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ABSTRACT This paper proposes a novel invariant extended Kalman filter (IEKF), a modified version of
the extended Kalman filter (EKF), for state-of-charge (SOC) estimation of lithium-ion (Li-ion) battery cells.
Unlike conventional EKF methods where the correction term used to update the state is linearly proportional
to the output error, this paper employs the IEKF where the correction term is independent of the output error,
resulting in a significant reduction in the estimation error and improving the estimation accuracy. In contrast
to classic method like the EKF and more contemporary ones like the square root variant of the Cubature
Kalman Filter (SCKF), the IEKF can successfully mimic the nonlinear dynamics and mitigate measurement
noise stochasticity. Moreover, even if the measurement model fails to fully capture the cell’s dynamics,
the IEKF will still sustain a reasonable performance. Hence, IEKF outperforms the conventional EKF, and
even the SCKF, which can diverge if a mismatch between the SOC measurement model and the true SOC
measurement occurs. The derivation of the proposed method followed by experimental verification using
commercial Li-ion battery cells are presented.

INDEX TERMS Extended Kalman filter, invariant extended Kalman filter, EKF, IEKF.

I. INTRODUCTION
The Li-ion battery market continues its rapid growth every
year. According to [1], the global market of Li-ion battery
reached a value of USD 34.1 billion in 2020, and is expected
to reach USD 47 billion by 2023. The primary factor of
this steady growth of the Li-ion battery market is the need
for high-quality secondary batteries that have long service-
life, high power and energy densities, and maintenance-
free nature. These unique characteristics allow this battery
technology to stay ahead of other competing technologies.

Despite numerous advantages offered by Li-ion batteries,
many challenges need to be addressed for high-efficiency
utilization. Among these challenges is the state-of-charge
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(SOC) computation and tracking [2], [3]. Unlike the concept
of fuel gauge in a vehicle where the amount of fuel can
be easily measured and viewed on the vehicle’s dashboard,
the SOC of a battery cannot be measured. Nonetheless, the
SOC can be estimated if certain inputs, such as battery cell’s
voltage, current, total capacity, and temperature, are provided.
Real-time accurate estimation of the SOC is of utmost
importance in many applications since Li-ion batteries,
in specific, are extremely sensitive to high temperatures and
over (dis)charge. A Li-ion battery may easily catch fire if it
is exposed to high temperatures or if it gets over charged.
Over discharge may also cause irreversible damage. To avoid
such consequence, the battery management system (BMS)
may set excessively conservative SOC cutoffs to protect the
battery and ensure that the battery is never over (dis)charged.
While this procedure protects the battery from damage and
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extends its cycle-life, it does not allow for full utilization of
its capacity. If accurate SOC estimates are available, the SOC
operatingwindow can be expanded to allow formore efficient
utilization of the battery’s capacity.

The challenge of SOC estimation has been extensively
studied in the past two decades. Simple methods that employ
a lookup table for the open-circuit voltage (OCV) versus SOC
values or those that rely on the terminal voltage measurement
may be useful for inexpensive applications or applications
where the battery’s dynamics are low. However, for highly
dynamic applications, these methods are entirely unsuitable.
Current integration or coulomb-counting offers a higher-
performance method to track the SOC of a battery. The
critical limitation of this method is its inevitable failure after
several charge-discharge cycles due to its open-loop nature.
More advanced methods that overcome the above-discussed
shortcomings have been proposed since the early 2000s.
These proposed methods can be classified into two main
categories, namely, observer-based methods and data-based
methods. In the first group, the frequently utilized observer
is the extended Kalman filter (EKF) and its variants, [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], while
artificial neural network (ANN) based techniques dominate
the second group [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. Both EKFs and ANNs have their own advantages
and disadvantages. For example, while EKFs operate in a
closed-loop manner, ANNs do not. Data-driven methods in
general can be robust and stable due to their massive parallel
structure and can therefore provide accurate estimates if they
are trained well. They demand massive data for this training,
a requirement if not met will sacrifice the credibility of these
methods. Consequently, data-driven methods are accurate as
long as the operating conditions are similar to the training
conditions, a requirement that is hard to meet in practice.
Unlike data-driven methods, observer-based methods have a
closed-loop structure and can always converge even when
the initial state is wrong and/or when the system contains
uncertainty.

EKFs, unlike Kalman filters applied to linear systems, are
utilized for nonlinear systems and are not optimal. These
estimators assume that the noise statistics of the process
and measurements are known, which can be guaranteed
only in lab settings and simulated environments with known
test conditions. In addition, these estimators always assume
white, Gaussian with zero-mean, noise. This assumption is
unnecessarily true from a practical point of view. Moreover,
EKF-based methods such as [26] and [27] are strongly
dependent on the dynamic model they employ to predict
the internal state of a system. Consequently, the results are
only accurate if the dynamic model is accurate – a small
mismatch between the actual and model measurements leads
to significant estimation error and in many cases divergence.
While conventional EKFs are suitable for some applications
where the battery dynamics are relatively low, they are
guaranteed to fail in other applications where the battery
dynamics are high, such as in EVs. In EVs, the mismatch

between the filter’s model and the actual system’s model may
result from two main factors, namely, sensor inaccuracy or
unmodeled dynamics. Sensor inaccuracy caused by sensor
aging or failure leads to system offset or the addition of a
non-white noise component. On the other hand, unmodeled
dynamics include unmodeled temperature, aging dependency
of the model parameters or other dynamics that the cell’s
model fails to capture such as those correlated with transient
charge/discharge, hysteresis, and self-discharge. With an
objective of addressing EKF limitations, several filtering
techniques have been proposed, such as unscented Kalman
filters (UKFs) [28], [29], [30] and particle filters (PFs) [31],
[32], [33]. Although the UKF [28] utilizes a group of
sigma points to improve the distribution probability, it is
computationally more costly than the EKF. Additionally, the
selection of the sigma points could complicate the UKF
implementation. PFs [31] could outperform EKFs. However,
PFs require higher computational cost than the standard
UKF limiting their implementation to devices with high
computational power [34], [35]. Moreover, the optimality
measure of PFs remains unclear [34], [35]. Therefore, there is
a need for a novel solution that can produce a good estimate
at a low computational cost. A recently proposed invariant
extended Kalman filter (IEKF) [36], [37], a modified version
of the EKF, has been proven to be 1) computationally
cheaper, 2) simpler in implementation, 3) able to capture
system nonlinearity, and 4) characterized to produce better
tracking performance in comparison with the UKF. The IEKF
has been successful in several applications, for example,
aerospace dynamics estimation [38], robot localization and
mapping [39], autonomous submarine nonlinear model
dynamics estimation [40], and feature extraction and image
processing [41]. However, the use of the IEKF in battery and
SOC applications is still lacking.

This paper proposes a novel IEKF for estimating the
SOC of Li-ion battery cells in an EV application. The
proposed method considerably enhances the accuracy of
the SOC estimate as verified experimentally in this paper.
Unlike the conventional EKF, the IEKF mimics the system
nonlinearity through propagation and measurement update
steps significantly enhancing the estimation accuracy. The
invariance property allows the IEKF to preserve the model
geometry preventing the error from divergence. Moreover,
in comparison with the EKF, the IEKF produces better track-
ing performance. The IEKF is presented in a discrete form
to facilitate the implementation process at a low sampling
rate. As shown through the experimental verification, the
IEKF outperforms the EKF in the presence of a significant
mismatch between the SOC model output and the true SOC
measurement. The difference between the twofilters becomes
more apparent when the estimated state is far from the
true state, where the linearization carried out by the EKF
becomes invalid leading to the estimator’s divergence. The
proposed method is proven to provide high-accuracy SOC
estimation performance despite the highly nonlinear battery
dynamics.
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FIGURE 1. ESC model.

The organization of this paper is as follows: Section II
presents the nonlinear dynamics of the battery cell’s SOC
estimation problem and gives an overview of the standard
EKF in a discrete form. Section III explains the invariance
property and introduces the discrete version of the IEKF.
Section IV presents the effectiveness and robustness of the
proposed approach through experimental validation. Finally,
Section V concludes the paper.

A. NOTATION
In this paper, R and Rn×m denote the set of real numbers
and an n-by-m real dimensional space, respectively. Z =
{0, 1, 2, . . .} denotes the set of non-negative integer numbers,
and for any xt ∈ Rn, the subscript t ∈ Z denotes a non-
negative integer number which defines the value of x at a
sample instant t . In ∈ Rn×n denotes an n-by-n dimensional
identity matrix. sign(·), diag(·), exp(·), P(·), and E[·] denote
sign, diagonal, exponential, probability, and expected value
of a component, respectively.

II. PROBLEM FORMULATION AND EKF
The discrete Enhanced Self Correcting (ESC) dynamics are
employed to describe the behavior of the battery cell. This
circuit-equivalent model, shown in Fig. 1, is one of the best
models proposed to describe a dynamic battery cell [15].
It accounts for diffusion effects, describes hysteresis, and
always converges to the terminal voltage under constant-
current events. The dynamics consist of three states described
through the following three state equations (1)-(3):

SOCt = SOCt−1 + η
1t
C
it (1)

with SOC being the State of Charge, η being the battery health
factor which is usually set to 1 assuming that the battery is
new, and C denoting the battery capacity in A.h. The second
state equation describes the RC circuit dynamics:

iR1t = exp(−
1t
R1C1

)iR1t−1 +
(
1− exp(−

1t
R1C1

)
)
it (2)

with iR1t being the current in the RC network in Fig. 1,
and R1 and C1 being the resistance and capacitance values,
respectively, describing the RC network.
The hysteresis voltage is modeled by an instantaneous term

st and a state ht according to hyst = M0st +Mht . It has the

following state dynamics:

ht = exp
(
−

∣∣∣∣1tηγ itC

∣∣∣∣) ht−1
−

(
1− exp

(
−

∣∣∣∣1tηγ itC

∣∣∣∣))
sign(it ) (3)

where γ is a component tuned in accordance with experimen-
tal data, while

st =

{
sign(it ) |sign(it )| > 0
st−1 otherwise

Note that it and sign(it ) denote control input signals. The
measured observation is defined by

bt = OCV (SOCt )+ R1iR1t−1 + Rit +M0st +Mht (4)

where bt denotes the terminal battery voltage, OCV (SOCt )
denotes an empirical relation in terms of SOC which can
either be a lookup table or an analytical function such
as a polynomial, R denotes the internal resistance of the
battery, and it denotes the current input. The dynamics
and measurements in Eq. (1)-(4) are nonlinear and can be
summarized as follows:{

xt = f (xt−1, ut , ωt )
yt = h(xt , ut , vt )

(5)

where xt ∈ Rn stands for the current state vector, ut ∈ Rm

denotes the input vector, ωt ∈ Rn denotes unknown Gaussian
random noise with covariance matrix Qt = Cov(ωt ) =
E[ωtω⊤t ] ∈ Rn×n, f (·, ·, ·) : Rn

×Rm
×Rn

→ Rn represents
a nonlinear function which describes the evolution of the
system, vt ∈ Rq denotes unknown Gaussian random noise
with a covariance matrix Rt = Cov(vt ) = E[vtv⊤t ] ∈ Rq×q,
h(·, ·, ·) : Rn

× Rm
× Rq

→ Rq denotes a nonlinear
function which describes the system measured observation,
and yt ∈ Rq is the system output equal to the measured
observation. Mapping the nonlinear system model in Eq. (1)-
(4) to Eq. (5) one finds n = 3, m = 2, and q = 1 with
xt = [SOCt , iR1t , ht ]

⊤
∈ R3, ut = [it , sign(it )]⊤ ∈ R2, and

yt = bt ∈ R.

A. OVERVIEW OF EXTENDED KALMAN FILTER (EKF)
The extended Kalman filter (EKF), using a set of obser-
vations, evaluates in real time the estimate denoted by
x̂t = x̂t|t ∈ Rn which represents the state estimate.
For a linear system, this represents an unbiased estimate
of the state. In addition, the EKF determines the accuracy
measure P(xt |y1:t ) of the estimated state, where y1:t is the
sequence of observations y1, y2, . . ., yt . The filter operates
in two stages: propagation and measurement update. In the
propagation stage, x̂t−1 = x̂t−1|t−1 is defined utilizing the
observed yt−1, and is propagated deterministicallymimicking
the nonlinearity in Eq. (5) such that

x̂t|t−1 = f (x̂t−1, ut , 0) (6)
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Algorithm 1 EKF Implementation Steps
Initialization:

1: Set x̂0 ∈ Rn, and the covariance P̂0 ∈ Rn×n

loop
2: Define Ft , Gt , and Ht , as in (8).
3: From (5), define Qt = Cov(ωt ) and Rt = Cov(vt ).

/* Propagation */
4: x̂t|t−1 = f (x̂t−1, ut , 0)
5: Pt|t−1 = FtPt−1F⊤t + GtQtG

⊤
t

/* Measurement update */
6: St = HtPt|t−1H⊤t + NtRtN

⊤
t

7: Kt = Pt|t−1H⊤t S
−1
t

8: zt = yt − h(x̂t|t−1)
9: x̂t = x̂t|t−1 + Ktzt
10: Pt = (In − KtHt )Pt|t−1

end loop

Let us define the error between the true and the estimated state
as {

et−1 = xt−1 − x̂t−1
et|t−1 = xt − x̂t|t−1

(7)

Hence, the covariances associated with the estimation error
are defined by Pt−1 = E[et−1e⊤t−1] ∈ Rn×n, Pt|t−1 =
E[et|t−1e⊤t|t−1], and Pt = E[ete⊤t ]. The EKF operates based
on the system’s model linearization performed using first-
order Taylor series expansion of the nonlinear functions
f (·, ·, ·) and h(·, ·, ·) described in (5) where{

et|t−1 = Ftet−1 + Gtωt
yt − h(x̂t|t−1) = Htet|t−1 + Ntvt

(8)

where Ft =
∂f (x̂t−1,0)

∂x , Gt =
∂f (x̂t−1,ωt )

∂ω
, Ht =

∂h(x̂t|t−1,0)
∂x ,

Nt =
∂h(x̂t|t−1,vt )

∂v , and the high order terms have been
disregarded, visit [42].Pt−1 is propagated using the linearized
system’s error dynamics in (8) as:

Pt|t−1 = FtPt−1F⊤t + GtQtG
⊤
t (9)

In the measurement update stage, an innovation component
is defined as zt = yt − h(x̂t|t−1). The measurement and
covariance updates are defined by:

x̂t = x̂t|t−1 + Ktzt (10)

Pt = (In − KtHt )Pt|t−1 (11)

Algorithm 1 summarizes the implementation steps of the
EKF.

B. OVERVIEW OF CUBATURE KALMAN FILTER (SCKF)
In addition to the EKF presented in the previous section,
one more version of the Kalman Filter is presented. Namely,
the more recent SCKF [43] for its use of cubature points-
based sampling which approximated the nonlinear propaga-
tion associated with the battery measurement model. The
details behind the SCKF are omitted for brevity. However,

Algorithm 2 SCKF Implementation Steps
Initialization:

1: x̂k ← x0, P̂k ← Px0
loop

2: Sk =
√
P̂k

3: x(i)k = Skξ (i) + x̂k , i = 1, 2, . . . 2n
4: χ (i)

k = f (x(i)k , uk )
/* Propagation */

5: x̄k+1 = 1
2n

2n∑
i=1
χ
(i)
k

6: P̄k+1 = 1
2n

2n∑
i=1

(χ (i)
k − x̄k+1)(χ

(i)
k − x̄k+1)

T
+ Qw

/* Measurement update */
7: Sk+1 =

√
P̄k+1

8: x̄(i)k+1 = Sk+1ξ (i) + x̄k+1, i = 1, 2, . . . 2n
9: y(i)k+1 = h(x̄(i)k+1, uk )

10: ȳk+1 = 1
2n

2n∑
i=1

y(i)k+1

11: Pyk+1 =
1
2n

2n∑
i=1

(y(i)k+1 − ȳk+1)(y
(i)
k+1 − ȳk+1)

T
+ Rv

12: Pxyk+1 =
1
2n

2n∑
i=1

(x(i)k+1 − x̄k+1)(y
(i)
k+1 − ȳk+1)

T

13: Kk+1 = Pxyk+1(P
y
k+1)

−1

14: x̂k+1 = x̄k+1 + Kk+1(zk+1 − ȳk+1)
15: P̂k+1 = P̄k+1 − Kk+1P

y
k+1K

T
k+1

end loop

where:

ξ (i) =

{
+
√
n[1](i) i = 1, 2, . . . n

−
√
n[1](i) i = n+ 1, n+ 2, . . . 2n

[1](i) is the ith column of the I ∈ Rn×n identity matrix.
χ
(i)
k are the cubature points.
√
X is the matrix square root of X .

Algorithm 2 summarizes the implementation steps of the
SCKF. The square root variant of the CKF (the SCKF) is
chosen over the traditional CKF for its superior numerical
stability under tests.

III. DYNAMICS REFORMULATION AND IEKF
Let us recall the nonlinear dynamics in (5){

xt = f (xt−1, ut , ωt ), ω ∼ N (0,Q)
yt = h(xt , ut , vt ), v ∼ N (0,R)

(12)

where 
P{ω(0) = 0} = P{v(0) = 1} = 0
E[ω] = E[v] = 0
E[ωω⊤] = Q, E[vv⊤] = R

The fact that the above equation (12) follows Gaussian
process allows to reformulate the state equation in Gaussian
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process terms as follows [34], [35], [44], [45]:

xt = exp (diag(sign(F(xt−1, ut ))) diag(ψt ))F(xt−1, ut )

(13)

where F(·, ·) : Rn
× Rm

→ Rn is a nonlinear function
which expresses the evolution of the system, ψ ∼ N (0,Q),
ψ ∈ Rn denotes unknown Gaussian random noise, and the
output equation can be reformulated as follows:

yt = exp (diag(sign(H(xt , ut ))) diag(µt ))H(xt , ut ) (14)

where µ ∼ N (0,R), µ ∈ Rq denotes unknown Gaussian
random noise,H(·, ·) : Rn

×Rm
→ Rq is a nonlinear function

which describes the system measured observation, and
yt ∈ Rq refers to the system output which is equal to the
measured observation. µ, ψ satisfy

P{ψ(0) = 1} = P{µ(0) = 1} = 0
E[ψ] = E[µ] = 0
E[ψtψ⊤t ] = Qt , E[µtµ⊤t ] = Rt

(15)

Remark 1 (EquivalencyofExpectation [34], [35], [44]):
From (13), (14), and (15), it becomes apparent that E[ψ] =
E[µ] = 0 implies that E[exp(diag(sign(F(xt−1, ut )))
diag(ψt ))] |t=1:N = In and E[exp(diag(sign(H(xt , ut )))
diag(µt ))] |t=1:N = Iq which leaves the system dynamics
unaffected in the absence of noise. Thereby, one has{

E[xt ]|t=1:N = E[F(xt−1, ut )]|t=1:N
E[yt ]|t=1:N = E[H(xt , ut )]|t=1:N

(16)

Accordingly, in view of (13), (14), (15), and Remark 1,
the nonlinear dynamics in (5) can be reformulated and
summarized as follows:{
xt = exp (diag(sign(F(xt−1, ut ))) diag(ψt ))F(xt−1, ut )
yt = exp (diag(sign(H(xt , ut ))) diag(µt ))H(xt , ut )

(17)

Algorithm 3 IEKF Implementation Steps
Initialization:

1: Set x̂0 ∈ Rn and the covariance P̂0 ∈ Rn×n

loop
2: Define Ft , Gt , and Ht , as in (20).
3: Define Qt = Cov(ωt ) and Rt = Cov(vt ).

/* Propagation */
4: x̂t|t−1 = f (x̂t−1, ut , 0)
5: Pt|t−1 = FtPt−1F⊤t + GtQtG

⊤
t

/* Measurement update */
6: St = HtPt|t−1H⊤t + NtRtN

⊤
t

7: Kt = Pt|t−1H⊤t S
−1
t

8: zt = yt − h(x̂t|t−1)
9: x̂t = exp

(
diag(sign(x̂t|t−1)) diag(Ktzt )

)
x̂t|t−1

10: Pt = (In − KtHt )Pt|t−1
end loop

A. IEKF DERIVATION FOR DISCRETE SYSTEMS
The widely used IEKF is modeled on the Lie Group and has
been proposed in a geometric matrix form [37]. However,
the IEKF [37] framework has not been presented for linear
or nonlinear systems in a vector form. Unlike EKF, the
IEKF presented in this Section mimics the system dynamics
presented in (17). Analogous to EKF, IEKF consists of two
stages, namely propagation and measurement update. Note
that for the deterministic part of (5) and (13) one has

xt = F(xt−1, ut ) = f (xt−1, ut , 0)

Hence, the IEKF propagates a priori state estimate utilizing
the deterministic part of (13) such that

x̂t|t−1 = f (x̂t−1, ut , 0) (18)

The error in estimation is defined by{
et−1 = xt−1 − x̂t−1
et|t−1 = xt − x̂t|t−1

(19)

Thereby, the covariances associated with the error in (19)
are given by Pt−1 = E[et−1e⊤t−1] ∈ Rn×n, Pt|t−1 =
E[et|t−1e⊤t|t−1], and Pt = E[ete⊤t ]. Similar to (8), using
first-order Taylor series expansion of the nonlinear functions
f (·, ·, ·) and h(·, ·, ·) described in (5), one finds{

et|t−1 = Ftet−1 + Gtωt
yt − h(x̂t|t−1) = Htet|t−1 + Ntvt

(20)

where Ft =
∂f (x̂t−1,0)

∂x , Gt =
∂f (x̂t−1,ωt )

∂ω
, Ht =

∂h(x̂t|t−1,0)
∂x ,

Nt =
∂h(x̂t|t−1,vt )

∂v , and the high order terms have been
overlooked. Pt−1 is propagated as follows:

Pt|t−1 = FtPt−1F⊤t + GtQtG
⊤
t (21)

The a priori state estimate in (18) mimics the deterministic
part of the true nonlinear dynamics in (5). To accommodate
for the noise in (13) and mimic the nonlinear dynamics in
(13), let us define zt = yt − h(x̂t|t−1) and obtain the a
posteriori state estimate as follows:

x̂t = exp
(
diag(sign(x̂t|t−1)) diag(Ktzt )

)
x̂t|t−1 (22)

Note that the addition of Ktzt compensate for uncertainties
introduced by measurement uncertainities. The covariance
update is defined by

Pt = (In − KtHt )Pt|t−1 (23)

Algorithm 3 summarizes the implementation steps of the
IEKF.

IV. EXPERIMENTAL RESULTS
The proposed approach is experimentally evaluated in this
section using a publicly available drive cycle dataset [46].
The dataset describes a 2.9 Ah Panasonic cell (18650PF)
undergoing tests that include US06, HWFET, UDDS, and
LA92 drive cycles. Additionally, 4 synthetic cycles composed
of random mixtures of US06, HWFET, UDDS, LA92, and
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FIGURE 2. Experimental results for the US06 drive cycle under different initial conditions.

TABLE 1. Testing conditions and results for the scenario in Test Case IV-A. The same testing conditions are used for the scenario in Test Case IV-B.

ANN drive cycles are available in the dataset. The ANN
drive cycle is a combination of portions of US06 and
LA92 drive cycles, and it is designed to represent more
aggressive dynamics to properly verify the accuracy of the
SOC estimation algorithms. For all the tests, the battery
cell is placed in an 8ft3 thermal chamber with a 25A, 18V
Digatron Firing Circuits Universal Battery Tester channel.
It is worth noting that the power profile of the drive
cycle is calculated for an electric Ford F150 truck with a
35 kWh battery pack scaled for a single cell. These nine
drive cycle tests are intended to emulate a highly dynamic
application environment that serves to thoroughly investigate
the performance of the adopted algorithm.

Two test cases are investigated in this section. The effect
of varying the initial conditions on the performance of the
filters is investigated in the first test case. For a single
drive cycle, the filters are fed different initial conditions
to observe the capacity of each algorithm to recover and
converge to the true SOC. In the second test case, the filters
are fed experimental data pertaining to nine drive cycles to

quantitatively describe and evaluate the performance of the
proposed IEKF compared to the more traditional EKF.

A. TEST CASE 1: EFFECT OF INITIAL CONDITIONS ON
ESTIMATION ACCURACY
The initial SOC in a battery cell is not always known
accurately. A good estimation algorithm should be able to
recover from bad initialization and not ‘‘lock out’’ or prior-
itize the dynamics model prediction over the measurement
and vice versa. Here, the ability of the proposed IEKF to
recover from bad initialization and estimate the SOC of a
battery cell is compared against the traditional EKF. The
algorithms are evaluated under an array of initial conditions
for the SOC; the filters are run once with correct state
initialization and four times with erroneous initialization.
The test uses the US06 drive cycle dataset. The initial
state and initial covariance are set according to Table 1
in all the test cases. Additionally, noise covariance magni-
tudes of Q = diag(

[
1× 10−12 1× 10−3 1× 10−3

]
) and

R = 1× 10−3 are used in all the tests.
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FIGURE 3. Experimental results under correct initial conditions.

Fig. 2 presents the experimental results of the US06 drive
cycle for all the tested cases for both the EKF, the SCKF, and
the IEKF. The proposed IEKF is evidently very capable at
estimating the SOC of a battery cell even when the initial
conditions are incorrectly initialized. In every test shown, the
IEKF shows the best SOC estimation performance followed
by the SCKF and finally the traditional EKF. This order is
not surprising as the battery measurements model is very
nonlinear. Hence, the IEKF and the SCKF should outperform
the EKF as they are shown to approximate or mimic the
nonlinear model much better. It is noteworthy to mention that

the quality of the SOC estimate depends on the chosen initial
covariance P̂0 corresponding to the certainty of the initial
condition being tested. The initial covariance has to be set
properly.

As shown in [36] and [37], the IEKF is immune to the
losses in linearization associated with the classical EKF. This
leads to the decrease in estimation error with time in the IEKF
case, while it might lead to divergence of the EKF. It is evident
the nonlinear structure of the IEKF is proving advantageous
to the SOC estimation problem due to the nonlinearities
present in the system.
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FIGURE 4. MAE performance summary.

TABLE 2. MAE performance results under a wide range of initial conditions.

B. TEST CASE 2: DRIVE CYCLE PERFORMANCE
Not only is a good estimator able to recover from bad
initialization, but it should also perform well in different
conditions and environments. The proposed IEKF is further
evaluated here on a total of 9 drive cycles that serve to emulate
a wide array of possible conditions an EV battery pack can
experience. In Fig. 3, the experimental performance of the
EKF and the IEKF is shown for two initial conditions similar
to Test Case 1 in section IV-A. That is, SOC0 = 1 and
SOC0 = 0.75. Only two cases are shown in Fig. 3 for
brevity and clarity of the figure. However, the performance
of both filters has been evacuated for all the test cases and
drive cycles and is shown in this section in a tabular format.
The use of a high fidelity dynamic model that is able to
capture the dynamics of the battery cell well leads to good
performance of both filters even in the presence of incorrect

initialization. Nonetheless, the IEKF reportedly performs
better than the EKF on the long run across all the tests even
though the EKF is sometimes initially quicker to approach
the true SOC. The IEKF also seems to result in less MAE
spread across all the tests when compared with the EKF.
On average, the EKF achieved MAE values ranging between
2.61% and 12.87% throughout the tested scenarios. The
IEKF, on the other hand, outperformed the EKF achieving
MAE values ranging between 0.70% and 0.79%. An identical
trend is also noticed looking at the RMSE values, which
is a measure that penalizes larger deviations from the true
SOC state.Table 2 summarizes the MAE results calculated
from the responses in Fig. 3, and Table 3 summarizes the
RMSE results calculated from the responses in Fig. 3. Also,
Fig. 4 presents a graphical representation of the data in
Table 2. It is obvious that the IEKF consistently outperforms
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TABLE 3. RMSE performance results under a wide range of initial conditions.

FIGURE 5. A simplified diagram for the implementation of the proposed
method in a battery charging application.

the traditional EKF in all the tested scenarios. The better
performance of IEKF is not surprising as it does not rely
on linearizing dynamics of the battery cell model. Instead,
it makes use of the nonlinear dynamics directly in propagating
the predicted a priori state to realize the updated a posteriori
estimate. The high nonlinearity involved in the battery cell
model does benefit immensely from this new tool, which does
not loose accuracy due to lineralization like the EKF.

One final note to consider is that it is common practice to
significantly inflate the noise covariance magnitudes when
applying the EKF [36], [37] in a highly nonlinear setting. This
is sometimes referred to as robust tuning. While this works
from a practical point of view, it does present detrimental
consequences on the interpretation of the state covariance
P as it will no longer be deemed accurate. The physical
interpretation of thesematrices will be lost with robust tuning.
Use of the IEKF will preserve the physical meaning behind
these matrices.

V. CONCLUSION
In this paper, a novel IEKF has been proposed to address the
nonlinear battery cell SOC estimation problem. The IEKF
is characterized by an invariance property which allows the

filter to preserve geometry preventing error divergence. The
filter has been shown tomimic the nonlinear system dynamics
in terms of propagation and measurement update.

The IEKF was tested using a publicly available real-
world EV dataset scaled to suit a 18650PF 2.9 Ah Panasonic
cell. The cell dynamics were described using the Enhanced
Self Correcting three-state model that accounts for both
hysteresis as well as diffusion effects. Extensive experimental
verification of the algorithm established its superiority over
the traditional EKF approach, especially when the initial
conditions fed to the algorithm are incorrect.

Fig. 5 shows a simplified block diagram that demonstrates
the implementation of the proposed SOC estimation method
in a battery charging system as an example. A buck converter
is used to regulate the charging power of the battery. The
terminal current and voltage of the battery at instant k (ik
and vk ) are sensed and converted to digital signals using
analog-to-digital conversion (ADC) units. The proposed
IEKF algorithm uses these measurements to update the SOC,
and based on the estimated SOC value, a signal (fk ) is
generated to control the pulse-width-modulation (PWM) unit,
which in turns generates the proper duty cycle (dk ) that allows
the converter to deliver the proper charging power that meets
the battery charging requirements.
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