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ABSTRACT A machine learning (ML) method was used to optimize the trap distribution of the charge trap
nitride (CTN) to simultaneously improve its performance/reliability (P/R) characteristics, which are tradeoffs
in 3-D NAND flash memories. Using an artificial neural network (ANN), we modeled the relationship
between trap distributions and P/R characteristics. The ANN was trained using a large experimentally-
calibrated technology computer-aided design (TCAD) simulation dataset. The gradient descent method
was adapted to optimize the trap distribution, achieving the best P/R characteristics based on the well-
trained ANN. Eventually, we found the best trap profile distributed in both space and energy. In particular,
the energetic trap distribution had a larger impact on the P/R characteristics than that of the spatial trap
distribution. Furthermore, in terms of the P/R characteristics, it was generally preferable to increase all
inputs of the energetic trap distribution. However, the acceptor-like trap energy level (E74) and its standard
deviation (og4) caused a tradeoff between P/R characteristics; therefore, ML was used to determine their
optimal points. The proposed ML method allows the optimization of trap distribution to obtain the best
P/R characteristics rapidly and quantitatively. Our findings could be used as a guideline for determining the
physical properties of CTN in 3-D NAND flash cells.

INDEX TERMS 3D NAND flash, charge trap nitride, device optimization, machine learning, performance,
reliability, trap distribution.

I. INTRODUCTION

NAND flash memory is a typical nonvolatile memory that is
widely used in data servers and portable electronic devices.
The principal advantage of NAND flash is its low bit cost
owing to its high density, which has been facilitated by the
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conversion of conventional 2-D architectures to 3-D archi-
tectures and the adoption of charge trap nitride (CTN) as a
storage layer [1], [2], [3], [4]. In particular, CTN has enabled
the fine scaling of devices and improved their endurance
and reliability compared with conventional floating-gate-
based devices [5]. However, as 3-D NAND cells are more
stacked and scaled, precise control is required to deposit
CTN. In addition, uncertainty in determining the physical
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properties of CTN can result in tradeoffs between their
erase/program (ERS/PGM) speed and retention characteris-
tics [4], [6], [7], [8].

In our previous study, we only considered the ERS/PGM
characteristics with the energetic properties of traps in
CTN [9], [10]. However, in this study, we have attempted
to solve more complicated problems combined with reten-
tion characteristics by optimizing the critical properties of
CTN, that is, uneven spatial and energetic trap distributions,
by using a deeper neural network. Unlike previous studies,
new trap properties were investigated by observing all charac-
teristics simultaneously rather than individually. Previously,
the spatial and energetic trap distributions were extracted
using the trap spectroscopy by charge injection and sensing
(TSCIS) method [11], [12] and the retention model [13], [14].
By optimizing these controllable parameters comprehen-
sively, we first attempted to simultaneously improve the
performance, incremental step pulse erasing/programming
(ISPE/ISPP) characteristics [15], and the reliability, retention
characteristics in the 3-D NAND cell, which exhibit a tradeoff
relationship.

Machine learning (ML) in this study can help in deter-
mining the optimal values exactly and rapidly. ML has
recently been used to predict and optimize nanoscale tran-
sistors [16], [17], [18]. An artificial neural network (ANN)
modeled the relationship between the trap distributions as
input parameters and the absolute values of the threshold
voltage shift (JAVy|) as the output parameters. The ANN
that was trained using a validated simulation dataset deter-
mined the best trap distribution exhibiting the best per-
formance/reliability (P/R) characteristics at the same time.
Consequently, we proposed using ML methods to rapidly
and quantitatively determine the optimal trap distributions.
Furthermore, we analyzed sensitive trap parameters to deter-
mine the P/R characteristics. The remainder of this paper is
organized as follows. Section II describes the methods used to
train and optimize the ANN. Section III presents the results of
the optimization and trends using ML-based analysis. Finally,
the conclusions are presented in Section I'V.

Il. SIMULATION STRUCTURE AND METHODS

Fig. 1 shows a part of the 3-D NAND flash string used in
the simulation. The cylindrical structure was simulated using
Sentaurus technology computer-aided design (TCAD) [19].
Both ends of the string were connected to a bit line (BL)
and a source line (SL), and Vj; was extracted from the
BL current vs. gate voltage curves of the selected word
line (WLse1). Unselected WLs (WLynsel.s) Were stacked
around the WLge]. to consider adjacent cells. The gate stack
consisted of a metal gate, blocking oxide (BOX), charge
trap nitride (CTN), bandgap-engineering tunneling oxide
(BE-TOX), polysilicon channel, and Macaroni filler. No grain
boundaries in the polysilicon channel were assumed to focus
on the CTN materials. Drift-diffusion transport, Shockley—
Read—Hall recombination, mobility (doping, high-field, and
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FIGURE 1. Schematic of 3-D NAND flash string along the channel and the
cell gate stack. The device is simulated in a cylindrical coordinate. Vy, is
extracted from the BL current vs. gate voltage of WL .

interface-dependent), and Hurkx band-to-band tunneling
models were implemented in the simulation. A nonlocal
tunneling model was used to describe the movement of
charges between the channel and the CTN. In addition,
the Poole-Frenkel model was considered, and the trapped
charges were calculated in the CTN. The features of the
simulation structure were obtained from an actual 3-D NAND
cell [9]. In this study, the geometric features of the actual
device were fixed only to see the effect of trap distributions
in the CTN on the P/R characteristics.

All traps were spatially and energetically distributed in
the CTN. In addition, each distribution was composed of
donor- and acceptor-like traps, which captured the holes and
electrons, respectively. Moreover, Gaussian trap distributions
of the peak, mean, and standard deviations were assumed.

Fig. 2(a) shows the spatial trap distributions. The spatial
trap distribution assumes that the volume trap density is not
uniform in the CTN. Each distribution is composed of peak
spatial depths (Drp and D7y4) and standard deviations of the
spatial traps (osp and os4). osp and o4 contain values that
sufficiently reveal the deviation of the volume trap density.
A thickness of 0 nm indicates the BE-TOX/CTN interface;
the closer trapped charges are to zero, the more they are near
the BE-TOX/CTN interface. In other words, the trap has a
spatial distribution based on the CTN thickness.

Fig. 2(b) shows the energetic trap distributions. The ener-
getic trap distribution indicates the energetic position of the
traps in the bandgap of the CTN. Each distribution is com-
posed of peak trap densities (N7p and N7a), energy levels
at Nyp and Ny (Erp and E7y), and standard deviations of
the energetic traps (ogp and og4). ETp is obtained from the
valence band energy (Ey), while E74 is obtained from the
conduction band energy (Ec). Thus, a value close to zero
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FIGURE 2. (a) Spatial trap distributions and (b) energetic trap
distributions of donor/acceptor-like traps in the CTN. At each thickness
point, the volume trap density is determined by the integral of the
energetic traps.

indicates a shallow trap. Furthermore, the value of the volume
trap density in Fig. 2(a) is the integral of the energetic trap
distributions at a specific location on the CTN thickness.

Fig. 3(a) shows AVy as a function of the eras-
ing/programming voltage; the ISPE/ISPP schemes. The
ISPE/ISPP scheme is a basic ERS/PGM method that rapidly
narrows the Vy;, distribution by increasing the operating volt-
age. Therefore, the higher | AVy,|, the better the performance
at the same operating voltage. The ISPE scheme starts from
the PGM state, whereas the ISPP scheme starts from the ERS
state. Sixteen AVy, values (open circle) are used as outputs at
each erasing/programming voltage of 12 V to 19 V.

Fig. 3(b) shows AVy, as a function of time. The experi-
ments were conducted at a high temperature (125°C) because
AVyy, barely changed at room temperature. The initial Vy, was
in the PGM state to verify the charge transport, and WLynsel. S
were in the ERS state. In terms of reliability, the retention
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FIGURE 3. (a) AVy, vs. erasing/programming voltage in ISPE/ISPP
characteristics and (b) AVy, vs. time in retention characteristics. Good
agreements are obtained between simulation and experimental data.
Moreover, adjacent cells (WLy,,se|.S) are in the ERS state.

characteristics improves when |AVy,| decreases at a given
time. Six AVy, values (open circle) are used as outputs at each
time of 2 x 10% s to 10% s.

Under the same bias conditions, the simulation data
(lines) were calibrated using the experimental data (symbols),
as shown in Fig. 3. They are in good agreement when adjust-
ing the inputs of the trap distributions to calibrated values,
as shown in Table 1. Table 1 also summarizes the ranges of
the input parameters to be modeled in the artificial neural
network (ANN). The inputs of the energetic trap distributions,
that is, Nrp, ETp, 0Ep, N1a, ETA, and oga, were referenced
from [13], [14], [20], [21], and [22]. In addition, the inputs of
the spatial trap distributions, that is, D7p, osp, D74, and os4,
were extracted from [12] and [23]. The ranges of each input
were sufficiently feasible, and trap parameters could be deter-
mined by adjusting the gas flow ratios [24]. Consequently,
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TABLE 1. Calibrated values and ranges of input parameters.

Input parameters Minimum  Maximum  Calibrated
Peak density of donor-like s 19 s
traps, Npp (cm-eV-1) 4.00 x10 1.00 <10 6.00 x10
Energy level of donor-like
traps at Ny, Egp (V) 0.80 1.60 1.20
Standard deviation of
energetic donor-like traps, 0.10 0.40 0.40
ogp(eV)
Peak spatial depth of
donor-like traps, Dzp (nm) 0.00 9.30 470
Standarfi deviation of spatial .00 20.00 10.00
donor-like traps, osp (nm)
Peak density of acceptor-like 1o 2 "
traps, Ny (cm-eV-1) 4.00 x10 1.00 <10 5.00 x10
Energy level of acceptor-like
traps at Nps, Ens (V) 0.80 2.20 1.64
Standard deviation of
energetic acceptor-like traps,  0.10 0.40 0.40
o4 (€V)
Peak spatial depth of
acceptor-like traps, Dr, (nm) 0.00 9.30 4.70
Standard Qewatlon of spatial 200 20.00 10.00
acceptor-like traps, o5, (nm)
Il \: .~ \\l
1 1 1
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1 1
! 1 \ 1
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FIGURE 4. Schematic of 10 inputs (Fig. 2) for 22 outputs (Fig. 3). MLP was
used to train the nonlinear function. After training, an optimization
process was performed to find the inputs that made the outputs large by
the gradient descent method.

the controllable input parameters were randomized between
their minimum and maximum values, having different |AVy|
values accordingly.

Fig. 4 shows a schematic of the ANN used in the ML
process. The inputs are the 10-feature of the trap distributions,
as shown in Fig. 2, and the outputs are the 22-feature of |AVy,|
(open circle), as shown in Fig. 3. A multilayer perceptron
(MLP) was used to model this relationship. The MLP has
been widely used to build complex nonlinear models [25].
The feedforward network had one hidden layer with 30 nodes,
and its activation function was a hyperbolic tangent. The
Levenberg—Marquardt method was adopted for the train-
ing algorithm, and the cost function was the mean squared
error (MSE). After successful training, the gradient descent
method was used as an optimization algorithm in the inverse
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FIGURE 5. (a) MSE vs. epochs of train/validation/test sets and (b) a
regression plot showing the match between prediction and target in the
test sets.

direction. Furthermore, by using ML-based optimization,
we can precisely find the specific inputs that are challenging
for engineers to find empirically. In the outputs, | AVy;| values
were used to provide the same direction and were logged
to prevent abnormal values (such as < 0). However, the
|AVi.r1~re| Of the retention characteristics were negative
because they had different directions for improvement. These
results will be discussed in Section III. In the inputs, Nrp
and N7y were logged, and then all parameters were standard-
ized for rapid and accurate training. For example, it takes
4741 seconds on average to predict one device using TCAD,
whereas only 21 seconds using ML. All ML operations were
run in MATLAB [26] using a personal desktop computer with
AMD Ryzen 7 5800X (8-Core, 3.8 GHz) and 32 GByte RAM.

Table 2 summarizes the Spearman correlations between the
inputs and outputs. They have a positive correlation as space
changes to red and a negative correlation as it changes to blue.
For the ISPE/ISPP characteristics, outputs are good to be
larger, but the opposite is true for the retention characteristics.
Therefore, correlation values with the same sign are likely to
have a tradeoff between the P/R characteristics. For example,
when E7y increases, the |AVy, g1~gg| of the early phase is
likely to decrease (degrade), whereas |AVy, ri~re| is likely
to decrease (improve). It can also be observed in the N74 and
oga. However, it is difficult to analyze the effect of multiple
inputs on multiple outputs with only correlations. Therefore,
in this study, we attempted to analyze the complex physical
properties of the CTN in a 3-D NAND flash device using ML
and suggested the best set of inputs for the tradeoffs.

Ill. RESULTS AND DISCUSSION

A. |AVyy| PREDICTION AND OPTIMIZATION USING
ARTIFICIAL NEURAL NETWORK

In this section, we present the results of training and optimiza-
tion using the ANN. We want |AVy,| of ISPE/ISPP charac-
teristics to be larger and | A Vy,| of retention characteristics to
be smaller, but they inherently have tradeoffs. Therefore, the
goal of optimization is to find the best set of inputs that make
the best P/R characteristics as simultaneously as possible
according to an estimated value, which is our evaluation
criterion.
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TABLE 2. Spearman correlation between input and output parameters.

Input |AY 3 2l

AV o, pal

|AI th,Rnl

par. 1 2 3 4 5 6 7 8 1 2 3

Nyp -0.01 -0.01 -0.01 -0.00 -0.00 0.00 0.01 -0.01 T4 N EE-J RS L0 LR L0 2

4 5 6 7 8 1 2 3 4 5 6

0.31 0.25 -0.13 -0.13 -0.13 -0.13 -0.14 -0.14

E;, -0.00 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.07 0.06 0.06 0.08 0.08 0.07 0.06 0.05 mmumm 0.8

Ggp ~-0.02 -0.02 -0.02 -0.01 0.00 0.01 0.02 OOZEHEM

~-0.03 -0.04 -0.03 -0.02 -0.01 -0.00 -0.01 -0.03 -0.05 -0.07 -0.07 -0.08 -0.08 -0.07 -0.07 -0.06 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

osp -0.04 -0.04 -0.04 -0.02 -0.01 -0.01 0.00 -0.04 0.21 0.21 0.20 0.19 0.17 0.15 0.12 0.09 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10

Ny, -0.21 0.28 mmmm 0.35 -0.00 0.08 0.06 0.16 0.23 0.29 0.36 ﬁ
mm 0.03 0.02 0.03 0.05 0.06 0.07 0.08 0.08 ﬁ -—0.4
GEA NEEEEEEHOOI bl | mﬁﬁ

E., -0.34 0.17 0.31

-0.6
-0.08 -0.10 -0.11 -0.12 -0.13 -0.15

-0.4

-0.2

-0.0
0.11 0.11 0.10 0.10 0.10 0.10 -—0.2

0.22 0.21 0.20 0.19 0.18 0.17 ~0:6

-—0.8

D;, ~-0.12 -0.17 -0.19 -0.16 -0.13 -0.12 -0.10 -0.08 0.00 -0.04 -0.04 -0.08 -0.09 -0.10 -0.10 -0.09 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04

oy, -0.16 0.23 0.28 0.24 0.23 0.21 0.20 0.18 0.04 0.10 0.10 0.14 0.16 0.17 0.18 0.19 0.05 0.05 0.05 0.05 0.05 0.05

Fig. 5(a) shows the MSEs of the train/validation/test sets
with epochs. After preprocessing, the total number of samples
was 2290, and AVy, could be extracted from the 57250 BL
current vs. gate voltage curves, resulting in the ISPE/ISPP
and retention curves of Figs. 1 and 2. The samples were
divided into train, validation, and test sets using weights of
70, 15, and 15, respectively. The train sets were used to train
the models, and the validation sets were used to measure
the performance of models built on the train set. A specific
trained model with the best performance was selected using
the validation sets. Finally, the test sets were used to measure
the expected performance of the model after the validation
sets were determined. Furthermore, the smaller the MSE, the
better the ANN training. Subsequently, the ANN exhibited
the best performance, with an MSE = 4.5903 x 102 in
24 epochs after the set validation epochs are over in 34 epochs
(10 epochs away).

Fig. 5(b) shows the agreement between the targets and pre-
dicted values in the sets. The targets are the existing simulated
values, and the corresponding predicted values lie on the y-
axis. A regression of the test sets shows an ideal alignment
in which R = 0.98 (close to 1). It implies that the trained
ANN successfully modeled the nonlinear function between
the inputs and outputs. Consequently, a well-trained ANN can
predict the correct outputs for random inputs within a finite
range.

Figs. 6(a), (b), and (c) show comparisons of the ISPE/ISPP
and retention characteristics between the simulated and opti-
mized values. Solid lines denote the results of simulated out-
puts from the randomized inputs shown in Table 1. The open
symbols indicate the improved outputs predicted using the
ANN. The loss function for the superior P/R characteristics
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FIGURE 6. Comparison of the results between simulation and
optimization in (a) the ISPE, (b) ISPP, and (c) retention characteristics. The
larger [AVy,| in the ISPE/ISPP characteristics and the smaller [AVy, | in the
retention characteristics, the better the P/R characteristics.

can be expressed as follows:
loss (3;) = exp(=3),j=1,...,22 (1

where the prediction yjis the matrix of In(|AViy, g1~£gsl),
In (|AVy, pi~pgl), and — In (|AVy, gi~pgel) in order (Fig. 4);
thus, the value of feature j is for j = 1 to 22. The solu-
tion of (1) can be found in the direction where the gradient
becomes small. In our case, the gradient decreases as J;
increases, according to (1). Therefore, |AVy g1~gs| and
|AVi p1~pg| increased, but |AVy, r1~rs| decreased because
they were made negative based on the previous training. The
best ISPE, ISPP, and retention characteristics were deter-
mined by only one set of inputs, and the selection method
will be discussed in the next paragraph.

Fig. 7 shows the estimated values of optimization are
usually greater than those of conventional simulation. We
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of enhancement for each characteristic between simulation and
optimization. The estimated values of optimization are larger than those
of simulation, which means the former is better than the latter. From this
perspective, the largest estimated value means the best result.

initially set up randomized inputs and performed 2000 iter-
ations using the well-trained ANN to optimize the trap dis-
tributions. In addition, we calculated the estimated values for
2000 samples using the following equation:

. 1 16, 122
Estimated value = — = yj ()

16 4mj=1 "~ 6 L£mjm17”

The estimated value of simulation was calculated as its
own value, not y;. Equation (2) is our evaluation criterion.
In (2), the former indicates the |AVy, g1~gg| and |AVy, p1~ps|
of ISPE/ISPP characteristics, and the latter indicates the
| AV r1~re6| Of retention characteristics; the larger the former
and the smaller the latter, the better the P/R characteristics.
Therefore, the largest estimated value among the optimiza-
tions was selected as the best P/R characteristics, which is
the final goal of optimization process. As a result, the best
result increased by 6.19% from the calibrated one. Also, the
average of cumulative distribution function for optimization
increased by 13.87% from the simulated one. These val-
ues are sufficiently large considering the small size of the
retention characteristics and the fast processing speed (just
40 minutes). Finally, we analyzed the best set of inputs that
made the best P/R characteristics in the following section.
Furthermore, the sensitive inputs that significantly affected
the outputs were also investigated in detail.

B. ANALYSIS OF PERFORMANCE/RELIABILITY BASED ON
MACHINE LEARNING APPROACH
Figs. 8(a) and (b) show the qualitative direction of the trap
distributions for the best P/R characteristics and the best
donor/acceptor-like traps showing trap profiles with the
largest estimated value.

Fig. 8(a) shows the best spatial trap distributions compared
with the calibrated distributions. If the volume trap density
was large near the BE-TOX/CTN interface, we had a question
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of which one was larger, the amount of charge tunneled from
the channel in the ISPE/ISPP characteristics or the amount of
charge leaked to the channel in the retention characteristics.
As a result of ML, the best distributions have larger volume
trap densities with wide osp and narrow osa, and then Drp
and D7y are closer to the BE-TOX/CTN interface than the
calibrated distributions. In general, these results suggest that
the spatial trap distributions should be large and close to the
BE-TOX/CTN interface to improve the P/R characteristics.
Fig. 8(b) shows the best energetic trap distributions com-
pared with the calibrated distributions. As a result of ML, the
best distributions have larger N7p and N4 and deeper E7p
and E74 values, but ogp and o4 decrease slightly compared
with the calibrated values. These results suggest that the large
trap densities and deep energy levels of the energetic trap
distributions can improve the P/R characteristics, generally.
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TABLE 3. Values and dominant factors for the best trap distributions.

Input Calibrated The best Dominant factor for the
parameters best
Npp (em™eV?)  6.00x10"®  1.00 x10" Available trap sites 1
£ v 120 157 Attempt-to-escape
m (V) ’ ’ factor |
ogp (eV) 0.40 0.36 Shallow traps |
470 0.99 Tunneling probability
Do (nm) 7 : (ERS/PGM efficiency) 1
T li babilit
o () 10.00 20,00 unneling probability 1
> Charge leakage 1
Nra(cm3-eV?1)  500x10°  9.69x10" Available trap sites 1
Eo eV 64 192 Attempt-to-escape
m (V) ’ ’ factor |
o4 (€V) 0.40 0.30 Shallow traps |
» 470 136 Tunneling probability
r4 (nm) ‘ : (ERS/PGM efficiency) 1
Charge leakage
054 (nmM) 10.00 7.60

(Retention) |

The values of the best inputs are listed in Table 3. Also,
the dominant factors for the best are briefly summarized.
Especially, some inputs are close to their minimum/maximum
values, whereas others have ambiguous values, such as Epy
and oga. It means that all inputs should not necessarily be
their minimum or maximum for the best. Furthermore, the
difference among the optimizations is insignificant (Fig. 6),
indicating that several optimized inputs can also improve
the P/R characteristics because their results would not differ
much from the best results. Therefore, we analyzed the box
plot for the optimized inputs to get the sensitivity of each
input parameter, as shown in Fig. 9.

Fig. 9 shows the standardized values of all inputs are drawn
in a box plot because of the different feature sizes. The
box size of the energetic trap distributions (N7p, ETp, 0D,
N1, ETA, and oga) is smaller than that of the spatial trap
distributions (D7p, osp, D14, and os4). The median lines are
close to the maximum, implying that the sensitivity of the
energetic trap distributions is greater than that of the spatial
trap distributions. This result could be expected from the rela-
tively small correlation between the spatial trap distributions
and |AVy,| (Table 2), and it was verified through the ML-
based analysis. In addition, the boxes for N7p and N4 contain
the maximum. We confirmed that as N7p and Ny increased,
|[AVi.g1~E8] and |AVy, pi~pg| increased because of the
many available trap sites, but |AVy ri~gg| also increased
with the increasing electric field in the CTN [22], [27].
However, the maximum values of Nyp and N7y are pre-
ferred because the degree of increase in |AVy, g1~gg| and
|AVin p1~pg| are greater than that of |[AVy, ri~rs|.
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FIGURE 9. Box plot of 10 inputs that results in the optimized outputs.
They are standardized because of different feature sizes. The star symbol
indicates the standardized best inputs, as listed in Table 3.

Fig. 10 shows the output trends for the remaining four
inputs of the energetic trap distributions. Each of the remain-
ing four inputs was split, leaving the other inputs fixed at
their calibrated values. Additionally, |AVy, 2|, |AVi, E8],
|AVin psl, and |AVy, ge|, representative outputs of each char-
acteristic, were used for the analysis. As Erp increased,
|AVin 8| and |AVy, pg| remained almost the same, whereas
|AVin.re|l decreased and then was saturated, as shown in
Fig. 10(a). This is because deeper energy reduces the attempt-
to-escape factor for traps [28].

In Fig. 10(b), as ogp increased, |AVy, gg| remained the
same, |AVy, pg| increased slightly, and |AVy, ge| decreased
after ogp = 0.16 eV. Initially, |AVy;, ge| increased slightly
due to the shallow hole traps in the WLg.|. region, but after
oep = 0.16 eV, |AVy el decreased because the holes
already filled in the gate space were rather reduced due to
the increase in the shallow hole traps. Therefore, the holes
that invade the WLge|, region decreased, positively affecting
the retention characteristics.

Fig. 10(c) shows the results of increasing E74. We found
that the early (|AVu, g2|) and late (JAVy g8]) phases of the
ISPE exhibited different trends. In the early phase, the escape
of trapped electrons begins first, and so the lower E74 results
in the higher ERS efficiency [29]. However, this phenomenon
was reversed in the late phase because of the same reason for
increasing E7p. In addition, as the E74 increased, |AVy, rel
decreased rapidly but started to saturate. Therefore, when
considering the tradeoffs between the ISPE and retention
characteristics, the ML determined the best value of E74 to
be 1.92 eV (Table 3).

Fig. 10(d) shows the results of increasing og4. The tradeoff
between the P/R characteristics is clearly demonstrated. As
oEa increased, the integral of the energetic trap distributions
also increased, resulting in an increase in |AVy gg| and
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FIGURE 10. Trends of P/R characteristics with (a) Erp, (b) ogp. (¢) E4, and (d) ogs

AV pg|. However, | AV, ge| increased because the shallow
electron traps increase and then escape easily. Therefore,
when considering the tradeoff between the ISPE/ISPP and
retention characteristics, the ML determined the best value
of og4 to be 0.30 eV (Table 3).

IV. CONCLUSION

ML-based analysis was used to determine the optimal trap
distributions of CTN for improving the P/R characteristics
simultaneously in 3-D NAND flash memory. The ANN could
model the relationship between the trap distributions and
|AVy,| and was trained using an experimentally-calibrated
TCAD simulation dataset. The trained ANN exhibited high
accuracy and predicted specific inputs for the superior P/R
characteristics. As a result, we found the values of the best
inputs using our evaluation criterion and analyzed the trends
of each sensitive input parameter. In general, the influence
of the energetic trap distributions on |AVy,| was greater than
that of the spatial trap distributions. Moreover, increasing
all inputs of the energetic trap distributions proved to be
better for the P/R characteristics. However, it was found
that E74 and ogs should not be maximized because they
cause a tradeoff in the P/R characteristics. Therefore, even
if the actual process was difficult, ML could determine their
optimal values. Therefore, this study is helpful in determining
the complex physical properties of CTN in the 3-D NAND
flash.
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