placing the Padding Module before every convolutional
layer in the VGG16 and replacing every zero padding layer
in the ResNet50V2 with the Padding Module). On the
other side, the accuracy for the VGG16 and ResNet50V2,
respectively, gained margins of 1.49% and 0.44% when
applying the Padding Module compared to the zero padding
(no Padding Module). One remedy to lessen the running time
problem may be to stop training the Padding Module when
it significantly decreases the MSE after the first two epochs.
However, improving the current Padding Module including
the time complexity can be a further direction for future
research.

2) ABLATION STUDY
The experiments in this section were conducted as an ablation
study where the Padding Module was empirically placed

TABLE 2. On average, the running time doubles for one epoch when
applying the Padding Module to the VGG16 and ResNet50V2 compared to
the case of the zero padding (no Padding Module applied). Times are
shown in a minute-scale. The margin is the accuracy difference between
the case of applying the Padding Module and the zero padding.

TABLE 3. Placing the Padding Module at different positions in the
VGG16: 1) at the beginning 2) at the middle 3) at the end 4) combination
of beginning, middle, end 5) before every convolutional layer 6) VGG16
with no Padding Module (zero padding instead).

at different positions in the VGG16 model, as shown in
Figure 7: at the beginning of the model, in the middle,
at the end, and the combination of all the three places
together. We also compared the four scenarios with two other
scenarios: (1) where the Padding Module was placed in all
positions (before each convolutional layer) in the model; and
(2) where the Padding Module was not used but the zero
padding was used instead. We ran each scenario 100 epochs
using the training dataset for training and the test dataset for
evaluation, and averaged the test accuracies of the last five
epochs for each scenario; Table 3 illustrates the summary of
the comparison of the models. We noticed that using a single
Padding Module with the shallow layers outperformed the
case of using it with the deep layers. Also, the combination
scenario showed a superiority over the scenario of a single
Padding Module. However, the best performance was when
the Padding Module applied in the scenario of all positions.
Finally, all the scenarios of applying the Padding Module
outperformed the scenario of the model with no Padding
Module.

C. QUALITATIVE RESULTS
Different padding sizes, such as one-pixel, three-pixel, and
five-pixel, were used to illustrate how the Padding Module
can extend the input with related and realistic extensions.

VOLUME 11, 2023 7355



F. Alrasheedi et al.: Padding Module: Learning the Padding in Deep Neural Networks

FIGURE 8. Three images sampled from CIFAR-10 and padded by different padding methods: zero-padding, mean interpolation, and the Padding Module.
Each padding method uses three different padding sizes: A) one-pixel, B) three-pixel, C) five-pixel.

Also, we compared these different padding sizes with the
other two methods, namely the zero padding and the mean
interpolation padding. As shown in Figure 8, the Padding
Module can learn how to pad the input with related data and
natural extension; this finding becomes more evident as the
padding size increases.

V. FUTURE RESEARCH DIRECTIONS AND CONCLUSION
This paper proposed a novel padding method: Padding
Module; that can learn how to pad an input from the input’s
borders; hence, the input can be realistically extended with
related data. The Padding Module is a self-learning of its
weights. To train itself, the Padding Module constructs a
ground truth and a predictor from the inputs by leveraging
the underlying structure in the input data for supervision.
The Padding Module uses convolutional operation over the
predictor to produce a predicted value that is, in turn,
compared with the ground truth. The Padding Module uses
a local loss function, independent from the model’s main loss
function, to minimize the difference between the predicted
value and the ground truth. Therefore, the Padding Module
updates its convolutional filters locally during the model’s
back-propagation. Besides that, the Padding Module back-
propagates the model’s gradients with respect to the Padding
Module’s output after stripping out the gradients for the
padded areas to the previous layer.

The experimental results showed that the Padding Module
outperformed the zero-padding and the state-of-art padding
in the image classification task. In the ablation study, we also
observed that using a single PaddingModulewith the shallow
layers improved the performance slightly better than using

it with the deep layers in the VGG16 network. On the
other hand, using three of the Padding Module placed in
different positions (at the beginning, at the middle, and at
the end) in the VGG16 outperformed the scenario of a single
Padding Module. Moreover, placing the Padding Module in
all positions (before every convolutional layer) in the VGG16
outperformed all other scenarios as shown in Table 3.
Our experiments applied the Padding Module to the two

well-known networks: VGG16 and ResNet50, for the image
classification task. The VGG16 and ResNet50 networks were
chosen to represent small and large networks, respectively.
They, also, were used by the literature; hence, we used
them to compare the Padding Module with the previous
work. Although two different networks are only used in one
task, we shall extend the Padding Module to improve such
networks in different tasks, including object detection, style
transfer, and image inpainting. We leave investigating the
Padding Module in a wide range of tasks for future research.
Also, the Padding Module learned how to pad the input

independently of the model’s loss function. However, it is
possible to optimize the Padding Module’s filters based on
optimizing the model’s main loss function; this approach will
be entirely different. Hence, one research direction may be to
implement a padding method that can optimize its padding
filters based on the model’s main loss function.
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