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ABSTRACT Deformable image registration plays a crucial role in estimating cardiac deformation from
a sequence of images. However, existing registration methods primarily process images as pairs instead of
processing all images in a sequence together. This study proposes a novel end-to-end learning-free generative
multi-resolution convolutional neural network (GMCNet) with the primary focus of registering images in a
sequence. Even though learning-based methods have yielded high performance for image registration, their
performance depends on their ability to learn information from a large number of samples which are difficult
to obtain and might bias the framework to the specific domain of data. The proposed learning-free method
eliminates the need for a dedicated training set while exploiting the capabilities of neural networks to achieve
accurate deformation fields. Due to its capability of parameter sharing through the architecture, the GMCNet
can be used as a groupwise registration as well as pairwise registration. The proposed method was evaluated
on three different clinical cardiac magnetic resonance imaging datasets and compared quantitatively against
nine other state-of-the-art learning and optimization-based algorithms. The proposed method outperformed
other methods in all comparisons and yielded average Dice metric values ranging from 0.85 to 0.88 for the
datasets. Different aspects of the GMCNet are also explored by assessing 1) the robustness; 2) performance
on pairwise registration; 3) the influence of spatial transformation in a controlled environment; and 4) the
impact of different multi-resolution structures. The results demonstrate that using temporal information to
estimate the deformation fields leads to more accurate registration results and improved robustness under
different noise levels. Moreover, the proposed method does not need images for training, and therefore, its
prediction is not domain-specific and can be applied to any sequence of images.

INDEX TERMS Convolutional neural networks, cardiac cine MRI, deformable registration, generative
network, learning-free framework, multi resolution.

I. INTRODUCTION
Deformable image registration is one of the crucial tasks in
medical image analysis which aims to find the point-wise
mapping between a pair of images. These techniques serve
as the fundamental basis for procedures such as surgery,
tumour growth monitoring, minimally invasive treatments,
and many other challenging problems [1], [2], [3], [4], [5].
Studies have shown that deformable registration could also
be used for the cardiac functional assessment and delineation
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of cardiac structures with magnetic resonance imaging (MRI)
sequences. However, the lack of reliable, automatic and accu-
rate tools to register images in a temporal sequence severely
limits the use of registration for many medical image analysis
applications including cardiac functional assessment. The
majority of existing image registration methods primarily
process input images pair-wise and do not take advantage of
temporal information available in image sequences.

Typically, deformable image registration is modelled as an
optimization problem consisting of an image similarity met-
ric and regularization terms and applied to pairs of images.
Without regularization, this may result in multiple physically
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non-plausible solutions, for instance, tissue folding or/and
tearing in human anatomy studies. Existing deformable
registration algorithms could be broadly categorized into
non-learning-based (classical) methods and learning-based
methods.

II. BACKGROUND AND RELATED WORK
A. CLASSICAL IMAGE REGISTRATION METHODS
Traditionally, deformable registration is resolved by optimiz-
ing a similarity metric that measures the closeness between
the fixed and the warped moving image. Several studies using
optimization within the space of displacement vector field
such as discrete methods [6], [7] and Demons [8], [9] have
been proposed for the registration problem.

In [10] a combination of segmentation and registration is
suggested based on nonlinear elasticity which uses a polycon-
vex for regularization. Another study [11] proposed a method
based on the log-domain for spatial transformation where
a physical constraint is applied to estimate the myocardial
strain from cineMRI in the registration process. However, the
lack of diffeomorphism properties in transformations could
lead to image folding and twisting. In contrast, some methods
rely on diffeomorphic transformation [1], computed using an
artificial velocity over time governed by the Lagrange trans-
port equation to model deformations. Due to the invertibility
and folding-free transformation properties of the diffeomor-
phism, several other studies utilized diffeomorphic transfor-
mations in image registration applications [12], [13], [14].

In [15] and [16], a registration framework was proposed
based on moving mesh (grid generation) to compute point-
to-point correspondences, where the L2 norm was used as a
dissimilarity measure. The authors modelled the deformation
using radial (divergence) and rotational (curl) components
that is better suited for analyzing the heart as it closely
matches actual cardiac motion.

Adapting the aforementioned methods to the specific
application is challenging since most of these methods
require users to find parameters on hand. The process of
finding the parameters that match the characteristics of cer-
tain data depends entirely on the users’ intuition and several
tedious attempts to avoid defining the too flexible or too
restrictive model. Besides, occasionally regularization terms
need to be manually adjusted for each application.

B. DEEP LEARNING-BASED IMAGE REGISTRATION
METHODS
In the past few years, learning-based predictive approaches,
notably deep convolutional neural networks (CNNs) have
been successfully applied to image registration problems.
In these approaches, the regularization prior is implicitly
learned by training a CNN on a large database of domain-
specific images. Depending on how the networks are trained,
they can be categorized into supervised and unsupervised
learning.

In supervised-learning methods, a CNN is trained using
examples of medical images along with their ground truth
transformations to predict the transformations directly on test
images. Inspired by U-Net network [17] and using mesh
segmentation, Rohé et al. [18] predicted the deformation
field for 3D cardiac magnetic resonance imaging (MRI).
Cao et al. [19] proposed a CNN to estimate the displacement
vector for 3D brainMRIwhere equalized active points guided
sampling and similarity between image patches were used
to guide the learning process. Even though the accuracy
of these approaches is considerable, their performance is
highly dependent on the quality of the ground truth [20].
One of the most significant challenges in applying super-
vised methods to medical imaging applications is that the
actual ground truth of a desired neural network output is
not often available. The limitation of supervised methods
has motivated the investigation of unsupervised methods [21]
and dual/weakly supervised transformation estimation [22],
which still requires manually produced labels or segmenta-
tion. Unsupervised learning-based image registration (DLIR)
has received a lot of attention because it bypasses the need
for expert annotated data of any kind. In other words, the
quality of the output is not dependent on the quality of labels.
Inspired by the spatial transformer network (STN), unsuper-
vised approaches were proposed for deformable registration
[23], [24], [25] which relied on normalized cross-correlation
(NCC) and bending-energy regularization term to train a fully
convolutional neural network (FCN). Balakrishnan et al. [26]
used similarity to train a general framework for unsupervised
image registration. Hoopes et al. in [27] learnt the effects of
registration hyperparameters on the deformation field, which
leverage a secondary network to generate the conditioned
weights for the entire network layers. This method adds an
enormous number of parameters to the original image regis-
tration method. Alternatively, a more parameter-efficient and
scalable approach based on conditional instance normaliza-
tion is proposed in [28].

Deformable image registration could also be performed
in multiple stages and multiple resolutions to speed up
and reduce sensitivity to local optima and image folding
[29], [30]. Multi-stage approaches commonly start with
affine or other linear registrations followed by coarse-to-fine
deformable image registration [24], [31], [32].

Recently generative learning-based models such as a gen-
erative adversarial network (GAN), stochastic variational
autoencoder and adversarial autoencoder have shown promis-
ing results in medical imaging applications in learning data
distribution from large image training set [1]. Following
the success of these models, some research groups [33]
used unsupervised adversarial learning for image registra-
tion. Fan et al. [34] proposed a GAN to perform deformable
image registration of 3D MRI. Mahapatra et al. [35] pro-
posed simultaneous segmentation and registration of 4D com-
puted tomography chest X-rays using a GAN framework.
Krebs et al. [1] proposed a generative and probabilisticmodel
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for diffeomorphic image registration which first trains an
encoder-decoder neural network to estimate the deformation
field by providing a large dataset of training images. A diffeo-
morphic transformation can be achieved via time-dependent
velocity field [36]. Also, the ease of implementation and
relatively low computational cost cause almost all existing
end-to-end learning-based registration models to adopt sta-
tionary velocity fields [28], [36]. However, in this study,
we demonstrated how time-dependent velocity fields can
be efficiently incorporated into an end-to-end deep neural
network framework, which results in improved registration
performance.

Despite the relative success of learning-based methods, 1)
Parameterizing registration as an optimization of a similarity
metric alone is an ill-posed problem that requires explicit
regularization [1]. 2) They generally need to be trained on
a set of images which could introduce bias in a specific data
domain. 3) The need for a large and varied set of training
data is crucial for these algorithms to perform well on new
subjects.

C. MOTIVATION AND CONTRIBUTION
In 2D cardiac MRI image sequences, the temporal consis-
tency between subsequent frames can be exploited to obtain
more accurate results than registering them pairwise. This
study proposes a novel end-to-end iterative framework that
processes the image sequences batch-wise to generate tem-
porally consistent deformation fields. A learning-free genera-
tive multiresolution convolutional neural network (GMCNet)
architecture is proposed in this study which does not require
a dedicated set for the neural network training. To control
the smoothness of the deformation field, in each resolution
the deformation field is followed by a Gaussian filter which
eliminates the need for an external regularization term. The
proposed framework can be applied as pair-wise registration.
The results show that utilizing temporal information leads to
more accurate registration as well as a more robust perfor-
mance under different noise levels.

The rest of the paper is organized as follows. In section III,
we introduce our novel GMCNet framework, and the archi-
tecture of the proposed multiresolution framework and also
discuss the Groupwise registration, loss function, and imple-
mentation detail. Datasets and evaluations are discussed in
section IV. We discuss and conclude in sections V and VI.

III. METHODOLOGY
The main goal of deformable image registration is to find
the optimal spatial deformation φθ parameterized by θ that
warps a moving image IM to align it with a fixed image IF .
The optimal values of θ could be obtained by minimizing an
objective function of the form:

θ∗
= argmin

θ

L(IF , IM ◦ φθ )) + λR(φθ ) (1)

where L is a metric that measures the dissimilarity between
IF and the warped moving image IM ◦φθ . R is a regularization

term that imposes smoothness on spatial deformation. λ is a
weight coefficient corresponding to the regularization term.
In unsupervised deep learning-based methods, a CNN is
trained on a set of data to minimize a dissimilarity metric
and a spatial transformer layer is used to warp the moving
image IM .

θ∗
= argmin

θ

∑
(IF ,IM )

L(IF , IM ◦ fθ (IF , IM )) + λR(gθ (IF , IM ))

(2)

where f is the network and θ is the parameters of the network.

A. GENERATIVE MULTIRESOLUTION CONVOLUTIONAL
NETWORK (GMCNet)
Inspired by [37], for each pair of moving and fixed images a
latent variable z is introduced which is sampled from a ran-
dom normal distribution and has the same dimensions as the
input images z ∈ RH ′

×W ′

. WhereH andW are the height and
width of images to be registered, respectively. The GMCNet
maps the input latent variables to desired deformation fields
and uses the corresponding batch of fixed and moving images
for the loss function. Thus, during the optimization process,
the network’s parameters θ and zi are optimized through
back-propagation simultaneously.

So the new registration objective function can be formu-
lated as follows:

θ∗, z∗ = argmin
θ,z

L(IF , IM ◦ fθ (z)), (3)

where the θ∗ and z∗ are obtained using a neural network
optimizer such as stochastic gradient descent. As can be seen
in the new formulation there is no need for an external regu-
larization term and a corresponding weight. Fig. 1 shows the
optimization of an input latent variable z and the parameters
of the network θ during the iterative processing for a sample
pair of images. For the sake of simplicity, the optimization
process is shown for one resolution framework.

The proposed architecture implements the general princi-
ple of the multiresolution framework, where computations
follow coarse-to-fine resolutions [38]. It has three resolu-
tions/scales denoted by a quarter g1/4θ1

, a half g1/2θ1,θ2
and the

original resolution, g1θ1,θ2,θ3 . The θ1, θ2, θ3 are used to denote
parameters of each resolution of GMCNet.

A spatial Gaussian smoothing kernel is integrated with
the GMCNet to yield sufficiently smooth deformation fields.
Such a strategy has been adopted in the Demons algorithm,
where unconstrained optimization is followed by Gaussian
filtering to impose a smoothness constraint. So that, at each
resolution a Gaussian kernel is applied to the deformation
field and then the smooth-scaled deformation field is upsam-
pled and added to the next scale. The components of the
proposed GMCNet architecture are shown in Fig. 2.

B. GROUPWISE REGISTRATION
Because of parameters sharing property, the GMCNet can be
used as a groupwise registration framework when we have
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FIGURE 1. Iterations in the proposed GMCNet are shown for a pair of images for one resolution. The parameter set θ

of the network f and latent variable z0 for an image pair are iteratively updated through the back-propagation to
minimize the registration cost (3) between the fixed image IF and warped moving image IM .

a sequence of images to be registered {Ii}Ni=1. In groupwise
image registration methods, several images are registered to
a common coordinate system and therefore, a group of trans-
formations has to be computed instead of a single geomet-
ric transformation [39]. A common practice for groupwise
registration is to select the first (or any other) image as the
reference image, and then register the rest of the images to
the reference using pairwise image registration. The choice
of the reference image is important in such an approach. In
the proposed method each image in a cardiac sequence is
registered to the next image in the sequence. To register a
set of images {Ii}Ni=1, the i

th image in a sequence is set as a
moving image I iM and i+ 1th image is set as a fixed image
I iF , for i = 1, . . . ,N − 1 as shown in Fig. 3. Such a formu-
lation eliminates any potential bias introduced by choosing a
particular reference image. In our formulation, the weights θ

are shared through the entire sequence. Such consistencymay
not be obtained using traditional pairwise approaches where
the registration is performed by splitting the sequence into a
set of image pairs. For a set of N image pairs {I iF , I iM }

N
i=1, N

latent variables are defined {zi}Ni=1. Where N is the number of
images in a sequence.

In the case of groupwise registration (3) is changed as
follows:

θ∗, {z∗i }
N
i=1 = argmin

θ,{zi}Ni=1

N∑
i=1

L(I iF , I iM (gθ (zi))) (4)

C. LOSS FUNCTION AND OPTIMIZATION
In each resolution a separate loss is defined to measure the
dissimilarities between the fixed and warped moving images
at that resolution as follows:

The loss function for the coarsest resolution:

Loss1/4 =

N∑
i=1

L(I1/4,iF , I1/4,iM ◦ φ
1/4
θ1

(zi)) (5)

where I1/4,iF and I1/4,iM are respectively down-sampled fixed
and moving images at the quarter resolution.

The loss function for the second (half) resolution:

Loss1/2 =

N∑
i=1

L(I1/2,iF , I1/2,iM ◦ φ
1/2
θ1,θ2

(zi)) (6)

Similarly, the loss function for the full resolution is defined
as:

Loss1 =

N∑
i=1

L(I1,iF , I1,iM ◦ φ1
θ1,θ2,θ3

(zi))) (7)

The final loss function is a linear combination of loss func-
tions in three resolutions:

Loss = αLoss1/4 + βLoss1/2 + γLoss1, (8)

We optimize the whole network as one stage to reduce
computational time. All the parameters of the network θ1,2,3
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FIGURE 2. The proposed generative multiresolution convolutional network (GMCNet) architecture for deformable image registration. The network
generates a deformation field based on low dimensional random inputs.

FIGURE 3. Illustration of choosing fixed and moving images in a
sequence. The frame i is selected as a moving image and the next frame
i + 1 is selected as a fixed image.

are initialized only once and they are shared for all images
in the sequence. It is possible to optimize the network in

three phases so that the first stage optimizes it with respect to
θ1 and {zi}Ni=1, the second stage optimizes θ1, θ2 and {zi}Ni=1
and finally, the third stage optimizes loss (8) with regard to
all parameters θ1, θ2, θ3 and {zi}Ni=1.

D. LEARNING-FREE FRAMEWORK
The proposedGMCNet is learning-free and not trained on any
given data sets. On this basis, to register any sequence/pair
of images the z and the parameters of the network θ are
optimized iteratively from scratch. The optimization is termi-
nated based on two criteria, the step size and iteration number.
In each iteration, the loss function is evaluated, and if it does
not improve, the step size will be reduced. The process is
terminated once the maximum number of iterations has been
reached, or the step size is below the defined threshold.

E. IMPLEMENTATION DETAILS
The proposed GMCNet consists of six convolutional layers
with strides (1, 1, 1, 1) and three upsample layers. The inputs
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fit in a convolutional Gaussian layer with σ = 2 and kernel
size 7. Each scale contains two convolutional layers, two
upsample layers and a convolutional Gaussian layer with
σ = 3 and kernel size 15 in front of the estimated defor-
mation field and after adding a correction. Exponential linear
unit (ELU) is selected as an activation function and NCC
is used as a loss function. The values of α, β, and γ are
chosen as 0.5, 0.25, and 0.25 respectively. We initialized a
learning rate of 5 × 10−4 with the Adam optimizer and a
batch size of 10. We used a grid search to find the maximum
iteration number for all three data sets which is 800. The
early stop method is also used, in case the network converges
before 800 iterations. The minimum threshold of the step
size is 0.5 × 10−7. The framework has been implemented
using Python programming language with the Tensorflow
machine learning module and it is tested with an NVIDIA
GTX 1080 Ti graphics processing unit with 11GB memory.

IV. EXPERIMENTS
The proposed framework is evaluated on clinical cardiacMRI
images over three datasets.

A. DATASETS
The following three datasets are considered in this study:

1) AUTOMATED CARDIAC DIAGNOSIS CHALLENGE (ACDC)
[40]
This dataset contains multiple temporal 2D short-axis cardiac
cine MRI sequences acquired from 100 patients and is one of
the publicly available datasets for cardiac MRI assessment.
The spatial resolution varies from 1.37 to 1.68 mm2/pixel
with a slice thickness of 5 mm to 8 mm (in general 5mm) and
sometimes an inter-slice gap of 5mm. Each sequence consists
of 28 to 40 images that cover the cardiac cycle completely or
partially.

2) THE SUNNYBROOK CARDIAC CHALLENGE DATA (SCD)
[41]
This dataset contains multiple temporal 2D short-axis car-
diac cine MRI scans acquired from 45 patients. Each cine
sequence includes 20 frames to cover the cardiac cycle.
The image resolution is 256 × 256, with a pixel spacing of
1.25 mm and slice thickness of 8 mm.

3) LEFT ATRIUM (LA)
This dataset includes 100 temporal 2D long-axis cine MRI
steady-state sequences from the 2, 3 and 4-chamber views.
It was acquired from the University of Alberta Hospital.
Each cycle includes 25 or 30 frames with image resolu-
tions 176 × 189 – 256 × 208 and image spacing 1.445 −

1.795 mm. The ground truth manual segmentation was ini-
tially performed by a medical student and edited by an expe-
rienced radiologist. The 2ch, 3ch and 4ch are used in the
rest of the paper to denote 2, 3 and 4-chamber sequences,
respectively.

B. EVALUATION
In this section, we evaluate and compare the performance of
the proposed framework with both optimization-based state-
of-the-art algorithms, SimpleElastix (Elastix) [42], Mov-
ing Mesh (MM) [16], Real-Time Image-based Tracker
(RRT) [43], Fast Symmetric Forces Demons (Demons) [44],
LCC-Demons [45], Symmetric Normalization [13] and also
learning-based state-of-the-art algorithms VoxelMorph (VM)
[46], learning probability model for diffeomorphic registra-
tion (LPM) [1] and DIRNet [23], a CNN-based, end-to-
end unsupervised deformable image registration. We denote
GMCNet as GMCNet_s and GMCNet_p to identify the
sequential registration and pairwise registration.

1) QUANTITATIVE EVALUATION METRICS
The proposed method was evaluated quantitatively using four
metrics, namely, Dice metric (DM), Hausdorff distance (HD
in mm), determinant of Jacobian of the deformation field
det(J ), and reliability R(d).

a: DICE METRIC
The DM [47] is a well-known segmentation based metric to
measure the similarity (overlap) between two regions, warped
moving and fixed image. The DM of two regions A and B is
formulated as:

DM (A,B) =
2|A ∩ B|

A+ B
(9)

b: HAUSDORFF DISTANCE
The HD [48] is another well-known metric which measures
the maximum deviation between two regions’ contours. The
HD between two contours (CA) and CB is formulated as:

HD(CA,CB) = max(max
i
(min

j
(d(piA, p

j
B))),

max
j
(min

i
(d(piA, p

j
B)))) (10)

where piA, p
j
B denote the set of all the points in CA and CB

respectively. The term d(·) denotes the Euclidean distance.
The DM and HD were computed by comparing the delin-
eations obtained using the registration methods with expert
manual contours. Table 1, 2 and 3 show themean and standard
deviations of DM and HD for all algorithms evaluated on
LA, ACDC and SCD datasets, respectively. The reported
values for methods indicated with ∗were taken from previous
publications [1], [23]. It should be noted that the presented
method (GMCNet approach) has a good performance on
all mentioned datasets (DM=0.85 − 0.88) and the reported
values in Table 1, 2 and 3 demonstrate that our approach
outperforms other registration methods in terms of both DM
and HD.

c: RELIABILITY
We also evaluated the performance of the proposed algorithm
using a reliability function computed based on DMs for each
dataset. The complementary cumulative distribution function
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TABLE 1. Quantitative evaluation of the results for cardiac MRI registration on the LA dataset. The evaluation is performed in terms of Dice
(mean±standard deviation) and HD (mean). The 2ch, 3ch and 4ch stand for the 2, 3 and 4-chamber. Values in bold indicate the best performance. Undef
stands for Undeformed.

TABLE 2. Quantitative evaluation of the results for cardiac MRI registration on the ACDC dataset. The evaluation is performed over the left ventricle in
terms of Dice (mean± standard deviation) and HD (mean). Values in bold indicate the best performance.

TABLE 3. Quantitative evaluation of the results for cardiac MRI registration on the SCD dataset. The evaluation is performed in terms of Dice (mean±

standard deviation) and HD (mean). Values in bold indicate the best performance.

is defined for each d ∈ [0, 1] as the probability of obtaining
DM higher than d over all volumes.

R(d) = Pr (Dice > d)

=
# Images segmented with DM higher than d

total number of images
. (11)

R(d) measures how reliable the algorithm is in yielding accu-
racy d . The corresponding reliability R(d) is plotted as a
function of Dice in Fig. 4. The reliability values at d =

0.80, 0.85, 0.90 and 0.95 are reported in Table 4, 5, and 6
for ACDC, SCD and LA datasets, respectively. Our algorithm
led to a higher reliability curve on all ACDC, SCD, and LA
datasets. We have 2%, 17% and 2% improvement in R(0.80),
respectively onACDC, SCD and LA. For instance, onACDC,
we obtained R(0.85) = 0.65, i.e, an excellent agreement

(DM > 0.85) in 65% of the cases, whereas the Elastix
[42] achieved 63% of the cases with similar accuracy. Also,
we obtained R(0.85) = 0.60 on SCD, whereas the SyN [13]
method, which has higher accuracy among other methods,
achieved 43%.

d: det(J)
To analyze deformation regularity in different algorithms,
we show the determinant of the Jacobian det(J ) [49]. If the
value of det(J ) equals 1, the area remains constant after
the transformation, whereas the value smaller or larger than
1 indicates the local area shrinkage or expansion, respectively.
The negative values of det(J ) imply that local folding and
twisting have occurred, which is physically not realizable and
mathematically not invertible [46]. The minimum of det(J ) of
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TABLE 4. Reliability function (R(d ) = Pr (DM > d )) for ACDC. The higher the R, the better the performance.

TABLE 5. Reliability function (R(d ) = Pr (DM > d )) for SCD. The higher the R, the better the performance.

TABLE 6. Reliability function (R(d ) = Pr (DM > d )) for LA. The higher the R, the better the performance.

deformation for each pair of images is reported. We use the
det(J ) computed by SimpleITK [50], [51], [52] to quantify
deformation regularity. Fig. 5 reports the minimum det(J )
values observed in each method. Since the negative value of
the determinant of Jacobian implies folding or twisting in the
deformation field, only theminimumvalue of the determinant
of Jacobian is reported. Each dot shows theminimum value of
the determinant of Jacobian for each image sample. No neg-
ative minimum values of det(J ) were observed for test cases
which indicates that the proposed method does not lead to
local mesh folding or twisting. This implies that the estimated
deformations are physically realizable. A Sample of warped
moving images and corresponding Jacobian determinant with
grid overlay is shown in Fig. 8. The determinant of jacobian
at each pixel is shown as a color map. Pixels with yellowish
color are showing the constant area, blue pixels indicate the
shrinkage area, and orange and red pixels indicate expansion.

2) IMPACT OF MULTI-RESOLUTION
We assess the impact of using different multi-resolution struc-
tures with GMCNet on the performance and reported the

corresponding evaluations in terms of DM and HD in Table 7.
The results indicate that high performance was obtained with
the use of three resolutions.

3) ASSESSMENT OF ROBUSTNESS AGAINST DIFFERENT
NOISE LEVELS
To assess the robustness of the proposed algorithm against
different noise levels, we selected a random sequence from
SCD and applied the same level of noise (speckle noise with
µ = 1 and σs = [0, 0.5, . . . , 4]) to every frame in the
sequence except for two randomly selected frames which
were corrupted with twice as much noise level than other
frames (standard deviation= 2σ ). The DM of each algorithm
was measured and plotted in Fig. 6. The results show that
our method is almost independent of the noise level and
at all noise level, we have the highest DM. This happens
because the proposed method uses shared weights for all
frames in a sequence, which capture the correlation between
frames. This, per se, leads to amore robust performance under
different levels of noise than non-learning-based methods.
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FIGURE 4. Reliability versus Dice metric of different algorithms: MM [16], RRT [43], Demons [46], SyN [13], SimpleElastix (Elastix) [42] and the proposed
algorithm. The figures omit results for methods with no public implementation available. The corresponding reliability R(d ) is plotted as a function of
Dice. As illustrated, our algorithm led to a higher reliability curve on all ACDC, SCD, and LA datasets.

TABLE 7. Quantitative cardiac MRI registration results on the ACDC, SCD
and LA based on different number of resolution of GMCNet. The
evaluation is performed in terms of Dice (mean±standard deviation) and
HD (mean). The 2ch, 3ch and 4ch stand for the 2, 3 and 4-chamber. Values
in bold indicate the best performance.

Also, the drop rate for the other methods is higher than the
proposed GMCNet method.

4) EVALUATION AGAINST GROUND TRUTH DEFORMATION
BY THIN-PLATE SPLINE
To analyze the spatial transformation in a controlled environ-
ment, we used the thin-plate spline algorithm to generate a
true deformation field [53]. The algorithm requires an initial
contour at end-diastole which was obtained by randomly
selecting patients fromACDC. First, the ground truth contour
was obtained for the end-diastolic frame. Then, by using a
diffeomorphic registrationmethod a set of control points were
generated. The contours include 20 equally spaced points
which were subsampled from the generated sequence of con-
trol points. The thin-plate spline method was then used to
produce a smooth interpolation between these sets of points.
We defined the least bent surface that fits through the control
points as follows:

f (x, y) = a1 + a2x + a3y+

n∑
i=1

(wiU (|Pi − (x, y)|), (12)

where the first three terms a1+a2x+a3y define the best-fitted

plane through the control points and the
n∑
i=1

(wiU (|Pi−(x, y)|)

term is correspondence to the bending forces provided by n
control points.
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FIGURE 5. Minimum of determinant of Jacobian results for different algorithms: MM [16], RRT [43], Demons [46], SyN [13], SimpleElastix (Elastix) [42]
and the proposed algorithm. The figures omit results for methods with no public implementation available. Since the negative value of the determinant
of Jacobian implies folding or twisting in the deformation field, only the minimum value of the determinant of Jacobian is reported. Each dot shows the
minimum value of the determinant of Jacobian for each image sample.

FIGURE 6. Dice scores (y-axis) for a randomly selected sequence from
SCD corrupted with speckle noise with increasing standard deviations
(x-axis). See details in the text.

The deformation fields generated by the thin plate spline
approach were used to verify and compare the performance
of different parameterization approaches: RRT [43], Demons
[44] and MM [16], Elastix [42], SyN [13], and the proposed
GMCNet method.

FIGURE 7. Root mean square error (RMSE) for quantitative evaluation of
the accuracy between the ground truth deformation field and the six
registration methods. The lower the values of RMSE, the more accurate
the registration.

The root mean squared error (RMSE) was calculated
between the deformation fields for both directions (x, y) and
summed. The RMSE is defined by:

RMSE =

√√√√1
n

n∑
i=1

(x̂i − xi)2 + (ŷi − yi)2 (13)
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FIGURE 8. Registration results by the proposed GMCNet method showing a warped moving image with grid
overlay and determinant of Jacobian. The determinant of jacobian at each pixel is shown as a color map. Pixels
with yellowish color are showing the constant area, blue pixels indicate the shrinkage area, and orange and red
pixels indicate expansion.

FIGURE 9. An example showing the predicted deformation results over the systolic phase of the cardiac cycle. It start from End-diastole (Frame 1) to
End-systole which is 10th in this sequence. The grid deformation over the sequence shows the impact of the application of the smoothness. Each
frame is registered to the next frame with a smooth transformation field computed using the proposed method.

where n is the total number of pixels in the deformation field
and (xi, yi) and (x̂i, ŷi) denote the true and estimated deformed
points, respectively.

Fig. 7 displays the performance of the various registration
algorithms compared to the ground truth thin plate spline
method. These algorithms were evaluated by the difference in
the deformation grids, RMSE, where images were corrupted
with different degrees of noise. It can be seen that when
there is no added noise, most of the methods yield similar
RMSE in the range of 0.52 − 0.53. However, the algorithm
performance is highly dependent on the noise level and even a
small increase in the value of noise would highly increase the
RMSE. On the contrary, the presented method demonstrates

less sensitivity to noise levels with the standard deviation
values of 0.0 − 1.5. Even for the greater noise levels with
standard deviation values of 1.5−3.5, our method still yields
the least RMSE.

5) PAIRWISE REGISTRATION
To assess the effects of groupwise registration, we also
applied our method as pairwise registration on images
acquired at end-systolic and end-diastolic phases which
have large deformation compared to neighbour frames in a
sequence that has a small difference. Tables 1, 2 and 3 show
the mean and standard deviations of DM and HD for pairwise
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GMCNet_p, which is evaluated on ACDC, SCD and LA
datasets, respectively. It can be seen from these tables that
the proposed sequential GMCNet_s outperforms GMCNet_p
in each tested case in terms of DM and HD.

V. DISCUSSION
In this study, we proposed a CNN based registration approach
to obtain accurate results by exploiting temporal informa-
tion from 2D image sequences. Registering a sequence of
images plays an important role in many applications includ-
ing cardiac functional assessment for MRI sequences. For
instance, left ventricle dysfunction is a significant condition
for adults and often requires the assessment of the regional
function [54]. A point-to-point registration approach could
be used for detecting regional left ventricular function abnor-
mality [55]. In addition to the functional assessment of the
left ventricle from short-axis MRI sequences, several other
applications could benefit from image registration applied
to 2D sequences. This includes functional assessment of
left ventricle from short-axis MRI sequences [55], the func-
tional assessments of left and right atria from long-axis MRI
sequences [56], [57].

An example of the prediction results of the GMCNet
method can be visualized in Fig. 9 where the images
were acquired from a patient’s MRI sequence. This exam-
ple shows that the proposed method leads to deformation
fields with no local folding or twisting. We evaluated the
approach on cine-MRI registration and compared registra-
tion performance in terms of DICE and Hausdorff dis-
tances to nine popular learning and non-learning based algo-
rithms, [1], [13], [16], [23], [42], [43], [44], [45], [46], and
our conference version method [37]. The performance of
our approach showed significant improvements in terms of
registration accuracy.

The proposed method is applied as a sequential registration
as well as pairwise registration for the datasets tested in this
study. In sequential registration, all images were processed
together, and therefore, we computed the equivalent time
for pairwise registration by dividing the total time by the
number of image pairs. In this case, the mean computational
times were around 13, 10, and 17 seconds per image pair
for ACDC, SCD, and LA datasets, respectively. In the case
of pairwise registration, the mean computational time was
around 25, 30, and 47 seconds for ACDC, SCD and LA
datasets, respectively. One of the trade-offs of not having
a dedicated training set is the additional time required for
the neural net to converge at each inference which leads to
increased computational complexity to obtain final results.
However, the proposed method is suitable for medical appli-
cations that are not time-sensitive and priority is given to
robustness and accuracy.

VI. CONCLUSION
We proposed a learning-free fully automated approach using
the structure of an untrained generative multi-resolution con-
volutional neural network for deformable medical image

registration. Optimizing the latent variables during the regis-
tration eliminates the need for regularization and tuning. The
proposed method has yielded promising results on cardiac
MRI images in comparison to the learning and non-learning
based methods. Moreover, the proposed method’s prediction
is not domain-specific and could be applied to any medi-
cal image sequence without resorting to annotated training
data. The proposed method was evaluated using a left atrial
dataset and yielded an average Dice score of 0.88, 0.87,
and 0.85 for 2, 3 and 4 chamber sequences, respectively.
It also yielded an average Dice score of 0.86 and 0.87 for the
left ventricular segmentation for the ACDC and Sunnybrook
datasets, respectively. Our algorithm captures the correlation
between frames in a sequence which leads to a more robust
performance under different levels of noise. Currently, the
presented methodology is applied to the temporal 2D regis-
tration problem. In the future, we will extend the proposed
method for temporal 3D sequences.
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