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ABSTRACT Everyday living environments concentrate a growing amount of wireless communications
leading to increased public concern for radiofrequency (RF) electromagnetic fields (EMF) exposure. Recent
technological advances are turning the focus on Internet of Things (IoT) systems that enable automated
and continuous real-time EMF monitoring, facing however several challenges mainly stemming from
infrastructural costs. This paper seeks to provide a comprehensive view of RF-EMF levels in Greece and
evidence-based decision support for a spatially prioritized deployment of an IoT RF-EMF monitoring
system. We applied the stratified sampling method to estimate Electric Field Strength (EFS) in the 27MHz-
3GHz range in 661 schools. Three different residential areas were considered, i.e. urban, semi-urban and
rural. Results showed that the 95% confidence interval for the EFS is (0.40, 0.44) with central value equal
to the sample mean 0.42 V/m. We obtained strong evidence that the mean EFS value for all Greek schools is
0.42, which is 52 times lower than the Greek safety limit and equal to 1% of international limits. Mean EFS
values of individual residential areas were also significantly below safety limits. Rural areas displayed the
highest EFS peaks comprising the strongest candidate to start the deployment of an IoT RF-EMFmonitoring
system from.

INDEX TERMS Radiofrequency electromagnetic fields (RF-EMF), RF-EMF exposure in schools, Internet
of Things, RF-EMF monitoring, smart cities.

I. INTRODUCTION
Technological developments have infiltrated every aspect
of our lives. Many of our daily activities depend on
smart phones and a range of technology-enhanced everyday
devices, which utilize sensors and wireless networking to
offer a rich variety of novel pervasive services, such as
building automation [1], ambulatory health and wellbeing
monitoring [2], [3] and location-based services [4]. At the
same time, cities experience the digital transformation of
major urban infrastructures and systems aiming to deliver on

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

the promise of optimized resource usage, economic growth,
environmental sustainability and better quality of living for
their citizens [5], [6], [7]. A key technological advancement
for realizing smart cities is Internet of Things (IoT), which
comprises the backbone of digital urban infrastructures [8].
Billions of interconnected IoT devices weaved into the
urban fabric generate huge streams of data for well-informed
decision making and improved urban governance [9].

The ever growing need for interconnectedness and rise
in cooperation between people and machines shape a
future that depends on connectivity and has led to a steep
growth in the use of wireless communication technologies
that provide short-range and urban-wide coverage [10],
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with an emphasis on mobile networks and particularly
5G [11]. As a result, human living environments have
been concentrating a growing amount of environmental
radiofrequency (RF) electromagnetic fields (EMF) increasing
inhabitants’ everyday exposure to RF-EMF radiation. Smart
city systems and services, home monitoring and automation,
mobile applications, industrial cyber-physical systems and
consumer electronics relying on wireless communications
are burgeoning worldwide and contribute to increased EMF
levels, while emerging technologies, such as autonomous
vehicles are expected to worsen this situation.

Due to these developments, in recent years, people have
become increasingly concerned about potential health haz-
ards posed by wireless and especially mobile networks [12].
The proximity of base stations to populated areas is of
particular concern, as it has been claimed to pose particular
health risks to the population. These concerns are reasonable
since the majority of citizens do not have the proper scientific
background to counter the constant misinformation on the
issue of RF-EMF exposure. [13], [14], [15], [16].

In response to social concern and uncertainty, it is
important to continuously monitor the RF-EMF radiation
to inform citizens and scientists of respective exposure
levels [17]. Towards this direction, two main approaches
have been implemented. First, monitoring systems based on
environmental dosimeters operated by regulatory agencies
have been used to measure RF-EMF exposure levels near
base stations [18], [19], [20]. These systems consist of a
number of remote measurement stations managed, via the
mobile network, by a data control center. The stations are
stationary and are not placed in public places, or ’places of
interest’, such as schools, working spaces etc. [21]. Aiming
to assess personal exposure to RF-EMF at such points,
scientists have utilized environmental and mainly personal
dosimeters (or exposimeters) in schools [22], [23], [24], [25],
[26], [27], universities [28], hospitals [29], playgrounds,
offices and malls [30], [31], [32]. However, this approach
requires manual measurements, often cumbersome and costly
equipment, while it doesn’t support continuous and large-
scale monitoring.

More recently, to address these challenges, scholars have
started to experiment on smart city systems that employ
IoT technologies for spatiotemporal RF-EMF monitoring
[33], [34], [35], [36]. These systems have generated sig-
nificant attention amongst policy makers, academia and
technology firms as they automate EMF exposure assessment
and enable continuous real-time data collection through
autonomous, lightweight, low-complexity and intercon-
nected sensing devices. Nonetheless, the application of dense
and extended RF-EMF sensing infrastructures is substantially
hindered by high installation and maintenance costs leading
to localized monitoring solutions [33], [37]. Attempts to
address this issue have focused on fabricating low cost
sensor nodes and examining the trade-off between sensor
density and RF-EMF measurements’ accuracy [38]. The
use of statistical and machine learning methods to increase

the spatiotemporal EMF monitoring coverage and accuracy
using data from a limited amount of sensors has been also
explored [37].

Framed in this context, this paper aims to estimate
RF-EMF exposures in different residential environments,
in order to simultaneously build a comprehensive view
of the electromagnetic radiation levels throughout Greece
and draw conclusions on the spatial prioritization of a
gradual deployment of a large-scale IoT-based RF-EMF
monitoring system. Focusing on assessing the RF-EMF
radiation distribution in urban, semi-urban and rural areas,
we took measurements in schools located at such areas in
Greece through environmental dosimeters. Contrary to exist-
ing methodological approaches that adopted the convenience
sampling method, we applied a probabilistic method, named
stratified sampling, to support a multi-parameter estimation
of the Electric Field Strength (EFS) in the 27MHz-3GHz
range in a total of 661 schools. To the best of our knowledge,
this is the first time this sampling method is used for RF-
EMF exposure estimation contributing to improved validity
and confidence of the results.

The contributions of this work are the following:
• systematically examines RF-EMF exposure in diverse
residential areas on a country-wide level

• considers a uniquely large amount of measurement sites
reinforcing the reliability of the obtained results

• provides insights on how probabilistic sampling meth-
ods can be applied in RF-EMF exposure estimation

• supports evidence-based decision making on IoT sys-
tems for ubiquitous RF-EMF monitoring deployment in
residential environments

• creates a reference point for comparison with exposures
including 5G and beyond technologies

II. TOOLS AND METHODS
A. RESEARCH CONTEXT AND PROCEDURE
The basic objectives of our study were to estimate the total
and per stratum EFS distribution parameters. We structured
this study in three stages:

1) Development and implementation of the measurement
plan;

2) definition of a protocol for measuring RF-EMF expo-
sure values;

3) analysis of collected data to determine EFS distribu-
tions;

The measurement plan’s objective was to determine the
electromagnetic radiation’s distribution parameters in urban,
semi-urban and rural areas. This classification was based
on the population density (persons/km2 or p/km2) of all
municipalities in Greece. More specifically we used 3 strata
(L = 3): urban areas (U), with municipalities having a
population density of more than 500 p/km2, semi-urban
areas (S), with municipalities having a population density
of 50 p/km2 to 500 p/km2, and finally rural areas (R),
with municipalities having a population density of less of
50 p/km2.
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FIGURE 1. Population density of municipalities in Greece.

Fig. 1 is a choropleth map representing the population den-
sity of eachmunicipality in Greece (326 in total), according to
the most recent data (2011 census). Municipalities rendered
with greater (red) color intensity are more densely populated.
Municipalities around the capital city of Athens, and around
the two other greater cities in Greece, Thessaloniki and
Patra, are the most densely populated ones (typically >
500 persons/km2). These regions are mostly lowland. Crete
is an island which is also characterized by medium or
great (municipality of the Heraklion city) population density.
On the contrary, municipalities that lie in the mountain range
of Pindus present the lowest population density values (<20
persons/km2).
The next step was to determine the type of measurement

sites. We opted for taking measurements at school environ-
ments for two main reasons. They are related to sensitive
population groups (i.e. children) and they constitute a very
dense network of places of interest. Due to the above, they
comprise very popular RF-EMF measurement sites in the
literature, as they are able to provide adequate coverage for
outdoor environments [39].

In order to meet the goals of our research, it was necessary
to have the best possible approximation of the electromag-
netic radiation’s distribution parameters in Greek schools.
The optimal solution would include taking measurements at
all 15,000 schools in Greece. Because such a solution is very
expensive and incredibly time-consuming, we decided to use
the probabilistic sampling method of stratified sampling, that
is, to randomly collect data from a large sample of schools
located at the three examined strata.

This particular sampling methodology offers more accu-
rate estimates of the various parameters of the population
(mean, standard deviation, etc.) than other samplingmethods.
It allows us to obtain more accurate results for specific
subpopulations of interest, since each stratum can be studied
as an individual (sub)population. Moreover, by dividing
the population into strata our sample becomes more rep-
resentative. In addition, knowing the categories and the
percentages of each category allows for more efficient

FIGURE 2. Density of sampled schools – per municipality.

sampling than if the categories were not known and finally
allows us to select the sample within the categories in
different ways and with different percentages [40]. Stratified
sampling requires the standard deviation of the distribution
to be known for each stratum. Since no such research
has been done before in Greece, this information remained
unknown.

Thus, our study had to initially estimate the standard
deviation of the electromagnetic radiation. Thus, we con-
ducted a pilot study, which would provide this estimation
and indicate the minimum number of schools that our main
study should include, using a pre-specified estimation error
[41], [42], [43]. We eventually included 661 schools as
measurements’ sites in the main study, which comprised
an optimal sample for the needs of our research, mini-
mizing the error, while giving a short confidence interval.
In order to specify which schools would participate in
the sample of every stratum, we used a random number
generator implemented in R based on pseudo-random number
algorithms.

Aiming to cartographically visualize the number of sam-
pled schools for each municipality, we calculated the density
of schools in which the RF-EMF exposure measurements
took place – per municipality. In this choropleth map (Fig. 2),
the density of sampled schools in eachmunicipality of Greece
is portrayed, harnessing the same visual variable (color
intensity) also used in Fig. 1. As it can be clearly noticed,
the municipalities with the highest density of sampled
schools lie around the greater cities of: Athens, Thessaloniki,
Patra, Heraklion, Larissa, Volos, Ioannina, etc. – which also
constitute low lying municipalities.

Another means to geovisualize the schools in which the
RF-EMF exposure measurements took place is via heatmaps
(Fig. 3). To this end, we computed the centroid point of
each municipality, while the number of the sampled schools
of each municipality was attributed to this point. For each
point, the density of the sampled schools was represented by
circles symbolized with radially varying (color) hues of the
visible spectrum. Colors that are near the red hues portray
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FIGURE 3. Heatmap of sampled schools’ distribution.

high density or number of sampled schools, while colors
approximating blue hues portray low density or number
of sampled schools. Fig. 3 depicts the distribution and the
number of sampled schools, as in Fig. 2, but in a different,
complementary means.

Themeasurement protocol we implemented complied with
the following: (a) All measurement points were located
outdoor, at the perimeter of the schools; (b) The worst-
case scenario was selected. This means that an initial
broadband survey was performed at each measurement site,
indicating the spot with the highest power density. According
to the Greek Atomic Energy Commission (Decision No
2300 / 3-3-2008), analytical, narrow-band measurements
were performed at this spot; (c) Clear sky and normal
weather conditions were met: 15− 20oC / 45-55% humidity;
(d) Measurements were carried out in a time interval of
6 minutes with a sampling frequency of 5 seconds and the
average value of the EFS was calculated. Moreover, a spatial
average of the three heights (1.1 m, 1.5 m, and 1.7 m)
proposed by the Electronic Communications Committee
Recommendation (02)04 [44] was taken into consideration
(measurement time of 6 minutes with one sample per
5 seconds for each height).

Measurements were performed at high-traffic hours (mid-
day) to acquire a conservative estimation of the EFS. The
unit device and the antenna system were kept 1m from
reflecting objects and the human body to avoid interactions
or overestimations [45]. The measurement method was based
on the Greek Governmental Decision No 2300 published in
March 2008. The obtained data set contained 2 variables:
Area and EFS. Area is a categorical variable with 3 groups
(U= urban areas, S= semi-urban areas and R= rural areas);
EFS is a continuous variable in V/m.

The equipment used to conduct EMF radiation measure-
ments consists of the following:

• an SRM 3006 field strength analyzer by NARDA Safety
Test Solutions, and

• an E, B – Field 3–Axis – Antenna EHP 1Hz – 400Hz
probe by NARDA Safety Test Solutions.

FIGURE 4. Research group leader with SRM-3006, used during the
measurement process.

TABLE 1. Greek safety exposure limits.

The SRM-3006 [46] selective radiation meter has
been developed specifically for environmental and safety
measurements of EMF. Equipped with isotropic measure-
ment antennas, this device covers the whole frequency range
from 9 kHz to 6 GHz.

Consequently, it can be effectively deployed to: (a) assess
safety at the vicinity of radio-frequency emissions, (b) mea-
sure radio and TV signal emissions, and (c) to determine
the levels of exposure caused by the latest generation of
mobile telecommunication services. This device can receive
signals from individual channels and assess each channel’s
contribution to the total field emission. In the same manner,
the value can be incorporated to the frequency band, and
the total value displayed will be the absolute value or a
percentage of the allowed limit.

The safety limits of RF-EMF exposure of the general
public described by Greek legislation have been based on
the Council of the European Union’s Recommendation L
199/59. They are set to 70% of those recommended by the
EU [47], as shown in table 1. In particular, in the case of
Base Transceiver Station (BTS) antenna installations within
300 metres of building facilities, kindergartens, schools, care
homes and hospitals, a provision is made for further lowering
safety limitations of exposure of the general public to 60% of
the EU standard.

7148 VOLUME 11, 2023



T. Panagiotakopoulos et al.: RF-EMF Exposure Assessments

B. STATISTICAL UNCERTAINTIES
A measurement procedure is considered complete when
accompanied by documentation of calculation of the asso-
ciated uncertainty, because all measurements are subject to
uncertainty. Furthermore, it is important that the calculation
of uncertainty is carried out during the data interpretation
process where the levels of compliance with the regulations,
as with the RF-EMF exposure limits, are determined. The
relevant standards [48], [49] provide guidance on how
the sources of uncertainty in equipment calibration and
measurements should be combined to determine the overall
measurement uncertainty. Based on these guidelines and the
mathematical methodologies described in [50] we formed
the uncertainty model of our EFS measurements as detailed
below.

In our case we have two types of uncertainties. Type A is
assessed using statistical analysis of observations, while Type
B is calculated using available information on the variability
of the measured quantity, such as equipment specifications
etc. Based on the regulatory authority’s official guidelines,
our aim is that the final reading of the measurement in each
school is of the form

Tm ± UT (1)

where Tm is the measured value, and the range ±UT is the
measurement’s uncertainty.

The measured value Tm essentially represents the total
exposure ratio 3 and UT = U3(UA,UB) will be the
aggregation of the two types of uncertainties.

The total exposure ratio 3 in each measurement site
is calculated as the sum of the exposure ratios λf in the
frequency range f

3 =

∑
f

λf =

∑
f

3∑
i

λi,f (2)

where the exposure ratios λi,f recorded at each point i (i.e.
the three different heights of EFS measurements at each site)
and frequency range f are calculated from equation 3.

λi,f =

(
Ei,f
EL,f

)2

(3)

where Ei,f is the EFS at height i for frequency band f , and
EL,f the reference EFS at frequency band f .

1) STATISTICAL UNCERTAINTY TYPE A
The calculation of the uncertainty type A involves some
statistical processes. From the results of n values for the

exposure ratio λi,f , the mean value λf =
∑n

i=1
λi,f

i
and the

standard deviation sf are calculated.

sf =

√√√√ 1
n− 1

n∑
i=1

(
λi,f − λf

)2 (4)

Because each frequency component varies differently in
space, and the effect of the instrument’s anisotropy and the

observer’s proximity is different for each point and frequency
band, it could be assumed that the values of the exposure
ratios are statistically independent, so that the developed type
A, statistical uncertainty for the total exposure ratio UA(3) is
calculated as:

UA(3) =
A2
√
3
σ3 (5)

where σ3 =

√∑
f

f (sf )2 and A2 is the value of the Student

distribution with 2 = 3 − 1 (number of measurements−1)
degrees of freedom, for which P applies (−A2 < t < A2) =

95%. This value is equal to 4.303.

2) STATISTICAL UNCERTAINTY TYPE B
The developed uncertainty type B in the total exposure ratio
UB(3) is calculated from the corresponding uncertainties
of exposure ratios UB(λf ), which are obtained from the
measurement uncertainties of the EFS given by the provider
of the RF-EMF measurement equipment.

Due to non-existence of a linear relationship between
the exposure ratio λf and the measurement of the EFS
Ef and because of uncertainties δ(Ef ) being high enough,
the linearity is lifted and is separated of uncertainty in the
exposure ratio of upward +UB(λf ) to that of downward
−UB(λf ).

+UB(λf ) = 4λf [δEf + δ2(Ef )] (6)

and

−UB(λf ) = −4λf [δEf − δ2(Ef )] (7)

Because the measurement uncertainties of the frequency
bands are correlated, the developed uncertainties in the total
exposure ratio are calculated as:

+UB(3) ≤

∑
f

+UB(λf ) (8)

and

−UB(3) ≥

∑
f

−UB(λf ) (9)

After the calculation of the uncertainties of types A and
B, the total developed uncertainty in the total exposure ratio
U (3) is aggregated following the formulas:

+U (3) =

√
U2
A(3) + [+UB(3)]2 (10)

and

−U (3) = −

√
U2
A(3) + [−UB(3)]2 (11)

Then, the 95% confidence interval for the total exposure
ratio (32.5%), 397.5% is calculated as:

32.5% = 3 − U (3) and 397.5% = 3 + U (3) (12)

In order to declare that an exposure level as measured
complies with the Greek safety limits imposed in Greek
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legislation, the Greek Atomic Energy Commission demands
the measured values in addition to the expanded uncertainty
to be below the reference values, so for the final decision we
use the interval according to 12.

C. DATA ANALYSIS
As described in the previous section, analysis of the data
collected during the pilot study aimed at defining the
minimum number of schools that should be included in the
sample of the main study. After finding the sample standard
deviation for each area using the following formula

sk =

nk∑
i=1

√
∥xi − x̄∥2

nk − 1
(13)

with k ∈ {U ,R, S}, where U , S and R refer to urban, semi-
urban and rural areas respectively, we need to solve equation
14 knowing the error, which requires the distance between
population mean µ and the sample mean x̄ to be less than an
estimation error, i.e.:

P (|x̄st − µ| ≤ d) = 1 − α (14)

Therefore, if we solve the inequality

d√
Var(X̄st )

≥ z a
2

(15)

we get

n ≥

(∑L
k=1Wksk

)2
(
d
z a
2

)2

+
1
N

∑L
k=1Wks2k

(16)

where Wk stands for the proportion of school units in each
residential area, which, according to the Hellenic statistical
authority, follows the distribution

WU = 50%,WS = 16%,WR = 34%, (17)

with WU ,WS and WR refering to the proportion of urban,
semi-urban and rural areas respectively.

For the needs of the main study we estimated the mean
of the distribution of the RF-EMF exposure in the schools
of our sample. After that we performed a hypothesis test for
the mean value of RF-EMF radiation sources in the 27MHz-
3GHz range for all Greek schools, as formally defined below:

H0 : The null hypothesis assumes that the mean is equal
to 0.415 i.e. µ = 0.415

H1 : The two-tailed alternative hypothesis assumes that
the mean is not equal to 0.415 i.e. µ ̸= 0.415

Also, we performed a hypothesis test to investigate whether
the mean values of RF-EMF radiation sources in the 27MHz-
3GHz range differ between urban, semi-urban and rural areas.
This is because we wanted to determine whether there are any
statistically significant differences between the means of the
general populations (i.e. the three residential areas).

TABLE 2. EFS (V/m) for RF-EMF radiation sources in the 27MHz-3GHz
range for all three areas in the pilot study.

In the end, we performed hypothesis testing to gain
statistical evidence that the order of the three areas in
terms of EFS mean value can be generalized to the general
populations. Formally, we performed the following three
Hypothesis tests:
Semi-urban vs Urban

H0 : The null hypothesis assumes that the two population
means are equal µS = µU .

H1 : The alternative hypothesis assumes that µS < µU

Semi-urban vs Rural

H0 : The null hypothesis assumes that the two population
means are equal µS = µR.

H1 : The alternative hypothesis assumes that µS < µR

Urban vs Rural

H0 : The null hypothesis assumes that the two population
means are equal µU = µR.

H1 : The alternative hypothesis assumes that µU > µR

III. RESULTS
A. PILOT STUDY
During the pilot study we took measurements at 166 schools
(64 schools from rural areas, 45 schools from semi-urban
areas and 64 schools from urban areas). As we may observe
from table 2, the mean andmedian EFS values for urban areas
are x̄ = 0.50 and M = 0.44 respectively, while for semi-
urban areas are x̄ = 0.39 and M = 0.31 and for rural areas
are x̄ = 0.48 and M = 0.40. The mean and median values
diverge significantly both among the three areas and within
each individual area. This verifies the skewness illustrated in
Figs. 5,6 and 7.

Fig. 5 illustrates the histogram and the boxplot of the EFS
values from the urban areas. It is shown that the distribution
follows a non-normal pattern and includes outliers. We can
observe a similar distribution among all residential areas
(Figs. 6 and 7) with the difference that the boxplot of the rural
areas has more outliers than the other areas’ boxplots. The
latter is something we expected because many times in rural
areas the antenna network is more sparse than in other areas
and this means that we have antennas with a stronger signal.
In any case, that similarity of the distributions highlights the
need for a more extensive research like the one that follows in
the main study of our work. More specifically by calculating
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FIGURE 5. Histogram with boxplot of EFS (V/m) for RF-EMF radiation
sources in the 27MHz-3GHz range in urban areas.

FIGURE 6. Histogram with boxplot of EFS (V/m) for RF-EMF radiation
sources in the 27MHz-3GHz range in rural areas.

FIGURE 7. Histogram with boxplot of EFS (V/m) for RF-EMF radiation
sources in the 27MHz-3GHz range in semi-urban areas.

the samples’ standard deviations

sU = 0.25, sS = 0.23, sR = 0.27 (18)

FIGURE 8. Histogram with boxplot of EFS (V/m) for RF-EMF radiation
sources in the 27MHz-3GHz range in all 661 schools.

where U , S and R refer to urban, semi-urban and rural areas
respectively, we can find from equation 16 that the minimum
number of schools is 358.

B. MAIN STUDY
We decided to increase the number of schools of our sample
from 358 to 661, in order to reduce the length of the
confidence interval of the EFS mean values estimations, thus
improving our error range. Of course, having a bigger sample
would provide even better EFS approximation, but this would
exceed our resource capacity. More specifically, based on the
Greek schools’ distribution described in equation 17, we took
a sample of 338 schools from urban areas, 217 schools from
rural areas and 105 schools from semi-urban areas. Looking
at table 3 and Fig. 8, we can see that for all three areas the
minimum value of EFS is 0.27 V/m, 1st (lower) quartile (Q1)
is 0.30 V/m, median M = 0.32, 3rd (upper) quartile (Q3) is
0.44 V/m, and the maximum value is 1.92 V/m; we should
also note that the 90th percentile is equal to 0.64 V/m, the
95th percentile is equal to 0.88 V/m, and the 99th percentile
is equal to 1.17. The mean X̄ = 0.42 and the median
M = 0.32 are also different, which indicates that the data are
skewed as we can verify from the histogram (Fig. 8). A 95%
confidence interval for the X̄st is: (0.40, 0.44) with central
value equal to the sample mean 0.42 V/m. This value is
significantly lower than the safety limit, which is considered
to be the 21.7 V/m (i.e. the minimum EFS safety limit of all
frequency bands as shown in table 1).

Fig. 8 gives an indication that our dependent variable (EFS)
is probably not normally distributed. For a formal verification
we have performed a Shapiro–Wilk test of normality. Under
the hypothesis of normality we accept at level 5% (W =

0.62, p-value < 2.2e − 16) that our variable is not normally
distributed. But our sample was big enough (n = 661 > 50)
to perform the t-test; the t-value is t = 0.41, df = 660,
which gives us a p-value of 0.68. Therefore, there is sufficient
evidence at the α = 0.05 level to conclude that the 95%
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FIGURE 9. Boxplot of Electric Field Strength in all residential areas.

TABLE 3. EFS (V/m) for RF-EMF radiation sources in the 27MHz-3GHz
range for all three areas in main study.

confidence interval is (0.40, 0.43) for RF-EMF radiation
sources in the 27MHz-3GHz in all Greek schools and the
mean value is equal to 0.42 V/m.

As we may observe from table 3, the mean and median
EFS values for urban areas are x̄ = 0.44 (confidence interval
is (0.41, 0.47)) and M = 0.35 respectively, while for semi-
urban areas are x̄ = 0.38 (confidence interval is (0.34, 0.42))
and M = 0.31 and for rural areas are x̄ = 0.42 (confidence
interval is (0.40, 0.45)) and M = 0.30. Evidently, mean EFS
values and respective confidence intervals of all examined
areas are also significantly lower than the 21.7 V/m safety
limit. Moreover, these results verify the findings of the pilot
phase, i.e. the mean and median values diverge significantly
both among the three areas and within each individual area
as visually seen from Fig. 10. We can observe a similar
distribution in the semi-urban as well as the rural areas
(Figs. 9 and 10) with the difference that the boxplot of the
rural areas has more outliers than the other areas’ boxplots.

Due to the fact that our dependent variable (EFS) is
not normally distributed for each group of the independent
variable Area (Fig. 10), we performed a non-parametric test,
the Kruskal-Wallis test, instead of using an ANOVA test.
The Kruskal-Wallis test showed that there was a statistically
significant difference in mean EFS values between the
different areas, χ2

= 41544, df = 2, p-value = 9.52e −

10 ≪ 0.05.
Since we do not have strong evidence that the mean value

of EFS is the same in the three areas, we performed three
hypothesis tests to determine their ordinance as described in
section II-C. The first t-test aimed at determining whether
there is significant statistical evidence that the associated
population means in semi-urban areas are smaller than
those of urban areas. The t-value is t = 19.84, df =

262, standard error of difference equal to 0.03 which gives
us a p-value less than 0.05. Therefore, there is sufficient
evidence at the α = 0.05 level to conclude that the mean
EFS value in all Greek schools in semi-urban areas is smaller
than those in urban areas. In the same manner, we found
that the mean EFS value in all Greek schools in semi-urban
areas are smaller than those in rural areas (t = 24.11, df =

499, p − value ≪ 0.05), which which mean EFS value
is lower than those of urban areas (t = −0.70, df =

553, p − value = 0.02).

IV. DISCUSSION
The present work has two main methodological novelties.
The first concerns the very large sample size (n=661 schools),
that accounts for approximately 5% of the Hellenic schools
and contributes to an increased reliability of the mean EFS
values estimations. While many similar research efforts
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FIGURE 10. Histograms of Electric Field Strength in all residential areas.

are reported in the literature [39], the vast majority is
limited to very small scale experiments including only a
few schools as measurement sites. On the one hand, such
studies can’t lead to generalized EFS estimations on wider
geographical areas (e.g. national contexts), and, on the
other hand, comparability with the results of our study is
limited.

The second one, refers to the sampling method, where
a probabilistic method was used to select the points of
measurements. This method allowed as to present the EFS
estimations along with confidence intervals and gave us
the tools to generalize the results to the population of
interest by using the appropriate hypothesis tests. Confidence
intervals are quite important for ensuring the validity of
EMF exposures safety assumptions on the basis of EFS
estimations. It should be emphasized that this has also added
to the difficulty of limited comparability capacity with the
results of other research efforts since most of them do not
mention the confidence intervals of the EFS levels but only
the range (i.e. from min to max value) obtained from the
sample.

What can be drawn by the results of our study, is that
the RF-EMF exposures in the Greek territory are well below
national and international safety limits. Specifically, themean
EFS value (0.42 V/m) estimated for all Greek Schools is
approximately 52 times lower than the 21.7 V/mGreek safety
limit. It is also lower than 2% of the International Commis-
sion on Non-Ionizing Radiation Protection (ICNIRP) RF-
EMF exposure limits, as well as the limits set by the IEEE
safety standard, which range at the same values with the
ICNIRP ones [51]. Likewise, EFS levels in each of the
examined residential areas, i.e. rural, urban and semi-urban

areas, are much lower than the national and international
safety limits.

Indicatively, EFS values at 50% of the schools were
67 times below the Greek safety limit, at 75% of the
schools were 63,5 times below the Greek safety limit and
at 90% of the schools were 53 times below this limit. Our
findings confirm the low EMF-RF exposure levels at outdoor
environments and specifically at school buildings not only in
Greece, but also internationally [27], [32], [52], [53], [54],
[55], [56]. More specifically, the studies realized in Greece
have so far shown similar results [58], [59] on the overall
average value of electromagnetic radiation at children places
(e.g. schools, playgrounds, etc.), without however providing
corresponding confidence intervals to their estimations. This
work confirms the findings of [52] and improves them
with regard to the range of the confidence interval and the
measurements scale.

Looking at EFS values per residential area, we can observe
that urban and rural areas have a similar EFS distribution,
while semi-urban areas present a significantly different
distributionwith lowermean. Another important pointmainly
illustrated by Fig. 9 concerns the fact that EFS values in semi-
urban areas have a fairly lower range compared to urban and
rural areas, which indicates low fluctuations of EFS values
and a narrow distribution close to the respective mean. What
can be inferred is that the cellular antenna system in the semi-
urban areas, which is neither sparse nor too dense resulting in
relatively low intensity antennas in tandem with the reduced
traffic compared to urban areas are key factors of lower RF-
EMF exposures.

Furthermore, our research highlights that while in rural
areas the antennas emitting electromagnetic radiation are
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more sparsely placed, the mean radiation is at the same
heights as that of urban areas, where the network is very
dense resulting in the highest EFSmean value. However, EFS
distribution in rural areas has the highest maximum values
(42% and 37.4% higher than those of semi-urban and urban
areas respectively), which is verified by the outliers shown
in Fig. 9 that indicate special points of interest. It has to be
mentioned however that EFS peaks in rural areas are about
11 times below the safety limit, but about 5 times higher than
the sample mean of 0.42 V/m.

These higher peaks of EFS values in rural areas suggest that
an IoT-based RF-EMF monitoring infrastructure deployment
should follow a non obvious prioritization scheme, which
would start from them, before being deployed to urban
and semi-urban areas. While all residential areas exhibit
considerably low mean EMF exposures, which as previously
mentioned are well below safety limits, EFS peaks of rural
areas could form potential risks that should be continuously
monitored to assess their significance and determine appro-
priate mitigation actions.

V. CONCLUSION
This study assessed the RF-EMF levels in different residential
areas in Greece, and sought for evidence to inform the
decision process of a gradual deployment of smart city
IoT-based RF-EMF monitoring systems in terms of spatial
prioritization. After a carefully designed methodological
approach that considered diverse aspects of the specific
problem, we examined three types of residential areas
(i.e. urban, semi-urban and rural areas) collecting RF-
EMF measurements from 661 schools throughout Greece.
Applying the stratified sampling method to estimate the mean
EFS in the 27MHz-3GHz range we found that its values are
well belowGreek safety limits as the 95% confidence interval
for the mean value of the EFS is (0.40, 0.44) with a central
value equal to the sample mean 0.42 V/m. On residential area
level, the mean EFS values were 0.44, 0.38 and 0.42 V/m
for urban, semi-urban and rural areas respectively. It was
also deduced that rural areas should be prioritized for
installing IoT monitoring systems for RF-EMF radiation.
Although urban areas had a slightly higher mean EFS value,
rural areas displayed 42% higher peaks than the urban
areas comprising cases of increased interest. This study can
assist authorities and researchers to address public concern,
increase the capacity of data-driven policy enactment for
exposure prevention and reduction in smart cities and support
installation of IoT infrastructures for ubiquitous monitoring
of RF-EMF levels. Its utility is emphasized by the fact that
by employing a formal methodology over a typical residential
zone classification, our approach for assessing RF-EMF
exposures facilitates adaptability and replicability in different
national contexts.
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