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ABSTRACT Phishing attacks are a type of cybercrime that has grown in recent years. It is part of social
engineering attacks where an attacker deceives users by sending fake messages using social media platforms
or emails. Phishing attacks steal users’ information or download and install malicious software. They are hard
to detect because attackers can design a phishing message that looks legitimate to a user. This message may
contain a phishing URL so that even an expert can be a victim. This URL leads the victim to a fake website
that steals information, such as login information, payment information, etc. Researchers and engineers work
to develop methods to detect phishing attacks without the need for the eyes of experts. Even though many
papers discuss HTML and URL-based phishing detection methods, there is no comprehensive survey to
discuss these methods. Therefore, this paper comprehensively surveys HTML and URL phishing attacks
and detection methods. We review the current state-of-art deep learning models to detect URL-based and
hybrid-based phishing attacks in detail. We compare each model based on its data preprocessing, feature
extraction, model design, and performance.

INDEX TERMS Intelligent detection, HTML, URL, phishing attacks, social engineering, machine learning,
natural language processing.

I. INTRODUCTION
Phishing attacks are cybercrime using social engineering to
deceive users into stealing their information, such as per-
sonal identity, financial information, etc. Masquerading as
legitimate sources, attackers can reach victims by sending
fraudulent messages using emails (such as Gmail, Outlook,
etc.) or social media platforms (like Twitter, Facebook, etc.).
Users become vulnerable if they input their information or
download attachment files [1].

In recent years, there has been an increase in social media
platform attacks since it is easy for attackers to reach many
users from anywhere in the world by posting a single mes-
sage [2]. According to [2], the Anti-Phishing Working Group
(APWG) reports the number of phishing attacks increased by
250000 in one month in Jan 2021. In addition, the number

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

of business compromises increased 56% from the last quarter
of 2020 to the first quarter of 2021. Fig. 1 shows that the
most targeted industries in 2021 are financial institutions,
social media, and web emails [2]. Based on Fig. 1, attackers’
primary focus is to steal victims’ financial information or
identities by targeting financial industries and social media
platforms, respectively. Attackers also might send malicious
software that leads to other cyberattacks, such as malware
attacks, ransomware attacks, etc.

Increasing phishing attacks in recent years and their
cybersecurity threats have become an important issue to be
solved [3]. Most current organizations rely on using human
knowledge to detect these attacks [4]. Nevertheless, phishing
attacks are complex for the human eyes to identify, even for
an expert, due to the similarity between legitimate and fake
messages. Therefore, cybersecurity experts pay more atten-
tion to the message attachments, such as Uniform Resource
Locators (URLs) or email IDs, etc., to recognize phishing

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 6421

https://orcid.org/0000-0002-7405-7646
https://orcid.org/0000-0001-8549-6794
https://orcid.org/0000-0001-8380-2487
https://orcid.org/0000-0001-6754-8976
https://orcid.org/0000-0003-0474-953X


S. Asiri et al.: Survey of Intelligent Detection Designs of HTML URL Phishing Attacks

FIGURE 1. APWG report 2021 [2].

messages. Nevertheless, attackers improve their attack tech-
niques by using new methods to design phishing attacks
that are hard to detect. For example, they design a phishing
URL and webpage that look similar to a benign URL, such
as https://www.facebook.com/, https://www.faceb00k.com/,
https://www.facebook.edu/, etc. Therefore, it is essential to
determine methods to distinguish a phishing URL from a
benign URL. As a result, researchers have proposed several
solutions in recent years with high accuracy to detect phishing
attacks, such as blacklist [5], traditional machine learning [6],
and Deep Learning (DL) [7], [8], [9], [10]. We provide a brief
analysis of each solution as follows.

• Blacklists are lists of websites’ URLs that are most
likely phishing websites. The systems block all URLs
or IPs in this list. However, this method has a significant
drawback. A system must have a phishing attack URL
to block it; it does not detect it if the URL is not on the
list.

• Traditional machine learning models are utilized
to detect phishing attacks. However, traditional
machine-learning models need to extract features manu-
ally [11]. Hence, it requires human effort and is time-
consuming to extract a set of features [12]. These
features are based on the available URLs. Thus, when
attackers design new phishing URLs, it increases the
feature analysis and extraction, leading to a high feature
dimension [10]. Even with this effort of analyzing large
sets of features and high dimensions, it cannot avoid
being attacked with the new phishing URLs [10].

• The advantage of using a DL approach to detect phish-
ing URLs is that a model extracts the features without
human efforts for both text and image. However, there
are some problems due to the intelligent design of the
phishing attacks and the phishing webpage created by
new DL methodologies. For example, a model is trained
to detect long URLs. But, it does not detect tiny URLs
[13]. Also, DL has some drawbacks, such as it requires
a huge dataset to train, test and validate the models [12],
[14], [15]. It is also costly due to the complexity of DL
models [12].

Different types of data can be used to detect phishing
attacks, such as URL-based [5], [6], [8], [9], content-based

[16], [17], and hybrid-based [10], [18]. URL-based methods
extract URL information without exploring anything else,
such as webpage content, title, etc. URL-based has the advan-
tage of detecting a phishing message without clicking on the
URL and encountering the risk of downloading and installing
malicious software. However, extracting only URL-based
features causes a lack of vital features of the phishing web-
page, such as page title and page code [10]. It is also hard
to analyze tiny URLs using only URL-based. Content-based
approaches extract information from webpage content such
as images, JavaScript, text, HyperText Markup Language
(HTML) code, etc. Nevertheless, the content-based approach
makes users or systems open the webpage and extract con-
tent, leading to a possibility of an attack by download-
ing malicious software and installing it. The hybrid-based
content feature integrates the URL-based and content-based
features.

There are several survey papers conducted reviewing
phishing detection methods. Each of these papers examines
the state-of-art from a different perspective. We summarize
them as follows.

First, the authors in [19], [20], [21], and [22] survey state-
of-art detection methods based on various feature extrac-
tion, selection, and their performance. The authors in [19]
survey phishing emails and their detection methods based
on Natural Language Processing (NLP) and machine learn-
ing. Their survey analyzes spoofing emails and different
features extracted from content-based, such as email text,
URL-based, or hybrid-based. The authors in [20] survey
state-of-art features extract methods from webpages such
as URL, HTML, Cascading Style Sheets (CSS), etc. They
analyze different types of features, such as URL-based and
content-based, and their performance with various machine
learning models. The authors in [22] analyze state-of-art
detection methods of phishing URL-based using machine
learning. Their survey reviews the history of phishing attacks
and the current detectionmethods such as list-based, heuristic
strategy, and machine learning-based. They also review a
set of frameworks to detect phishing attacks, such as web
browser extensions, phone applications, etc. The authors
in [21] report a survey on the usage of URL-based, source
codes, and image features with machine learning to detect
phishingwebpages. They study the feature selections for each
type, such as tracking the login screen from source code, etc.
These surveys [19], [20], [21], and [22] did not investigate
applying DL models for feature extraction. They analyze
different feature selections and traditional machine learning
performance. However, traditional machine learning models
have the drawback of manually extracting features from the
input data. This problem leads to another problem, such as
the extracted feature based on the provided input dataset.
Therefore, new datasets need a new feature selection hence
increasing dataset dimension. The authors in [22], and [19]
briefly mention some DLmodels such as Convolutional Neu-
ral Network (CNN), Recurrent Neural Network (RNN), etc.
Nevertheless, they did not review the state-of-art DL models,
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TABLE 1. Limitation of existing survey papers.

nor did they review each model’s data preprocessing and
feature extraction.

Second, the authors in [23] and [24] survey the state-
of-art detection method based on the learning type. The
authors in [23] investigate Artificial Intelligence (AI) tech-
niques of phishing detection such as DL, machine learn-
ing, hybrid-based learning, and scenario-based learning for
building phishing detection. They study each method and
compare its performance, advantage, and limitation. How-
ever, their study [23] lacks information about state-of-art
models built using DL models. Even though their paper
includes a section onDLmodels, they review some traditional
machine learning models instead, such as Support Vector
Machines (SVMs), Decision Trees (DT), etc. Therefore, they
did not provide more in-depth details of actual models built
using DL. Furthermore, it does not provide information on
the state-of-art methods of handling data preprocessing and
feature extraction. The authors in [24] investigate website
phishing detection methods through URL-based, content-
based, and hybrid-based. They study these types based on
list-based, heuristic rule, and learning-based detection meth-
ods. Furthermore, they compare the methods based on their
performance and limitation, usage of the third party, and
language independence. Nevertheless, their survey reviews
a few DL models without providing in-depth details of how
these models handle the input data. For example, it did not
provide the proposed feature extraction methods for HTML
data.

In addition, Table 1 shows the limitation of current studies
of phishing detection methods. It shows that most current
studies did not explain in-depth data preprocessing. They
only study the DL models used in each method without
going into more detail about how the model handles input
data, such as data tokenization, feature selection, and feature
extraction. Therefore, a crucial step is not explained. Study-
ing and comparing the current state-of-art data preprocessing
methods is very important due to the disparity in the model’s
performance with each method. Table 1 also shows a few
papers that investigate the unsupervised learningmodels [25],
[27]. In [27], the authors only study one type of unsupervised
learning, such as k-means clustering. The authors in [25]

study multiple unsupervised learning models. However, their
study lacks an explanation of the data prepossessing.

Based on the previous literature, Table 1, and to the best
of our knowledge, we summarize the existing survey papers’
limitations as follows:

• There is a lack of a survey paper that in-depth reviews
DL models to detect phishing attacks. Most of the
current surveys only mention the models without their
details.

• There is a lack of a survey paper investigating data pre-
processing for DL models, such as input tokenization,
feature selection, and extraction.

• Although many researchers use these methods, there is
a lack of up-to-date comprehensive studies on applying
unsupervised URL-based DL models to detect phishing
attacks.

Therefore, this paper provides a comprehensive survey
investigating URL-based and HTML data preprocessing and
DLmodels to detect phishing attacks. The main contributions
of this paper are listed as follows:

• We survey current state-of-art DL models to detect
phishing attacks. We investigate their strengths and
weaknesses in data preprocessing approaches, such as
data cleaning, tokenization, and embedding.

• We categorize the detection methods based on the type
of data (hybrid-based, URL-based) and the learning
style (supervised, unsupervised) and provide a survey
for each category. Then, we study each category starting
from input data, data cleaning, tokenization, embed-
ding, feature extraction, and DL model until the model’s
output.

• We analyze and compare the detection methods’
strengths and weaknesses in data preprocessing and
feature extraction. In addition, we conduct a general
comparison of the models’ design and performance.

The rest of the paper is organized as follows. Section II
presents a short survey of URL phishing attacks, evaluation
models, dataset resources used for training, and the DL pro-
cess. Section III reviews the state-of-art phishing detection
model based on URL and hybrid features. In Section IV,
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FIGURE 2. URL components.

we compare these methods. In Section V, we discuss some
limitations and challenges of state-of-art DL phishing detec-
tionmodels. Finally, we conclude the paper and present future
direction in Section VI.

II. PHISHING ATTACKS, DATASETS, AND DEEP
LEARNING PROCESS
A. PHISHING ATTACKS
As discussed in the above section, phishing attacks have
increased rapidly. The increase is partially due to the sim-
plicity of the design of these attacks. They can be done any-
where without being in the same place as the victims. These
advantages made phishing attacks one of the most dangerous
attacks that persons and organizations suffer. It works by
sending victims fake URLs using email and social media. The
URLs transfer the victims to fake websites to deceive them
into sharing personal information such as credit card num-
bers, login information, etc. Most of the time, phishing URLs
are hard to identify due to the similarity between phishing and
benign URLs. URL contains four parts, as shown in Fig. 2.
First, the URL protocol shows us how the data is transmitted.
The second part is the host, including the Top-Level Domain
(TLD) and a Second-Level Domain (SLD) [28]. TLD helps
distinguish the purpose of the domain; for example, edu
represents the domain for education purposes, as shown in
Fig. 2. SLD usually contains the website name. The third
part is a path with the exact location of the required webpage.
The final part can be a query and may have many parameters.
Also, it can be an anchor which transfers the user to a specific
location on the webpage, as shown in Fig. 2.
There are different techniques that attackers use to design

fake URLs. First, an attacker can design a phishing URL
by adding Structured Query Language (SQL) injection
or Cross-Site Scripting (XSS) attack [29]. Second, the
attacker can use the organization name (i.e., SLD) with
a different TLD, for example, www.ua.com, instead of
www.ua.edu [30]. In this way, the inexpert user may fall
into this trap and be a victim of the attack. Therefore, orga-
nizations focus on designing systems that identify phishing
attacks by analyzing hostname and a combination of SLD and
TLD. Third, URLs use a different protocol, such as ’shttp.’
Fourth, an attacker can design a URL like a well-known
organization URL by simply changing its spelling. Fifth,
an attacker can design a URL with random words, resulting
in a long URL [4]. Sixth, attackers design URLs and wrap
them behind tiny URLs. Tiny URL is a service that shortens
the URLs by producing a new URL with a different pat-
tern [31], such as ‘‘https://tinyurl.com/brbm97cx’’ is a tiny
URL of the URL in Fig. 2. A traditional detection model
fails to detect tiny URLs because they have different patterns
than the original URLs. Finally, attackers create a website

utilizing well-known blog hosting platforms such as Google
Sites [32] and embed the phishing URL as a hyperlink in a
fake blog. Hence, the attackers hide the phishingURL inside a
legitimate website. Thus, phishing detection techniques may
not detect these attacks because they may analyze the URL
generated by the Google Sites, a legitimate URL instead of
the phishing URL.

B. DATASETS
Designing an excellent model needs to have substantial
datasets to train it. Due to the growing number of phish-
ing attacks in recent years, the need for high-quality and
new datasets for better model performance has increased.
Therefore, we must first review their datasets to understand
the state-of-art models better. Thus, Table 2 lists phishing
and benign widely used datasets. This section reviews the
most common phishing detection datasets used in state-of-art
papers as follows.

• PhishTank [33] is the first dataset in the table due to its
high usage in phishing detection models. It is a black-
list operated by Cisco Talos Intelligence Group (Talos)
containing around 7 million phishing URL records [33].
According to their website [33], two million records are
verified as phishing. In addition, 11000 URLs of the two
million are online, and the remaining are offline because
the phishingURLs are removedwhenever the attacks are
made. If a URL is online, its webpage could be viewed
using PhishTank.

• Alexa [34] is a website organized by Amazon that
provides analytic tools to analyze the websites’ per-
formance. Such as a website ranking, a tool that lists
millions of benign website URLs ranked based on
probability.

• JoeWein [35] is an open-source API containing a black-
list of 15000 phishing URLs.

• Common Crawl [36] is a website that crawls through the
web and provides many datasets of benign websites and
their metadata such as page content, URL, etc.

• OpenPhish [37] is a platform that contains 18 million
phishing URLs. It also provides metadata such as page
content, IP address, etc.

Table 3 shows examples of phishing URLs. It shows that
the most common attack is misspelled well-known websites,
such as the URLs in rows 6 and 8.

C. DEEP LEARNING PROCESS FOR PHISHING ATTACK
DETECTION
This section reviews the essential DL steps and their appli-
cations in state-of-art phishing detection papers. As shown
in Fig. 3, DL generally has four steps: data collection, data
preprocessing, model training, and model evaluation.

1) DATA PREPROCESSING
Data prepossessing is the first step in machine learning, and
DL tasks [46], [47], [48]. It prepares raw data, such as text,
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TABLE 2. List of the datasets.

TABLE 3. Example of URL in the datasets.

FIGURE 3. DL process.

images, etc., for model classification. Generally, data prepro-
cessing has different steps based on the type of data and its
goals [49]. Thus, this section analyzes the data preprocessing
applied for URL-based and hybrid-based phishing detection.
As shown in Fig. 4, raw data go through three steps, data
cleaning, tokenization, and representation.

First, data cleaning removes unwanted information from
the input, such as stopwords, data noise, special charac-
ters, etc. However, a URL contains special characters rep-
resenting essential detail in the URL. For example, the
hash sign ’#’ represents a fragment in the URL. Therefore,
removing a special character must be done carefully, so the
URL does not lose important details. Thus, most of the
URL-based models do not require data cleaning, such as [7],
[10], [29], [50], [51], [52], [53], and [18]. However, the
authors in [54] aim to extract meaningful words from the
URLs. Accordingly, they remove all special characters from
the URLs.

Second, data tokenization is to split the text into tokens.
Each token can be character-level, word-level, or sentence-
level. Character-level is to split the input data into characters.
Character-level is helpful when the small detail of the input is
important such as single characters or unknownwords.Word-
level is to split the input data into words.Word-level is helpful
when the goal is to learn word meaning. It is beneficial,

FIGURE 4. Data preprocessing.

especially with text classification, such as sentiment analysis.
Sentence-level is to split the input data into sentences. The
authors of phishing detection papers have different methods
for handling input data. For the URL-based, the input data can
be split into character-level, such as [7], [29], and [55]. It can
also be split into word-level, such as [53]. In addition, some
papers use a combination of word-level and character-level,
such as [10], [50], [51], [54], and [52]. Splitting the URLs into
word-level can be done by using the URL symbols such as‘.’,
‘:’, ‘//’, etc. The authors in [10] go beyond word-level and
character-level. They propose a hybrid-based model using
three different data: URL, Document Object Model (DOM),
and page content. Therefore, they propose splitting page con-
tent (HTML) data into word-level and sentence-level.

Third, data representation converts the input data into
numeric values to train a DL model. These values should
capture the text’s lexical, semantic, and syntactical mean-
ing, so the model trains on these features [56], [57].
In recent years, data representation in NLP is improved
rabidly by proposing different techniques such as one-hot
encoding, FastText [58], Bidirectional Encoder Representa-
tions from Transformers (BERT) [59], Skip-Gram [60], Bag
of words [61], etc. Each one of these methods looks at the
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FIGURE 5. Convolutional layer.

problem from a different perspective. A bag of words is
a traditional data representation technique used in different
data types, such as images, text, etc. In the text, it collects
words in documents with a number of its appearance [61].
Therefore, it discards grammar and word order. FastText [58]
is an open-source library published by Facebook AI for text
classification and word embedding. FastText handles each
word as an n-gram; hence each word is split into smaller
words. It is helpful, especially with the combination of words
in URLs, e.g., checkout is broken into che, hec, eck, and
out. Then, each part of the n-gram is hashed to a unique
number. Then, it calculates the sum of the n-grams for each
word. Then, it calculates the dot product for each word and
its neighbor. Finally, it passes the result to the sigmoid func-
tion to calculate the match score. One-hot encoding converts
each token into a vector with a value of 1 for each sample
corresponding to its original category and zeroes to others.
Skip-gram is a machine learning model to generate a vector
from a text introduced in [60]. Skip-gram handles the text as
a word pair, i.e., (context, target). First, the model encodes
the text using the one-hot encoding introduced above. Then,
the model starts by tokenizing the first word in the sentence
and adding the next word in the same pair. For example,
the skip-gram generates two pairs < hello, new > and <

hello,world > for ’hello new world.’ Then, the model moves
to the second word in the sentence, ’new.’ In this case, there
is a word on its left. Therefore, the model adds the word on
the left and the right as a target in the pair. For example, the
target is the word ’new’ in the previous sentence; the model
generates two pairs < new,world > and < new, hello >.
Then, these pairs are passed to a neural network to learn the
context of the sentence.

2) DEEP LEARNING MODELS
After data preprocessing, the data is passed to a DL model
for training. In recent years, there has been an increase in
the number of DL models to detect phishing attacks, such
as phishingnet [54], Convolutional Gated Recurrent Unit
(CGRU) [29], URLNET [51], etc. These models have one
thing in common: applying multiple DL layers such as con-
volutional, pooling, and fully connected layers. The convolu-
tional layer is essential to the CNN [62]. It is a filter applied
to input data to map its features [63]. As shown in Fig. 5,
the filter is smaller than the actual data, so it starts from the
beginning and slides the window until the end of the input
data. Each window calculates the dot products of the input
data with the filter. As a result, the dot product generates a

new matrix highlighting the main feature of the input data.
Thus, the model is trained using these features. The pooling
layer applies a pooling operation to reduce the feature dimen-
sion generated by the convolutional layers. Many pooling
operations can be used, such as max pooling, min pooling,
average pooling, etc. Finally, a fully connected layer (FCN)
is a traditional neural network. Equation 1 summarizes the
FCN operation.

hi = f
(
wTi x + bi

)
, (1)

where f is the activation function, wTi is the weight, bi is
the bias belonging to the previous layer i, and x is the input
matrix.

Another standard DL model is the sequence model such
as RNN [64], Gated Recurrent Unite (GRU) [65], etc. These
models work on sequential data such as text classification,
video recognition, etc. Their goal is to remember the previous
input to classify the current input. For example, phishing
attacks are a type of social engineering attack it reaches a
user using social media, email, etc. Thus, phishing attacks
contain text such as message content, URL, etc. Text is a
sequence of data where the beginning, middle, and endmatter
to understand the text. Thus, the model should be trained
based on the previous feature and generate a new one passed
to the next layer. The most common sequence model is Long
Short TermMemory (LSTM) [66]. As shown in Fig. 6, LSTM
uses three gates for this case: an input gate, a forget gate and
an output gate. It also uses two states: the hidden state and
the cell state. The hidden state stores information from the
previous layer. The cell state is the main difference between
LSTM from RNN. It carries information to the entire chain
with a minor change in each layer. Thus, each layer receives
features from the previous layers. The model accepts inputs
from the feature extraction layer, previously hidden state, and
cell state and then passes them to the forget and input gates,
as shown in Fig. 6. The forget gate decides whether the input
from the previous state is relevant or not using Equation (2),
and the output is either 0 or 1. Therefore, this output decides
which value from the cell state is forgotten. The input gate
calculates the importance of the input using Equations (2) and
(3) and passes its value to the cell state. Finally, the output
gate calculates the value of the hidden state for the next layer.
As shown in Fig. 6, the output gate contains information
on the previous input using Equation (2). It also contains
information on the new value in the cell state using Equation
(4). Accordingly, it calculates the value of the hidden state for
the following layer using Equation (5).

it
ft
ot


 = sigmoid


Wi
Wf
Wo

 ht−1+


Ui
Uf
Uo

Xt+


bi
bf
bo


 ,

(2)

C̃ = tanh(Uc • Xt +Wcht−1 + bc), (3)

Ct = ft • Ct−1 + it • C̃t , (4)

ht = Ot • tanh (Ct ), (5)
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FIGURE 6. LSTM layer.

where i is the input gate, f is the forget gate, and O is the
output gate; C̃ is the current state of the cell memory, Ct is
the memory cell state, and ht is the hidden layer; W and U are
the weighted matrixes of each gate, and b is the bias value of
each gate; Xt is the current input.
These two models are common in many text classification

problems such as sentiment analysis [67], [68], spam detec-
tion [69], [70], phishing detection [10], [50], [51], [54].

3) EVALUATION
Before we review the state-of-art methods in the next section,
we need to explain the metrics used to evaluate the perfor-
mance of the proposed models. Most of the state-of-art phish-
ing detection models are binary classification. Therefore,
a model contains two classes, positive and negative classes.
The positive classes are benign webpages, and the negative
classes are phishing webpages. Five standard metrics have
been used to assess the performance of the DL model: accu-
racy, True Positive Rate (TPR), False Positive Rate (FPR),
precision, and F1 score. Some papers use all these metrics to
evaluate their models, and others use some of these metrics.
First, the TPR, also called recall, represents the probability
of the correct prediction of the positive class, i.e., a model
correctly predicts the input as a benign webpage. Second, the
FPR represents the probability of the incorrect prediction of
the positive class, i.e., a model predicts a benign webpage, but
it is phishing webpage. Third, precision is the probability of
correctly predicting a URL as phishing among all correctly
predicted values. We have their formulas as follows.

Accuracy =
YTP + YFN

YTP + YTN + YFP + YFN
, (6)

TPR(recall) =
YTP

YFP + YTN
, (7)

FPR =
YFP

YFP + YTN
, (8)

Precision =
YTP

YTP + YFP
, (9)

F1 = 2 ×
Precision× recall
Precision+ recall

, (10)

where YTP, true positive, is the number of URLs where the
model correctly predicts it as phishing; YFP, false positive,

is the number of URLs where the model incorrectly predicts
it as phishing; YTN , true negative, represents the correct pre-
diction of the negative class, where the model correctly pre-
dicts the input as a phishing webpage; YFN , false negatives,
represents the probability of the incorrect prediction of the
negative class, where the model predicts a phishing webpage
where it is benign.

III. DETECTION METHODS
In this section, we survey the state-of-art phishing detection
methods. We divide this section into two subsections based
on training types, e.g., supervised and unsupervised learning.
We review the data preprocessing and classification methods
for each subsection.

A. SUPERVISED LEARNING ALGORITHMS
Supervised learning is a DL task designed by training the
model using a dataset that contains input and its labels as
output. This dataset includes at least two kinds of labels, e.g.,
benign or phishing. Using these labels, the model can mea-
sure its performance accuracy. This subsection comprehen-
sively studies supervised learning models with URL-based
and hybrid-based methods.

1) URL-BASED
URL-based relies on extracted features from only URLs
using NLP.
The authors in [7] propose using the LSTM model on the

URL character level to extract features from the URL. The
model accepts URL as input. Then, they split the URLs into
character-level. Then, they convert each URL into one-hot
encoding. After that, they convert one-hot encoding output
into 128-dimension embedding, which is then passed to the
LSTM layers. A sequence model like LSTM helps extract
sequence features by learning the characters’ patterns for a
long period. LSTM learns the sequence patterns for each
input. The authors in [7] use LSTM to classify the URL as
benign or phishing. As we discuss in Subsection II-C, LSTM
uses three gates: input gates, forget gates, and output gates.
First, the input gates control the input value to the model
from the outside. In this model, the input value comes from
the character embedding layer. Second, the forget gates man-
age which values are passed and ignored. Third, the output
gates control which information is present as a model output.
Then, the model output is given to the sigmoid function for
classification.

The authors in [29] propose a CGRU. CGRU uses a
set of malicious keywords included in the URLs to train
the model. CGRU is a DL model combining the convo-
lutional layer and GRU. The CGRU accepts an URL as
input. The URL usually has some keywords representing
different types of attacks. Table 4 shows some examples of
malicious keywords. Therefore, the authors in [29] propose
using character-level tokenization except for these malicious
keywords. For character embedding, they create a dictio-
nary containing 95 URL characters. Then, they convert
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each character and the keyword to its corresponding low-
dimensional vector. These keywords are essential words that
usually represent different attacks, such as XSS attacks that
typically have a phrase such as ‘‘script’’ in their malicious
URL. The authors in [29] use a CNN to extract URL features
before passing them to the classification model. After getting
the keywords character embedding, the authors in [29] use a
hash to convert these data into a list of integers where each
character is equivalent to an integer. The input to the model is
a two-dimensional vector spliced into a floating-point matrix
and transformed from the original characters. Then, they use
Keras embedding to transfer the vector into a 200×64matrix.
The embedding is trainable since it updates the vector in
every epoch. After getting the input tensor, it is passed to
the multi-core convolutional layer. The convolutional layer
receives the input and then performs convolutional opera-
tions. The authors in [29] apply 128 convolution layers of
different sizes. The convolution layer generates significant
training parameters overfitted quickly. Then, instead of using
the pooling layer, they use multiple GRU to reduce the
number of parameters. GRU is a sequence model. The main
advantage of using GRU instead of RNN is that RNN has
a short memory. Therefore, GRU helps solve this issue by
using reset gates and an update gate. The update gate decides
that the information is kept, and the reset gate determines that
the information is forgotten. The following equations explain
GRU gates and the activation function.

ut = σ (Wu • [ht − 1,Ct ]), (11)

rt = σ (Wr × [ht−1,Ct ]) , (12)

h̃t = tanh(W [rt × ht−1,Ct ]), (13)

ht = ut × h̃t + (1 − ut) × ht−1, (14)

where W is the list of the feature extracted from the con-
volutional layer W=[c1,c2,c3,..,cn], Ct ∈ W, and ut is the
update gate. ut gets the input ct from the update gate and
the previous hidden state and then multiplies its weight W to
get its sigmoid value. The reset gate has the same formula
as the update gate, with different weights and gate usage.
Then, the last feature from GRU is used in the classification
layer. Using GRU helps the model retain a critical feature
that might get lost during the training. Therefore, GRU keeps
these features stored using reset and update gates until the
classification layer. Finally, the result of GRU is passed to
the fully connected neural network for classification.

The authors in [50] propose a Texception as a classification
model that accepts URLs as input. Then, they extract two
types of features for classification word-level and character-
level. First, they split URLs into words using URL symbols
such as ‘‘.?/ −= %&@+;

′′ then they use the FastText [58]
pre-trained model to convert words into a vector representa-
tion. Second, they split URLs into characters for character-
level embedding. They propose a method that converts each
character into a corresponding integer by designing a table
containing all characters with their index and converting
it into a vector representation. This vector is trainable;

TABLE 4. Malicious keywords [10].

FIGURE 7. Texception architecture [50].

therefore, it updates its value during the training. Texception
has two paths for word-level tokenization and character level,
as shown in Fig. 7. For each route, the input is passed to
multiple blocks. Each block contains one dimension CNN
layer with different filter sizes, batch normalization, max-
pooling layer, and Rectified Linear Unit (ReLU) activation
layer. The output of the block is passed into the adaptive
max-pooling layer [71]. Then, the two paths are concatenated
and passed into two fully connected layers. Finally, the output
is passed to the sigmoid function for classification.

The authors in [51] propose a URLNet model to classify
a URL as benign or phishing. The authors in [51] propose to
tokenize the URL based on world-level and character-level
features, as shown in Fig. 8. First, they tokenize the URL as
the character level. Then, they extract all unique characters
and symbols in the URLs with their frequencies appearing in
the dataset. Then, they replace the characters with less than
100 frequencies with an unknown value (UNK). Then, the
model converts each character into a k-dimensional vector
by randomly initializing the character with a random num-
ber. It updates the value during the training. Second, they
tokenize the URL as the word-level feature. They combine
two embedding matrices in this step, one for word embedding
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FIGURE 8. URLNet module architecture [51].

M1 and another for character embeddingM2. First, themodel
extracts all unique words in the dataset by splitting the URL
using special symbols such as ‘‘. / ?’’, etc. Then, they assign
each word with a unique ID and convert each word into an
embedding matrixM1 = Rk∗L1, where k = 32, and L1 is the
maximumURL length in words. Second, the model tokenizes
each word into character-levels and obtains its embedding
using character-level embedding to generate a new matrix
(M2 = Rk∗L2), where L2 is the maximum length of URL
in character. Then, M2 sums with M1 to develop a new
word embedding M3 = M1 + M2. Then, M3 is passed
to the CNN layers. Next, the output of the CNN layers is
passed to the fully connected CNN layers to extract features
from the character-level and the word-level in the URL. The
CNN outputs are concatenated, passing the result to the fully
connected layer and SoftMax for classification.

The authors in [52] propose a parallel neural joint model
with a URL as the input to classify whether it’s benign
or phishing. After the model accepts a URL as an input,
it passes the URL through two different data preprocessing
processes (image and semantic), as shown in Fig 9. First, the
model splits the URL into word-level and character levels,
illustrated in Fig 9. Second, it converts each character into its
corresponding integer and uses one-hot encoding to generate
a vector. Then, it converts each URL into a 2DMatrix by con-
verting each character into a decimal using ASCII. Finally,
it reshapes each URL into 2D matrices. The authors in [52]
propose using two models, Independent Recurrent Neural
Network (IndRNN) and Capsule Net (CapsNet). IndRNN
is trained using the semantic feature. Therefore, IndRNN
accepts word-level and character-level representations and
then applies multiple IndRNNs. IndRNN is a member of
sequence neural network models. Accordingly, each neuron
processes the output of all neurons independently. Each neu-
ron updates its hidden status using Equation (15).

ht = σ (Wst + U ⊙ ht−1 + b) , (15)

where ht is the hidden status of the tth layer, Wst is the
input weight of the vector representation of the tth character
in the URL, U is the recurrent weight, and b is the bias

value. As shown in Fig. 9, CapsNet is trained on URL 2D
matrices. The main advantage of CapsNet is using a pattern’s
position as a feature while training the model. Therefore,
the authors in [52] use vector capsules, dynamic routing,
and squash functions to replace neurons, pooling, and ReLU,
respectively, in CNN. The output of CapsNet and IndRNN is
passed to the attention mechanism. The attention mechanism
helps the model utilize the vital part of the input sequence.
Therefore, the sequence model must have a fixed size with
different URL lengths. Any input with less length is filled
with pad value. Hence, it is essential to use the critical part of
the input and ignore the rest by the attention mechanism. The
authors in [52] propose a method to calculate the attention
mechanism using equation (16) for both semantic and visual
features:

ui = tanh(W × Xj + b), (16)

uc = [usem, uvis], (17)

where W is the input weight and ui is the hidden represen-
tation i-th layer. Then, the method concatenates the attention
output of the semantic usem and visual representation uvis and
calculates the weight as follows:

ai = exp(utiuc)/
∑
i

exp(utiuc), (18)

where uc is the value of concatenating the attention output of
the semantic usem and visual representation uvis. Finally, the
method calculates the weight of the multi-model vector based
on the ai as follows:

Vc =

∑
i

ai[Semi,Visi], (19)

where Semi is the value of the semantic model, and Visi is the
value of the visual feature model.

The final result of equation (19) is used as the input to the
Sigmoid function.

The authors in [54] propose a PhishingNet model to detect
a phishing attack using URL only. The model input is a set
of URL U = u1, u2, u3,. . . , ui, and the output is to be either
phishing or benign. This model includes four parts, as shown
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FIGURE 9. Parallel neural joint model architectures [52].

in Fig. 10: an attention mechanism, a character CNN model,
a feature fusionmethod, and a classificationmethod. The data
preprocessing includes the following three stages.

• At the first stage, a word in a URL doesn’t have a
meaning most of the time. Therefore, it is hard to extract
semantic meaning from it. Another difficulty is that
some words in a URL are a joint of two words, for exam-
ple, aboutus, loginmember, and emailacceess. Based on
these issues, extracting syntax meaning from URLs is
challenging. Therefore, the authors in [54] propose a
method using the Viterbi algorithm. First, they collected
URLs using Common Crawl and extracted their domain
names to build their vocabulary. Then, they combine this
list of vocabulary with common English names. Next,
they use the regular expression pattern [a-zA-Z]+|[0-
9]+ to get a token sequence. Finally, they use Viterbi
to extract a sequence of the segmented words.

• At the second stage, as shown in Fig. 10, the input
is passed through two models: an attention-based
hierarchical RNN module and a char CNN module.
Therefore, the input needs two types of data prepro-
cessing. First, the attention RNN input, as shown in
Fig. 11, is split based on word level, and all spe-
cial characters such as ’.’, ’/’,’:’, etc., are removed.
After that, the authors in [54] split each word into
character levels. Then, they transfer each word into a
character sequence Lwc and add padding. The module
obtains a matrix representing URL characters where
each row is a character. Then, using k-dimensional, the
input is converted into Mw = RLw×Lwc×k . The authors
in [54] propose character embedding k-dimensional
trained using the Skip-gram model. Thus, the authors
in [54] propose a k-dimensional skip-gram model. It is
trained on 3,295,473,093 unclassifiedURLs. The goal of
k-dimensional is to transfer each character to a vector.

• At the third stage, for the char CNN input, as shown in
Fig. 12, the input is converted into a character sequence
and then transferred into a representation matrix Mc =

RLc×k using k-dimensional character level embedding.
For the attention mechanism, after converting the input into
a representation matrix, as shown in Fig. 10, Bidirectional
Long Short memory (BiLSTM)with the attentionmechanism
extracts character-level representation from the input matrix.

Then, use another BiLSTM to extract word-level features
from character-level representation. Next, the input is passed
through five convolutional blocks after converting the input
into representationmatrixMc as shown in Fig. 11. Each block
has four convolutional layers with batch normalization and
ReLU activation. Finally, the convolutional block is concate-
nated as a character-level spatial feature representation.

The authors in [54] propose a cost-sensitive cross-entropy
objective function to handle the imbalanced data as follows

L1(p, y) = −(αylog(p) + β(1 − y)log(1 − P)), (20)

where p is the probability of the predicted value of the
legitimate class and y is the corresponding label in one-hot
encoding representation. It uses α and β to adjust the penalty
miss-classification using the formula below:

[α, β] =


[
nall
2n0

,
nall
2n1

]
: n0 ̸= 0 ∧ n1 ̸= 0[

Nall
2n0

,
nall
2n1

]
: Otherwise

(21)

where n0 is the number of benign URLs, n1 is the number
of phishing URLs, and nall is the number of all samples.
Therefore, if either n0 or n1 = 0, it replaces it with Nall , the
number of all samples in all training sets, n0, the number of
legitimate samples in all training sets, and n1, the number of
phishing samples of all training sets. They use the following
objective function [72] to train the model by minimizing the
objective.

L2 =

m−1∑
i=0

n−1∑
j=0

R
(
xi, yj

)
, (22)

R(xi, yj) =

{
(−(xi − yi − γ ))p : xi − yj < γ

0 : Otherwise,
(23)

where xi is the classifier output of the phishing URL, yi is
the output of the legitimate example, m is the total number
of classification outputs of phishing URLs, and n is the total
number of classifications of benign URLs. We have 0 < γ ≤

1 and p > 1. Therefore, the proposed training objective is
defined as follows:

L = θL1 + (1 − θ)L2, (24)

where θ ∈ [0, 1]
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FIGURE 10. PhishingNet overview [54].

FIGURE 11. The process in Attention-based RNN mechanism [54].

2) HYBRID-BASED
This section reviews some state-of-art DLmodels that use the
hybrid-based feature to detect phishing attacks. Hybrid-based
features combine URLs and other features such as HTML
content, JavaScript, Hyperlink, email headers, etc.
The authors in [10] propose a hybrid-based model in which

the input combines URL and other features such as page con-
tent, email header, email signature, HTML, etc. The authors
in [10] propose a web2vec model to classify webpages as
phishing or benign. The model’s inputs are a set of webpages
N = {P1,P2,P3, . . . ,Pn} and outputs are +1 (benign) or -1
(phishing). In addition, each webpage is a set of features Pi =
{ui, hi, di} where u, h, and d represent a URL, a page content,
and a DOM structure, respectively. Therefore, the model
has three parts: data preprocessing, feature extraction, and
classification. For the URL data preprocessing, the authors
in [10] tokenize the input into word and character levels.

• For the character level tokenization, the URLs are split
into character levels to get a sequence of characters.

FIGURE 12. The process in character CNN step [54].

• Each character sequence is normalized into fixed-length
by zero-padding, and the method assigns each character
to a unique number.

• Each character sequence with its corresponding integer
is encoded to generate a one-dimensional vector using
one-hot encoding.

• For the word-level tokenization, web2vc splits the URLs
into word-level by dividing each URL into the protocol,
SLD, TLD, path, and query by separators ‘.’, ‘:’, ‘//’, etc.
After splitting the URLs into word sequences, each word
is assigned a unique integer.

• Each integer is encoded using one-hot encoding.
Second, web2vec extracts word-level and sentence-level

corpora from text information from the page content. Word-
level corpora of page content are similar to word-level cor-
pora of URLs. Sentence-level corpora of page content are
obtained using ’.’ as the separator since only text information
is used instead of multimedia, CSS, and HTML tags. Third,
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web2vec extracts corpora from the DOM structure. HTML
pages containing tags with nested relationships. Therefore,
web2vec extracts main tags from DOM, such as head, body,
title, etc., and avoids using their attributes, texts, and com-
ment nodes. There are three steps to extract corpora from the
DOM structure as follows.

• First, construct the DOM tag sequence for each web-
page, obtain the root node of the DOM tree, and use
it as the current layer and the first element of the tag
sequence.

• Second, use the breadth-first strategy to traverse layer
by layer starting from the current layer. This specific
method is to traverse the child nodes of the nodes in
the current layer from left to right and save them in a
sequence.

• Third, repeat until all layers are scanned and return to
the tag sequence.

After completing the above steps, the webpage is converted
into a sequence of DOM tags. Then, the DOM tag sequences
formed by all webpages are assembled, and the HTML tags
are regarded as the words constituting the sequences, thereby
constructing word-level corpora.

In the embedding step, the authors in [10] propose a
one-hot encoding method of transferring words to vectors for
webpage representation. For example, at the URL character-
level, each URL is converted into vector representation using
one-hot encoding gi = {gi1, gi2, gi3, . . . , gim}

T where i-th g
is the i-th character in g and m is the size of the character dic-
tionary extracted fromURLs in the dataset. Each URL is con-
verted into one-hotmatrix whereGm∗n = {g1, g2, g3, . . . , gn}
where n is the size of the URL character-level. Then, apply a
single neural network to the matrix G to extract the character
embedding.

Sc = WG =


w11 w12 . . . w1m
w21 w22 . . . w2m
...

... . . .
...

wp1 wp2 · · · wpm



×


g11 g12 . . . g1n
g21 g22 . . . g2n
...

... . . .
...

gp1 gp2 · · · gmn

 ,

(25)

where Sc is the embedding representation matrix for the
character level,W is theweightmatrix of the embedding layer
W ∈ Rp∗m, and p is the embedding dimension. Repeat the
same method for DOM and page content. After extracting
the representation matrix for the input, web2vec concatenates
these features into one representation; therefore, webpage Pi
representation is Pi =

(
Sci , S

w
i ,Cs

c,C
w
i ,Di

)
where Sci and

Swi are representation vectors of URLs; c and w represent
the character-level and the word-level, respectively; Cs

c and
Cw
i are representation vectors of webpage content, and s

represents the sentence-level; D is the representation vector

of DOM. All these vectors have fixed lengths with the same
dimension.

Web2vec applies two well-known DL algorithms for
feature extraction: CNN for extracting local features and
BiLSTM for processing sequence information. As shown in
Fig. 13, web2vec applies multiple convolutional kernels, and
each kernel applies the convolutional operation. It also uses
pooling to reduce the dimension of the feature map with
the maximum pooling. The convolutional operation is hi =

f (wix + bi), where w is the weight, x is the input matrix, and
b is the bias value.
The convolutional operation output has a large number of

parameters. Therefore, web2vec uses the maximum pooling
to reduce these parameters as follows.

Xj = max(hi). (26)

After CNN extracts the local feature, a sequence model
BiLSTM is used to learn the relationships among extracted
features. BiLSTM is an improved version of LSTM with a
two-direction LSTM forward and backward. LSTM as GRU
helps increase the algorithm’s memory to learn the sequence
of the model. LSTM uses three gates for this case, an input
gate, a forget gate, and an output gate.

The model accepts the input from the extracted features
and uses the following equations:

it
ft
ot


 =


Wi
Wf
Wo

 ht − 1 +


Ui
Uf
Uo

Xt +


bi
bf
bo


 ,

(27)

C̃ = tanh(Wcht − 1 + UcXt + bc), (28)

ht = ut × h̃t + (1 − ut ) × ht−1, (29)

Ct = ft • Ct−1it • C̃t , (30)

ht = ot • tanh (Ct ), (31)

where i is the input gate, f is the forget gate, and o is the
output gate; C̃ is the current state of the cell memory, Ct is
the memory cell state, and ht is the hidden layer; W and U
are the weighted matrixes of each gate, and b is the bias value
of each gate.

Finally, the output of the BiLSTM is passed to an attention
mechanism for a better decision to highlight the important
value of the input feature by giving each feature a different
mechanism as follows:

a = tanh(h), (32)

ar = softmax(wT a), (33)

x =

∑
t

αh, (34)

where h is the previous layer output value, ar is the attention
of h, and x is the feature vector. The feature vector outputs
from the attention mechanism for each input, such as URL,
HTML, andDOM, are concatenated and then passed to a fully
connected layer and a sigmoid function for the prediction.
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FIGURE 13. Web2vec framework [10].

The feature vector outputs from the attention mechanism
are concatenated to a fusion vector for a fully connected layer
and a sigmoid function for the prediction.

The authors in [18] propose the OFS-NN model to detect
a phishing website. Fig. 14 shows the model architecture.
First, the model accepts the URL as input. Then, the model
passes the URL to the blacklist and whitelist and classifies
it as phishing or benign, respectfully. Suppose the URL is
not on these lists. In that case, it passes to OSS-NN in three
steps: feature extraction, feature selection, and classification.
The authors in [18] propose to extract three features: URL set
features, page content set features, and domain features. First,
they extract the address bar feature from the URL, such as
URL length, whether the URL contains an IP address, using
a tiny URL, or using symbols such as@,//,., etc. Second, they
extract abnormal features from URLs such as a request URL,
URL of anchor, links in tags, etc. Third, they extract HTML
and JavaScript features such as whether the website disables
the right-click, whether it allows popupwindows, etc. Finally,
it extracts domain features such as age, website traffic, the
number of pages linking to this domain, etc. As shown in
Table 5, each feature has a value between −1 to 1. The
URL which contains the corresponding feature is labeled

as 1; otherwise, it is labeled as −1. Example feature items
containing three values 1,0,−1 in Table 5 include 2, 7, and
14. These values have a condition; for example, for item 2,
if the URL is more extended than 75 characters, it is assigned
as 1, and if the URL is less than 53, it is set as −1; otherwise,
it is set as 0 (meaning no effect in the model). These features
are extracted manually for each URL and used as input to the
neural network for classification. The authors in [18] propose
the Feature Validity Value (FVV) index’s sensitive model.
This model helps select the optimal features from Table 5.

FVV = P (AX = positive and Y = positive)

+ P (BX = negative and Y = negative) , (35)

p =

m∑
i=1

FVVi
(2 × m)

, (36)

where m is the number of features. This threshold helps
reduce the number of features based on the URL inputs.
The authors in [18] design a neural network model with
three layers (input layer, hidden layer, and output layer). The
input layer is the optimal feature vector. Then, each input
is connected to a hidden layer connected to multiple fully

VOLUME 11, 2023 6433



S. Asiri et al.: Survey of Intelligent Detection Designs of HTML URL Phishing Attacks

FIGURE 14. OFS-NN Model architecture [18].

connected hidden layers. Finally, the output of the hidden
layer is passed into ReLU as an activation function.

B. UNSUPERVISED LEARNING ALGORITHMS
Unsupervised learning is a DL task where the model learns
and clusters the data based on a hidden pattern. The unsu-
pervised model extracts these patterns without data labels
and human interaction. The model learns the differences and
similarities between the data and then groups the output.

The authors in [55] propose to handle this issue as an
anomaly detection problem. Anomaly detection often adopts
a data mining method that detects unusual data [73]. There-
fore, the authors in [55] propose training a convolutional
autoencoder on only benign URLs. As shown in Fig. 15,
the model accepts URLs as inputs and unsupervised learns
from them to extract abnormal scores. Then, the scoring
is passed to CNN as a URL feature to classify them as
phishing or benign. Thus, the model has two steps: data
preprocessing and phishing URL detection based on con-
volutional Auto-encoder(AE). The main idea of data pre-
processing is to transfer input characters into vectors and
produce character-level representation. Therefore, the authors
in [55] use a built-in python function ord() to split a URL
into a sequence of characters. It converts each character to its
corresponding integer by extracting ASCII code, passing it to
one-hot encoding, and creating a vector of size (the size of a
dictionary). The vector is fed to the AE to extract character-
level representation. Then, it is used as the input to the model.
The AE is unsupervised learning which encodes an input into
different dimensions and decodes it to the same dimension.
The AE can be used in various data science applications such
as data compression, feature extraction, dimension reduction,
etc. For example, the authors in [55] use the AE to maximize
the reconstruction error of unknown URLs. They also use a
convolutional operation to extract the feature. The outputs of
the convolutional process are passed to the max-pooling layer

TABLE 5. OFS-NN propose features [18].

to reduce the dimension. The convolutional AE has two parts,
compressing the data (encoding) and decompressing the data
(decoding). After extracting the character-level feature, the
model uses Euclidian distance to calculate the loss. The loss
function is the distance between the input benign URL xi and
the reconstructed URL x̂i as follows:

LMSE =

∑
i

(
xi − x̂i

)
, (37)
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FIGURE 15. Proposed method [55].

Then, the authors in [55] use Stochastic Gradient Descent
(SGD) to train the model with the loss function LMSE to
minimize the loss value as follows.

NN = argminθ

∑
xi

∑
i

(
xi − x̂i

)
, (38)

where NN is the basic neural network method applied to
the loss function LMSE , and θ is the encoding and decoding
parameter to minimize the loss function LMSE .

Furthermore, the authors in [55] propose to use two clas-
sification methods: an abnormal score and a CNN classifier.
First, the abnormal score is the distance between the input
benign and the output of the convolutional AE. They define
the abnormal score S as follows:

St (xi) = d (xi, x̂i) = ∥xi − x̂i∥22 (39)

where St is the abnormal score with the threshold t . They
apply the threshold technique to the abnormal score. Finally,
they use the CNN models to classify the reconstructed URL
image x̂i with the SoftMax optimization and cross-entropy as
a loss function.

1) URLDEEPDETEC [53]
The authors in [53] propose supervised (LSTM) and
unsupervised learning (clustering) models. They propose
URLdeepDetetc, which accepts a URL as input and detects
whether it is phishing or benign. The model splits the URL
at the word-level using Natural Language Toolkit (NLTK).
Since the model has two techniques, each has a different
data preprocessing. First, for supervised learning, the model
converts each word into vectors using Wrod2vec embed-
ding [74]. Word2vec is a word embedding pre-trained neural
network model. It creates a vector for each word. Therefore,

each word, its synonym, and the word with a close relation-
ship have a close vector value; for example, king and man
have an immediate value. The Word2vec outputs are passed
to the LSTM model. Second, for unsupervised learning, the
authors propose to extract lexical features from the input,
such as the URL length, the number of non-numeric in the
URLs, the number of digits in the URL, etc. Then, the model
gets the sum value of these features. These values are passed
into the k-means clustering.

IV. COMPARISONS OF THE STATE-OF-ART
DETECTION METHODS
This section compares state-of-art papers based on: data pre-
processing, feature extraction, methods, and results.

A. DATA PREPROCESSING
Data preprocessing is an essential step in DL. It contains
three parts: data cleaning, tokenization, and embedding. Data
cleaning removes unwanted information from the datasets,
such as special symbols (like @, //, #, etc.), step words, data
noise, etc. Data tokenization splits the text into pieces based
on the embedding level; for example, it splits the text based
on the character level or the word level. Data embedding
transforms each token into a corresponding integer and maps
it into a vector representation.Many examples of data embed-
ding in NLP have been done; some of them are trained in
a massive amount of data, such as BERT, Word2vec, etc.
Therefore, in the previous state-of-art papers, the authors
use a different technique to handle the data preprocessing,
as shown in Table 6.
The authors in [10] propose combining the character and

word levels. Therefore, they split the URL into character
sequences and word sequences. For the word sequences, they
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TABLE 6. Data preprocessing comparison of state-of-art papers.

split it based on URL symbols such as‘.’, ‘:’, ‘//’, etc. The
URL is divided into the protocol, TLD, SLD, paths, and query
using these symbols. Then, they use one-hot encoding to
convert the character and word sequences into vectors.

The authors in [29] define a set of keywords extracted
from the URL. Then, they tokenize each URL character level
except for the collection of keywords. Next, they use a hash to
map each character into a vector. The main drawback of this
paper is that using the keywords makes the model assume that
the phishing URL is only the one with these keywords.

The author in [7] proposes using one-hot encoding to
convert the sequence of characters into vectors. The main
drawback of this method is that converting a vector into
embedding based on the train data results in an unknown
value when the word is out of input data. For example, let
us assume that faceb00k is not in the dataset; the model is not
trained on it, so it generates [unk] instead, even though this
word might be a phishing word.

The authors in [54] propose to extract a meaningful value
from the URL. Then, they use different preprocessing for the
CNN model and the attention RNN. Therefore, they divide
theURL into sequences of words for the attention RNN.Next,
they divide it into two sequences of characters. Then, they use
the skip-gram model to convert the sequence into a vector.
The main drawbacks are time-consuming and removing the

special characters containing essential information regarding
the URL.

The authors in [50] propose extracting features from
the word level and the character level. It uses the FastText
pre-trained model to convert words into a vector representa-
tion. For character-level embedding, they propose a method
that converts each character into a corresponding integer
using a table containing all characters with their index and
converting it into a vector representation.

The authors in [52] propose to split the URL into two
features: a semantic feature and a visual feature. First, the
semantic feature is split the URL into the character level and
the word level. Then, use one-hot encoding to convert each
level into vectors. The visual feature converts the charac-
ter level into a 2D matrix by reshaping the ASCII of each
input.

The authors in [18] propose using 30 features extracted
from theURL. Each feature is assignedwith 1 and -1 based on
their existence in the corresponding URL. Then, use the FVV
index to evaluate the feature-based usefulness in detecting
phishing URLs.

The authors in [55] propose using the ord() function to
convert each character to its corresponding integer. Then,
they use one-hot encoding to convert each sequence into
vectors. Finally, they use the AE to extract the character-level
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TABLE 7. Comparison of feature extraction of the state-of-art papers.

representation. The main drawback is that using the AE
focuses on extracting as much information rather than much-
related information, resulting in time-consuming and noise.

The authors in [53] propose two data preprocessing tech-
niques for supervised and unsupervised learning. First, for
supervised learning, the URL is split into word-level tokens
using NLTK. Then, each token is passed into Word2vec and
converted into word embedding. NLTK is usually used with
natural language. Therefore, it splits words based on symbols
such as dots, spaces, etc. However, many symbols in the URL
that NLTK doesn’t use for splitting produce many combina-
tion words. Hence, using Word2vec with combination words
has a large [UNK] value. Second, for unsupervised learning,
the sum of URL lexical features such as URL length, the
number of the alphabet in the URL, and the number of the
digit in the URL, converts each alphabet in the URL domain
into a number, etc. Using the lexical feature results in time
efforts and is less accurate with the new datasets.

B. FEATURE EXTRACTION
Feature extraction is where the model reduces the number
of features from the input and uses the most related training
features. This step differentiates between DL and machine
learning. Machine learning needs a human to extract features
from the input data. However, DL focuses on learning from
the input and its label to extract the most related features.
As shown in Table 7, the most common algorithm to extract

features in recent years is CNN. The authors in [10], [29],
[54], [50], [51], [75], and [55] propose using CNN for feature
extraction.

The authors in [10], [29], and [54] propose a combination
of CNN and sequence models such as BiLSTM and GRU to
extract features. The advantage of using a combination of
two models is that CNN extracts spatial features, whereas
the sequence extracts the relationship feature in the URL.
However, as a result, using a combination of two models is
time-consuming.

The authors in [7] propose using LSTM to extract the
relationship feature. The advantage of using only LSTM is
to extract the relationship feature. However, LSTM struggles
with raw data since LSTM can’t capture long dependency
data.

The authors in [18] propose a neural network that contains
three layers: input, hidden, and output. The hidden layer is
a combination of seven fully connected layers. Using this
model with 30 features makes the model suffer from overfit-
ting. Also, the model needs to extract features manually from
the input, which is time-consuming.

The authors in [52] propose a DL model for each semantic
or visual feature. For semantic features, the authors propose
using the IndRNN model. For visuals, the author proposes
using the CapsNet model. Then, they concatenate the out-
put of these features and pass it into the attention mecha-
nism. The disadvantage is replicating the features using the
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TABLE 8. General comparisons of the state-of-art papers.

character-level two times in visual and semantic features.
Therefore, it is time-consuming.

The authors in [53] propose two models: LSTM and
k-means. LSTM is used with word2vec to extract the rela-
tionship of each word in the URL. K-means clusters the input
URL features into benign or phishing based on its lexical
feature.

The authors in [51], [55], and [50] propose to use CNN
only. CNNhelps extract local features from the text. However,
it does not learn the long relationship feature from the text.
Based on the previous observation, we can see that the com-
bination between CNN and BiLSTM is the most used feature
extraction.

C. GENERAL COMPRESSION
Each paper handles the problem in a different matter. In [54],
the authors see the problem as a simple binary classifica-
tion. Their proposed model is to use simple embedding with
LSTM. Due to the simplicity of this model, it is fast, but
applying it to real-world data has difficulty. Because their
embedding model is simple and trained on the input data,
resulting in [UNK] value as soon as the model gets new data.
Their model also assumes that the URL input is a long URL.

In [29], the authors view the problem as a multi-
classification problem. Their model classifies phishing based

on the type of attacks. Therefore, their solution is to add a
keyword for each attack. Their model also assumes that the
input is always a long URL.

The authors in [10] solve the issue of tiny URLs by looking
at the problem as a combination of multiple features such as
webpage content, URL, and DOM. Thus, they combine these
features to detect a phishing website. This model might solve
the problem of tiny URLs because the model extracts feature
from page content, URL, etc., instead of only using the URL
features, which are hard to detect with tiny URLs. However,
the disadvantages of this model are the time-consuming,
significant effort, and it was trained on a small amount of
data, making it less accurate with a new dataset. Also, it is
risky in phishing attacks to click on the URL, resulting in
downloading malicious software.

In [55], the authors look at the problem as anomaly detect-
ing. The model is trained to detect benign URLs, and con-
sequently, it measures the distance between the new input
and the benign URL. As a result, the model can detect a
zero-day URL.

In [7], the authors look at the problem as an imbalance
problem. They propose a loss function that can measure
the loss among all records in the dataset rather than each
batch. Their solution makes the model overfitting and is also
time-consuming.
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In [51], the authors use CNN to extract features from
the character level and word level in the URL. First, they
convert each word and character to its corresponding inte-
ger. Then, they propose two embeddings for word and char-
acter levels. The word-level embedding is combined with
word-level and character-level embedding. As a result, their
model can extract local features, ignoring the relationship
feature between the URL words.

The authors in [51] propose to combine the word level
and the character level. It uses the FastText pre-trained model
to convert words into a vector representation. For character-
level embedding, they propose a method that converts each
character into a corresponding integer using a table contain-
ing all characters with their index and converting it into a
vector representation. They use CNN to extract features for
both the character level and the word level. This model has
two drawbacks; first, since the proposed model uses special
characters to split the word, the pre-trained model results
in more [UNK] value. For example, assuming the URL is
‘‘www.example.coom/aboutus,’’ using their method to split
the word results in ‘‘www’’, ‘‘example’’, and ‘‘aboutus’’;
therefore, the word ‘‘aboutus’’ is an unknown word for the
FastText pre-trained model, and it results in a [UNK] value.
Second, the model is not able to detect tiny URLs.

The authors in [52] propose to combine local features using
CapsNet and spatial features using IndRNN. Therefore, their
model detects the input’s relationship feature and detects each
input’s local feature. They use CapsNet to use the advantage
of the capsule of detecting the specific location of each
feature in the input. However, using two features replicates
the input data, resulting in time-consuming and reducing the
model productivity of detecting new input data.

The authors in [18] propose manually extracting 30 fea-
tures from the input layer. Usually, extracting many features
fails when the attacker designs new phishing URLs. It adds
more features to the list of analysis and extraction, leading
to a high feature dimension. They use the proposed feature
selection to select the feature. Then, they use a simple neural
network for training the model.

The authors in [53] propose two models: supervised and
unsupervised learning. For supervised learning, they split the
URL using NLTK. Then, they use LSTM with word2vec for
training the model. For unsupervised learning, they manually
extract five features and get the sum of these features. The
sum is passed to the k-means clustering model. The k-means
model groups the input into two groups. The k-means model
is a simple machine-learning clustering model. Therefore,
the drawback is that the input outlier affects the cluster
performance.

Table 8 shows the general comparison of these papers.

V. DISCUSSION
The introduction section explains the phishing attacks and
their impacts from the user perspective and within the orga-
nization. The problem of phishing attacks is an underrated
problem. Recent phishing URLs are more complex than

before. An attacker can use DL or NLP to mimic the URL.
We explored in previous sections the state-of-art of phishing
detection methods. We have seen different methods to solve
phishing detection. Even though these methods show promis-
ing results, they usually have limitations affecting the model
performance. We discuss the potential problem and existing
solutions’ limitations as follows:

A. URL CLEANING
URL is a combination of symbols, numbers, and characters.
It is also a cluster of multiple parts such as TLD, SLD, sub-
domain, and path. Therefore, designing a real-time phishing
detection application requires cleaning the data. It is essential
to consider which part of the URL will be used to train and
test the model because using the whole URL or some part of
the URL might improve or kill the model performance. For
example, two websites can have the same hostname with a
different subdomain: https://www.example.com/ is different
from https://example.com/. Therefore, assuming that these
two URLs are the same might result in vulnerability to phish-
ing attacks. Also, a URL path might cause a model to perform
poorly due to the randomness in the path, even on benign
webpages. Therefore, cleaning the URL is an open research
question worth studying.

B. ZERO-DAY ATTACKS
There is a need to design a model to detect new URL types.
The attackers do not use the same pattern to design a fake
URL every time. They usually design a URL for a one-time
attack and then remove it. They work to deceive users into
thinking that the URL is genuine so that they can design a
newURLpattern in each attack. Therefore, designing amodel
that works well only on the patterns trained shows a bad result
with real-time phishing attacks. Designing a model to detect
new data has been proposed, such as [54] and [51]. However,
these models are trained on an imbalanced dataset toward a
benign URL. As a result, training the model in an imbalanced
dataset makes the model unaware of the patterns of phishing
URLs. Therefore, it must be trained on a large dataset to make
the model learn the pattern from these URLs.

C. TIME-CONSUMING
The time-consuming problem in the DL model affects the
user time and the type of machine that runs the experi-
ment. Designing a massive model with multiple layers needs
high-performance computing to train it. Most proposed mod-
els are trained using two models [10] or only one sequence
model, such as LSTM or GRU [7]. These methods are
time-consuming for training large data. As a result, some
papers propose using CNN because it can train on a large
dataset with less time. However, using CNN alone makes
the model unable to detect the URL’s relationship pattern.
We explore in Section II some phishing attacks URL, e.g.,
attackers use the same SLD as a well-known URL but with a
different TLD. Therefore, extracting the relationship pattern
among URLs is important to classify the URL as a whole.
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The time-consuming is a NLP problem. It has been shown to
have a promising result with the standard English language.
However, designing a lightweight model to detect a URLwith
combined features is a research direction worth studying.

D. TINY URL
The problem of tiny URL phishing attacks is relatively
new. There is a lack of research that solves this problem.
To solve this problem, some researchers add new features to
some models, such as page content [10], email content, etc.,
to allow the models to learn in different aspects. It can solve
the problem but it is time-consuming to train the data. This
type of problem needs the dataset to be unbiased. Since the
model uses features such as page content, the feature extrac-
tion steps need to learn the pattern that differentiates between
phishing and benign websites. If the dataset is biased, the
model will have a high value of FPR. The previous section
explores a tool that directs the model to the original URL
and conducts the classification part as soon as the user clicks
on the tiny URL [53]. This method can solve the problem
of getting the original URL from the tiny URL. However,
it might result in the attacker stealing information from the
user as soon as the tools open the URL by downloading
and installing malicious software. Therefore, this problem
still exists, and exploring it is required to solve the potential
vulnerability of opening insecure URLs.

E. DETECT DIFFERENT TYPES OF ATTACK
An attacker can design multiple attacks; each attack impacts
the system differently. Therefore, the model’s ability to detect
attacks can make the system use protection based on the
attack type. For example, in [29], the authors proposed
using keywords to detect different attacks. Their methods
solve the issue of classifying the URL based on the attack
type using specific keywords. However, it does not detect
a phishing URL out of these words. Therefore, designing a
model to detect phishing attacks without depending on sets
of keywords is worth exploring.

F. WORD TOKENIZATION
Word tokenization is an essential method in NLP. It is cru-
cial to extract the meaningful word from the sentence. This
problem has been studied for many years in NLP. It aims
to split the sentence into words and use these words in
the word embedding layer. However, URLs contain a joint
word such as (aboutus), with using a simple method in URL
results in many unknown words. Therefore, using a powerful
pre-trained model such as BERT results in low performance
due to the high number of [UNK] values. Therefore, design-
ing a model that can extract a meaning word from joint words
is essential to improve the model performance in real-time
data.

VI. CONCLUSION AND FUTURE WORK
In recent years, DL has become essential for solving cyberse-
curity problems such as phishing attacks. It gained attention

due to its ability to extract features from the input data auto-
mated instead of manually. This survey studies state-of-art
DL models to detect phishing attacks. Its importance lies in
analyzing each DL model on every level, from input data to
the model output. The importance of data preprocessing is
at the same level as the DL model. The data preprocessing
affect the model performance in any task, especially once
the model implements an application to detect real-time data.
For example, the model must be able to classify any input
data even if it was not part of the model’s dataset. Therefore,
in this paper, we pay more attention to data preprocessing
and highlight its weaknesses and strengths. Then, we ana-
lyze each DL model’s design and highlight its strengths and
weaknesses.

The data preprocessing has three steps: cleaning, tokeniza-
tion, and embedding. In the cleaning step, each part of input
data, such as URL or HTML, has meaning, including special
symbols. Thus, cleaning the input data results in losing criti-
cal features. In the tokenization step, the input data is mostly
joint words such as abebooks, ieeexplore, etc. Hence, using
character-level tokenization is suited more to handle such
input data. Finally, in the embedding step, we believe that
URL and HTML embedding need more improvement to be
as good as prebuilt text embedding, such as the transformers
model. Since the existing embedding models are only trained
in a small dataset, they performwell with similar data, and the
performance drops rapidly with real-time detection. There-
fore, building a DL embedding model and training on a large
URL and HTML dataset are vital to enhance its performance.

Due to the size of DLmodels, they are time-consuming and
resource-intensive. However, building a real-time phishing
detection application requires efficient performance to be
usable by end users. Therefore, building a DL model using
a combination of CNN to reduce the model size and LSTM
to learn the input long-time dependency is more suited for
such an application.

As we discussed in Section V, there is potentially future
work that needs to be explored. First, we plan to perform
many experiments to explore more model limitations with
real-time data to detect zero-day attacks. Then, we plan to
design a model to solve the experiment’s limitation. We also
plan to explore designing a lightweight model and running
it on small computers, such as the Internet of Things (IoT)
devices, to evaluate and enhance the model’s performance.
We also plan to design a model trained on URLs, page con-
tent, and JavaScript. Furthermore, we also plan to solve the
vulnerability that causes by opening an insecure URL, which
might result in downloading and installing malware on the
user’s device. Finally, we plan to leverage a powerful model
such as transformers to design amodel that learns and extracts
depth information from URL, HTML, and JavaScript input.
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